STAR-CRITICAL RAMSEY NUMBERS FOR CYCLES VERSUS K4

dc.contributor.authorJayawardene, Chula J.
dc.contributor.authorNarvaez, David
dc.contributor.authorRadziszowski, Stanis law P.
dc.date.accessioned2021-09-23T09:45:54Z
dc.date.available2021-09-23T09:45:54Z
dc.date.issued2021
dc.description.abstractGiven three graphs G, H and K we write K → (G, H), if in any red/blue coloring of the edges of K there exists a red copy of G or a blue copy of H. The Ramsey number r(G, H) is defined as the smallest natural number n such that Kn → (G, H) and the star-critical Ramsey number r∗(G, H) is defined as the smallest positive integer k such that Kn−1 ⊔ K1,k → (G, H), where n is the Ramsey number r(G, H). When n ≥ 3, we show that r∗(Cn, K4) = 2n except for r∗(C3, K4) = 8 and r∗(C4, K4) = 9. We also characterize all Ramsey critical r(Cn, K4) graphs.en_US
dc.identifier.citationJayawardene,C.,Narváez,D. & Radziszowski,S.(2021).Star-Critical Ramsey Numbers for Cycles Versus K4. Discussiones Mathematicae Graph Theory,41(2) 381-390. https://doi.org/10.7151/dmgt.2190en_US
dc.identifier.urihttps://doi.org/10.7151/dmgt.2190
dc.identifier.urihttp://archive.cmb.ac.lk/handle/70130/6057
dc.language.isoenen_US
dc.subjectRamsey theory, star-critical Ramsey numbers.en_US
dc.titleSTAR-CRITICAL RAMSEY NUMBERS FOR CYCLES VERSUS K4en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.7151_dmgt.2190.pdf
Size:
372.46 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: