Violation-based Feature Selection for Isolation Forest

dc.contributor.authorDissanayake, D.M.
dc.contributor.authorNavarathna, R.
dc.contributor.authorViswakula, S.
dc.date.accessioned2024-12-09T05:25:47Z
dc.date.available2024-12-09T05:25:47Z
dc.date.issued2024
dc.description.abstractAnomaly detection is crucial in sectors like finance and healthcare to identify deviations from normal behavior. The Isolation Forest (ISF) algorithm, introduced by Liu et al. (2008), is effective but has limitations, such as bias towards correlated variables and suboptimal results with irrelevant features. This study introduces the Violation Features Based Isolation Forest (VFIF) algorithm, ...en_US
dc.identifier.citationDissanayake, D.M., Navarathna, R., and Viswakula, S. (2024). Violation-based Feature Selection for Isolation Forest. Proceedings: University of Colombo Annual Research Symposium 2024, p.298.en_US
dc.identifier.urihttp://archive.cmb.ac.lk/handle/70130/7462
dc.language.isoenen_US
dc.publisherUniversity of Colomboen_US
dc.subjectIsolation Foresten_US
dc.subjectAnomaly Detectionen_US
dc.subjectRule Violationen_US
dc.titleViolation-based Feature Selection for Isolation Foresten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stat1.pdf
Size:
338.49 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: