A Low-cost Paper-based Microfluidic Impedimetric Device for the Detection of Water Hardness

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Tanjungpura, Pontianak, Indonesia 78124

Abstract

A microfluidic paper-based impedimetric device was developed as a water hardness sensor. This device is capable of performing the analysis with a sample volume of a few microliters with no prior treatments. A phenol-formaldehyde graphene electrode modified with ethylenediaminetetraacetate was used as the working electrode. Ag pseudo reference and carbon electrodes were used to fabricate the device. Current simultaneous metal ion detection sensors are based on complex and expensive electrode setups. The proposed inexpensive, quick and portable device is capable of detecting Ca2+ and Mg2+ simultaneously. Electrode double layer-based charge transfer resistance and the maximum negative imaginary impedance produced a linear correlation with each metal ion concentration. The calculated limits of detection for Ca2+ and Mg2+ were 0.31 and 0.24 ppm, respectively. A set of samples containing Ca2+ and Mg2+ with a hardness of 2 ppm (as calcium carbonate) were used to test the device. The proposed tool is suitable as a semi-quantitative device for the determination of hardness in water.
A microfluidic paper-based impedimetric device was developed as a water hardness sensor. This device is capable of performing the analysis with a sample volume of a few microliters with no prior treatments. A phenol-formaldehyde graphene electrode modified with ethylenediaminetetraacetate was used as the working electrode. Ag pseudo reference and carbon electrodes were used to fabricate the device. Current simultaneous metal ion detection sensors are based on complex and expensive electrode setups. The proposed inexpensive, quick and portable device is capable of detecting Ca2+ and Mg2+ simultaneously. Electrode double layer-based charge transfer resistance and the maximum negative imaginary impedance produced a linear correlation with each metal ion concentration. The calculated limits of detection for Ca2+ and Mg2+ were 0.31 and 0.24 ppm, respectively. A set of samples containing Ca2+ and Mg2+ with a hardness of 2 ppm (as calcium carbonate) were used to test the device. The proposed tool is suitable as a semi-quantitative device for the determination of hardness in water.

Description

Keywords

paper-based device, impedimetric detection, metal ions, hardness

Citation

4. Pitawela, N. R.; Kaumal, M. N.; A Low-cost Paper-based Microfluidic Impedimetric Device for the Detection of Water Hardness. Indonesian Journal of Pure and Applied Chemistry, 2021, 04(03):116-123

Endorsement

Review

Supplemented By

Referenced By