dc.contributor.author |
Jayawardene, Chula J. |
|
dc.contributor.author |
Narvaez, David |
|
dc.contributor.author |
Radziszowski, Stanis law P. |
|
dc.date.accessioned |
2021-09-23T09:45:54Z |
|
dc.date.available |
2021-09-23T09:45:54Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Jayawardene,C.,Narváez,D. & Radziszowski,S.(2021).Star-Critical Ramsey Numbers for Cycles Versus K4. Discussiones Mathematicae Graph Theory,41(2) 381-390. https://doi.org/10.7151/dmgt.2190 |
en_US |
dc.identifier.uri |
https://doi.org/10.7151/dmgt.2190 |
|
dc.identifier.uri |
http://archive.cmb.ac.lk:8080/xmlui/handle/70130/6057 |
|
dc.description.abstract |
Given three graphs G, H and K we write K → (G, H), if in any red/blue
coloring of the edges of K there exists a red copy of G or a blue copy of
H. The Ramsey number r(G, H) is defined as the smallest natural number
n such that Kn → (G, H) and the star-critical Ramsey number r∗(G, H) is
defined as the smallest positive integer k such that Kn−1 ⊔ K1,k → (G, H),
where n is the Ramsey number r(G, H). When n ≥ 3, we show that
r∗(Cn, K4) = 2n except for r∗(C3, K4) = 8 and r∗(C4, K4) = 9. We also
characterize all Ramsey critical r(Cn, K4) graphs. |
en_US |
dc.language.iso |
en |
en_US |
dc.subject |
Ramsey theory, star-critical Ramsey numbers. |
en_US |
dc.title |
STAR-CRITICAL RAMSEY NUMBERS FOR CYCLES VERSUS K4 |
en_US |
dc.type |
Article |
en_US |