Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands

Show simple item record

dc.contributor.author Lokupitiya, E.Y.K.
dc.contributor.author Denning, S.
dc.contributor.author Paustian, K.
dc.contributor.author Baker, I.
dc.contributor.author Schaefer, K.
dc.contributor.author Verma, S.
dc.contributor.author Meyers, T.
dc.contributor.author Bernacchi, C. J.
dc.contributor.author Suyker, A.
dc.contributor.author Fischer, M.
dc.date.accessioned 2021-03-10T06:54:57Z
dc.date.available 2021-03-10T06:54:57Z
dc.date.issued 2009
dc.identifier.citation Biogeosciences, 6, 969–986, 2009 en_US
dc.identifier.uri http://archive.cmb.ac.lk:8080/xmlui/handle/70130/5108
dc.description.abstract Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these exchanges. To better estimate time-varying exchanges of carbon, water, and energy of croplands using the Simple Biosphere (SiB) model, we developed crop-specific phenology models and coupled them to SiB. The coupled SiBphenology model (SiBcrop) replaces remotely-sensed NDVI information, on which SiB originally relied for deriving Leaf Area Index (LAI) and the fraction of Photosynthetically Active Radiation (fPAR) for estimating carbon dynamics. The use of the new phenology scheme within SiB substantially improved the prediction of LAI and carbon fluxes for maize, soybean, and wheat crops, as compared with the observed data at several AmeriFlux eddy covariance flux tower sites in the US mid continent region. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon uptake (especially for maize) and day to day variability in carbon exchange. Biomass predicted by SiBcrop had good agreement with the observed biomass at field sites. In the future, we will predict fine resolution regional scale carbon and other exchanges by coupling SiBcrop with RAMS (the Regional Atmospheric Modeling System). en_US
dc.language.iso en en_US
dc.publisher Copernicus Publications on behalf of the European Geosciences Union en_US
dc.title Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account