
E.A. Fox et al. (Eds.): ICADL 2005, LNCS 3815, pp. 224 – 231, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Where the Speed Matters…
Zero-Response-Time Search Engine for

Small Collections

Ruwan Gamage

School of Information Management, Wuhan University, China
and

Library, University of Moratuwa, Sri Lanka
ruwan@lib.mrt.ac.lk

Abstract. Users with slow internet connections experience slow retrieval
of results in web catalogues. JavaScript search engines can be used to enable
client side search, reducing the load on the server, and increasing the response
time. However, it is not a popular method until now, because of various reasons
including limitation of number of data objects and lengthier response time for
the first search. Here the author suggests negotiating the issue of response
delay with the user. This would enable high speed basic search in small
catalogues, usually with less than 300 data objects. Larger catalogues can be
divided into smaller ones. Special or rare collections, multimedia artifacts and
subject (web) directories are prospective candidates for this type of search
systems. A prototype catalogue of ‘Sri Lankan Web Sites’ was tested in
www.srilankasupersearch.com. Users’ behavior and response to the system is
yet to be studied.

Keywords: JavaScript; search engines; response time; negotiation; OPAC;
models.

1 Introduction

Web based digital libraries and web catalogues offer search tools for users to mine
information from databases. Most of these databases offer server side handling of
search queries. In this type of systems, users experience a delay in retrieval of results.
This delay is termed as response time, latency or lag time. Technically, response time
refers to the amount of time it takes for input from a keyboard to reach the application
and a response returned.

Length of ‘response times’ depends on various factors. Response time in a network
is usually proportional to the number of users currently using the network, the
location of the network components, and the complexity of the network.

Higher the response time, it is more embarrassing for the user. Previous research
suggests that user productivity is dramatically reduced when response time is
significantly longer. Sterbenz [1] states that further productivity gains are realized

 Where the Speed Matters…Zero-Response-Time Search Engine 225

when the response time decreases to the range of 100 ms. According to him, human
factors studies have also indicated that consistent response time is better for users than
response with a significant variance, since users alter their behavior based on response
time at a relatively slow rate.

Nielsen [2] confirms that 0.1 second (100 ms) threshold is suitable while 1.0
second limit is acceptable. Within this limit users’ flow of thought will be
uninterrupted. Ten seconds is the limit the user can focus his attention.

These observations were used to create a model for enabling high speed client side
search for a very small data set.

1.1 Client Side Processing

In contrast to client-server systems, client side search strategies mainly depend on the
performance of the client computer and browser. Therefore it is quite fast to handle a
search request, rather than transforming the load on to the server.

JavaScripts use this strategy efficiently. A JavaScript search engine can be used to
imitate OPACs with comparatively smaller collections. Data objects for search can be
arranged in an array within the JavaScript. The JavaScript then creates cookies on
client machine. However the time needed to create cookies depend on the number of
elements in the array. If the number of elements in the array is more, the JavaScript
becomes heavy, taking a lot of time to create cookies on the client machine. A
suggestion for negotiating this time lag with user is described here.

1.2 Other Attempts to Increase Response Time or Negotiating with the User

Most of the other attempts described here are meant for large databases. Though these
can not be compared with this model, it will give an idea on the quest for reducing
response time.

Chan and Ueda [3] focused on using cached objects with enough information to
connect back to the server to request more information. However, such solutions
require resources to be held open on the server, waiting for client responses. Long [4]
introduces a query slicing technique which would display data in sets, not as a whole.

One other approach for searches is to build web agents. Web agents will search for
information on behalf of the user, according to his preferences. Such preferences are
stored in a user profile database. It has a learning function and can learn the users’
likes and dislikes when the user searches the web with keyword searching thus
reducing the response time for the next search [5].

Sterbenz [1] advices the programmer to display the reason for the delay, which the
user can read while he waits for the result/expected page. He further proposes on
running the more complex operation in a new window. That leaves the user the
original page for working with, until he gets the search result.

1.3 Overview of the Search Engine

While JavaScript search engines are easy to write, and there are many predefined ones
openly available on the web, the author used JSE Search, an open source Java
Script [6].

