Effects of Surface Modification of n-Cu₂O/p-Cu_xS Thin Film Heterostructures for Enhanced Liquefied Petroleum Gas Sensing Properties K. N. D. Bandara^{1,2*}, K. M. D. C. Jayathileka^{1,4}, M. S. Gunewardene¹, D. P. Dissanayake³, J. K. D. S. Jayanetti¹ # **Abstract** We report a novel mechanism to effectively detect LP gas based on surface modification through sulphidation followed by passivation of electrodeposited *n*-type cuprous oxide (Cu₂O), forming a thin film *n*-Cu₂O/p-Cu_xS semiconducting heterostructure. Electrochemically deposited *n*-type cuprous oxide (n-Cu₂O) thin films on Ti substrates in acetate bath were sulphided using Na₂S to fabricate n-Cu₂O/p-Cu_xS heterostructures. Subsequent passivation of these thin film structures using (NH₄)₂S vapor enhanced the sensitivity (fractional change in thin film resistance) when exposed to liquefied petroleum (LP) gas. Scanning electron micrographs (SEM) confirmed that typical unsulphided n-type Cu_2O thin films exhibit polycrystalline surface morphology, while SEM of both sulphided and passivated thin films revealed micro/nano-crystalline surface morphological features with porous structures. As expected, the thin film structures obtained through sulphidation followed by passivation of n-type Cu_2O films decreased the resistance (~100 k Ω) in comparison to the resistance (~1 M Ω) of the unsulphided n-type Cu_2O thin films. Upon exposure to LP gas, the resistance of these thin film structures increased while, sensitivity to LP gas depended on the sensing temperature. Exposure of thin film structures fabricated by electrodepositing n- ¹Department of Physics, University of Colombo ² Department of Physics, The Open University of Sri Lanka ³ Department of Chemistry, University of Colombo ⁴Department of Physics, University of Kelaniya ^{*}Correspondance should be addressed to Ms. K. N. D. Bandara, Department of Physics, The Open University of Sri Lanka. nayanathilakaratna@gmail.com type Cu₂O thin films for 45 min, sulphided and passivated for 5 s and maintained at a sensing temperature of 45 °C to LP gas with a flow rate of 2.5 ml/min recorded the highest sensitivity of 48 %. **Keywords:** Cuprous oxide, Sulphidation, Surface passivation, Gas sensor, Liquefied Petroleum gas, electrochemical deposition #### Introduction Liquefied Petroleum (LP) gas is used worldwide for domestic, commercial and industrial purposes and is a highly flammable gas. Therefore, availability of efficient and low cost LP gas sensors are of importance with regards to ensuring user safety. Gas sensing properties of metal oxide semiconductor such as SnO₂, CdO, ZnO, In₂O₃, TiO₂ (Huang & Wan, 2009; Eranna, et al., 2004; Yamazoe, et al., 2003) have been extensively studied while many semiconducting materials have been considered for LP gas sensing applications (Yadav, et al., 2013; Gunjakar, et al., n.d.; Dhawale, et al., 2008; Bulakhe & Lokhande, 2014; Shukla, 2012; Shinde, et al., 2007; Bandara, et al., 2014). There are many parameters of materials that are important for gas sensing applications, for example, adsorption ability, catalytic activity, sensitivity and thermodynamic stability are some of them. Many different metal oxide materials are favorable in some of these properties (Bochenkov & Sergeev, 2010; Korotcenkov, 2007; Wang, et al., 2010; Shishiyanu, et al., 2006). Due to this situation, more recent works focus on composite materials, such as, ZnO-CuO, SnO₂-ZnO and G-Fe₂O₃/ZnO (Yoon, et al., 1998; De Lacy Costello, et al., 1999; Chen, et al., 2008). Not only the binary metal oxides, there are also numerous ternary, quaternary and complex metal oxides, which are of interest for gas sensing applications (Zhang, et al., 2006; Meng, et al., 2013; Meixner & Lampe, 1996). It is also important to note that the detection of simple gases, through semiconducting metal oxides often require elevated temperatures (Arafat, 2012; Gopel & Schierbaum, 1995; Sun, et al., 2012; Bochenkov & Sergeev, 2010). Electrochemical deposition of Cu₂O films has attracted increasing interest due to its associated low temperature assisted, relatively simple and low cost technique (Siripala, et al., 2009; Rahman, et al., 2015). Also, it has the ability to control the crystal growth parameters, morphologies, compositions through a systematic variation of electrode potential/current, electrolyte concentration, bath pH and deposition time etc. (Schlesinger, et al., 2010; Bijani, 2009; Jayathilaka, et al., 2012; Jayathilaka, et al., 2014; Jayathilaka, et al., 2014; Teterycz, 2001; Siripala & Kumara, 1989). However, comparatively limited work has been done on Cu₂O and its ability to detect LP gas (Gunjakar, et al., n.d.; Bulakhe & Lokhande, 2014; Shukla, 2012; Shinde, et al., 2007; Janantha, et al., 2009). Recent work on Cu₂O thin films un-doped and doped with chlorine have shown their ability to be sensitive to LP gas at relatively lower operational temperatures of ~85 °C and 50 °C respectively (Bandara, et al., 2014). Furthermore, gas sensors based on the two components mixed together are more sensitive than the individual components alone (Yoon, et al., 1998; De Lacy Costello, et al., 1999; Chen, et al., 2008). Formation of n-Cu₂O/p-Cu_xS heterostructures through sulphidation of electrodeposited n-type Cu₂O using 0.01M Na₂S at 200 °C was previously demonstrated by Jayathilaka et al. (Jayathilaka, et al., 2012). In subsequent work, they showed that, the sulphur passivation of p-type Cu₂O (Jayathilaka, et al., 2014) and n-type Cu₂O (Jayathilaka, et al., 2014) thin film defects, using 50 vol. % (NH₄)₂S vapor improves the electrical transport properties and photoresponse characteristics of these thin films. The work has also shown that the resistivity of the passivated films decreased while preserving the structural integrity of the thin films. Previous work on the fabrication of copper sulphide thin films showing gas sensing properties using solution growth technique has demonstrated its ability to detect ammonia gas at room temperature (Sagade & Sharma, 2008). But it has not been tested for detecting LP gas. Here we report a novel mechanism to effectively detect LP gas based on surface modification through sulphidation followed by passivation of electrodeposited n-type cuprous oxide (Cu₂O), forming a thin film n-Cu₂O/p-Cu_xS semiconducting heterostructure. #### **Materials and Methods** ## **Electrochemical Deposition of Thin Films** Initially n-type Cu₂O thin films were deposited on Ti substrates. Before deposition, the substrates were cleaned with detergent, dilute nitric acid, HNO₃ acetone and finally rinsed with distilled water. The Cu₂O thin films were potentiostatically electrodeposited in a three-electrode electrochemical cell that contained aqueous solutions of 0.1 M sodium acetate (98%) and 0.01 M cupric acetate (98%) (Acetate bath). Deposition was carried out for different durations as required at 60 °C under a potentiostatic condition of -200 mV. The n-type conductivity of the deposited films was verified using spectral response measurements. Prior to sulphidation, deposited thin films were thoroughly dried. Then the Cu₂O thin films were sulphided by placing a drop and spreading into a thin layer of 0.01 M Na₂S using a liquid droplet marker and drying at 200 °C. Films were thoroughly cleaned with distilled water and allowed to dry before any measurements. Followed by sulphidation, the surface passivation was achieved by exposing the films to 50 vol. % (NH₄)₂S vapor at 27 °C for about 5 s. #### Characterization of Thin Films The surface morphological and structural characterization of the films was determined using SEM (Philips XL40) and XRD (SHIMADZU SSX -550) analysis. #### **Gas Sensing Measurements** In order to test the gas sensing properties when exposed to LP gas, the fabricated sensors were housed inside a gas sensing chamber made of stainless steel (Figure 1). The chamber contained two compartments; the top through which the gas was flown and the bottom where the heating element was housed. Electrical resistance was measured between the contacts probes placed on the surface of the film. The probes were externally connected to a multimeter that was connected to a computer data logger. The sensor surface temperature was controlled by using a thermostat with a temperature controller. Thin films were placed approximately 2 cm away from the gas inlet. Inset above shows a detailed geometry of the thin film structures used for sensing LP gas with gold spring probes placed on the top surface. All the measurements were made under atmospheric conditions (ambient) by using a flow through technique. The LP gas flow rate was maintained at a constant rate of 2.5 ml/min, till the film resistance reached steady state. Thereafter, the gas flow was stopped and allowed to recover till it reached the ambient resistance. The sensing temperature was varied between 30 °C and 150 °C, monitoring through a thermocouple (type K) which was in contact with the surface of the thin film. The electrical resistivity measurements were made using computer interfaced Keithley 2100 digital multimeter. Typically, the steady state maximum was reached within 50 s after the films were exposed to LP gas. The process was repeated several times (up to 4-5 times) for a given sensing temperature. Measurements were repeated at different sensing temperatures ranging from 30 °C to 150 °C. **Figure 1.** Experimental setup used for testing thin film structures for its sensitivity to LP gas ## Results # **Structure and Morphology of Thin Films** Figure 2(a) shows the SEM view of a bare n-type Cu₂O thin film where there is a uniform coverage of polycrystalline grains. Figure 2(b) shows an SEM image of a sulphided and passivated thin film, confirming the porous micro/nanocrystalline surface morphological features. Figure 2(c) indicates the XRD peaks of (i) untreated and (ii) sulphided and passivated n-type Cu₂O thin films. All the XRD peaks are due to Cu₂O and the Ti substrate. The sulphided and passivated n-type Cu₂O thin films do not show any Cu_xS peaks, presumably due to the extreme thinness of Cu_xS on the surface of the film. The formation of Cu_xS on the film surface has been verified by Jayathilaka *et al.* using X-ray photoelectron spectroscopy (XPS) measurements. Figure 2. SEM picture of Cu₂O thin films - (a) n-type thin films fabricated in acetate bath - (b) sulphided and passivated (by placing a thin layer of 0.01M Na₂S at 200 °C and followed by exposure to 50 vol.% (NH₄)₂S vapor for 5 s at 27 °C and - (c) XRD spectra for n-type Cu₂O thin film structures, (i) unsulphided (ii) sulphided and passivated by exposing to 50 vol.% (NH₄)₂S vapor for 5 s at 27 °C. # Sensitivity of Thin Films to Liquefied Petroleum Gas Untreated Cu_2O thin films showed a resistance ~1 $M\Omega$ which reduced down to ~ 100 $k\Omega$ after sulphidation and passivation. The sensor sensitivity (S) was calculated according to the following equation using the measured resistances. $$S = \left| \frac{R_{LPG} - R_{Air}}{R_{Air}} \right| \times 100 \tag{1}$$ where, R_{LPG} is the resistance of the film upon exposure to LP gas and $R_{A\,ir}$ is the resistance of the film under ambient atmospheric conditions. Fabricated thin films were placed inside the gas chamber and resistance (hence the sensitivity) measurements were taken as a function of both time and sensor surface temperature. Upon exposure to LP gas, the resistance of the sulphided and passivated n-type Cu₂O films increased the film resistance. It gradually recovered to its initial ambient value when the LP gas flow was stopped. Figure 3(a) and Figure 3(b) show the resistance and the magnitude of sensitivity variations at sensor operating temperature at 45 °C obtained for sulphided and passivated n-type Cu₂O thin films upon repeated cycles of LP gas exposures. Response and recovery time of one cycle was completed around 100 s duration while, the sensor response was reproducible over all the LP gas exposure cycles. A steady state maximum sensitivity of 48 % was achieved when the sensor surface temperature was maintained at 45 °C, the optimum sensor operating temperature (see Figure 3c). Observations confirmed that the sensing temperature was a major factor affecting the measured sensitivity. These films show greater sensitivity (~48 %) compared to unsulphided (~4 %) Cu₂O thin films (Bandara, *et al.*, 2014). Figure 3: (a) Resistance and - (b) Sensitivity for a sulphided and passivated (by placing a thin layer of 0.01 M Na₂S at 200 °C and followed by exposure to 50 vol.% (NH₄)₂S vapor for 5 s at 27 °C) *n*-type Cu₂O thin film structure operated at 45 °C. A gas flow rate of 2.5 ml/min was maintained during the ON cycle of gas flow to the thin film structure. - (c) Sensitivity measurements as a function of sensing temperature for the thin film structure used in (a), the arrows indicate the time at which the gas supply was turned OFF. The LP gas reaction mechanism of the thin films showing LP gas sensing properties can be summarized as follows. The top surface of the thin films showing LP gas sensing properties gets exposed to ambient atmospheric oxygen. The top surface being p-type Cu_xS, chemisorbs oxygen to the surface, extracting electrons from the thin film to form O_2 on the film surface. This charge transfer process will increase the concentration of holes in the p-type Cu_xS , and thus will reduce the depletion region of the $n-Cu_2O/p-Cu_xS$ heterostructure under ambient conditions. However, once exposed to LP gas, a reaction takes place that will remove the chemisorbed oxygen from the surface, giving the electrons back to the p-type Cu_xS region. The associated chemical reaction is given by the following equation (Shukla, 2012). $$2C_nH_{2n+2}(ad) + O_2^-(ad) \rightarrow 2C_nH_{2n+1}-O + H_2O + 2e^-$$ (2) The newly released electrons will now go on to recombine with the majority carrier holes in the p-type Cu_xS region, which makes the resistance increase, which was consistent with observations. The decrease in holes in the p-type Cu_xS region will also allow the depletion region of the n-Cu₂O/p-Cu_xS heterostructure to increase. Therefore, the n-Cu₂O/p-Cu_xS heterostructure regulates the charge transfer processes discussed above. When the LP gas supply is stopped, chemisorbed LP gas molecules will gradually release from the surface and atmospheric oxygen will chemisorb back on the thin film, allowing the resistance to recover back to its ambient value and in the depletion region of the n-Cu₂O/p-Cu_xS heterostructure to recover back to its ambient condition. #### **Conclusions** In summary, a $n\text{-}Cu_2O/p\text{-}Cu_xS$ heterostructure was realized by electrochemically depositing a n-type Cu_2O thin film on a Ti substrate, followed by sulphidation using Na_2S and passivation by $(NH_4)_2S$ vapor and was successfully used for the detection of LP gas. It can be clearly seen that the sulphidation with passivation has altered the gas sensing behavior of n-type Cu_2O thin films significantly. When exposed to LP gas, a maximum sensitivity (fractional change of resistance) as much as 48% at a relatively low sensing temperature of 45 °C was recorded. Thus, the sulphidation has caused LP gas molecules to interact with the film surface more actively with a 10-fold increase compared to the maximum sensitivity of untreated Cu_2O films at 85 °C. # **Acknowledgement** University Grant Commission of Sri Lanka is gratefully acknowledged for the financial support provided through the research grant UGC/ICD/RG 2011. K. N. D. Bandara is thankful to the Open University of Sri Lanka, for granting her leave to carry out this research study #### References - Arafat, M. M. (2012). Gas sensors based on one dimensional nanostructured metal-oxides. a review. : Sensors. http://dx.doi.org/10.3390/s120607207 - Bandara, N., Jayathilaka, C., Dissanayaka, D. & Jayanetti, S. (2014). Temperature effects on gas sensing properties of electrodeposited chlorine doped and undoped n-type cuprous oxide thin films. *Journal of Sensor Technology*, 4(3), 119. http://dx.doi.org/10.4236/jst.2014.43011 - Bijani, S. M.- B. (2009). Low-Temperature Electrodeposition of Cu2O Thin Films: Modulation of Micro-Nanostructure by Modifying the Applied Potential and Electrolytic Bath pH. *The Journal of Physical Chemistry C.*http://dx.doi.org/10.1021/jp905952a - Bochenkov, V. E. & Sergeev, G. B. (2010). Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Metal Oxide Nanostructures and Their Applications. 3, 31-52. - Bulakhe, R. N. & Lokhande, C. D. (2014). Chemically deposited cubic structured CdO thin films: Use in liquefied petroleum gas sensor. *Sensors and Actuators B: Chemical*, 200, 245-250. http://dx.doi.org/10.1016/j.snb.2014.04.061 - Chen, Y. J., Zhu, C. L., Wang, L. J., Cao, M. S. & Shi, X. L. (2008). Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core–shell nanorods. *Nanotechnology*, 140, pp 185-189,20(4), 045502. http://dx.doi.org/10.1088/0957-4484/20/4/045502 - De Lacy Costello, B., Ewen, Jones, P., Ratcliffe, N. & Wat, R. (1999). A Study of the Catalytic and Vapour-Sensing Properties of Zinc Oxide and Tin Dioxide in Relation to 1-Butanol and Dimethyldisulphide. Sensors and Actuators B: Chemical, 61, pp 199-207. http://dx.doi.org/10.1016/S0925-4005(99)00309-3 - Dharmadasa, I. M. & Echendu, O. K. (2014). Electrodeposition of electronic materials for applications in macroelectronic- and nanotechnology- based devices. In *Encyclopedia of Applied Electrochemistry* (pp. 680-691). New York: Springer. http://dx.doi.org/10.1007/978-1-4419-6996-5_37 - Dhawale, D. S., Salunkhe, R. R., Patil, U. M., Gurav, K. V., More, A. M. & Lokhande, C. D. (2008). Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. *Sensors and Actuators B: Chemical, 134*(2), 988-992. http://dx.doi.org/10.1016/j.snb.2008.07.003 - Eranna, G., Joshi, B. C., Runthala, D. P., & Gupta, R. P. (2004). Oxide materials for development of integrated gas sensors—a comprehensive review. *Critical Reviews in Solid State and Materials Sciences*, 29(3-4), 111-188. http://dx.doi.org/10.1080/10408430490888977 - Göpel, W., & Schierbaum, K. (1995). SnO2 Sensors-Current Status and Future Prospects. *Sensors and Actuators*, 26, pp1-12, 46 B 26-27 1-12. http://dx.doi.org/10.1016/0925-4005(94)01546-t - Gunjakar, J. L., More, A. M. & Lokhande, C. D. (n.d.). Chemical deposition of nanocrystalline nickel oxide from urea containing bath and its use in liquefied petroleum gas sensor. *Sensors and Actuators B: Chemical*, 131(2), 356-361. - Huang, J. & Wan, Q. (2009). Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. *Sensors*, *9*(12), 9903-9924. http://dx.doi.org/10.3390/s91209903 - Janantha, P. P., Perera, L. N., Jayathilaka, K. M., Jayanetti, J. K., Dissanayaka, D. P. & Siripala, W. P. (2009). Use of Cu2O - microcrystalline thin film semiconductors for gas sensing. *Proceedings of the Technical Sessions IPSL, Sri Lanka*, *25*, pp. 70-76. - Jayathilaka, K. M., Kapaklis, V., Siripala, W. & Jayanetti, J. K. (2012). Sulfidation of electrodeposited microcrystalline/nanocrystalline cuprous oxide thin films for solar energy applications. Semiconductor Science and Technology, 27(12), 125019. http://dx.doi.org/10.1088/0268-1242/27/12/125019 - Jayathilaka, K. M., Kapaklis, V., Siripala, W. & Jayanetti, J. K. (2014). Ammonium sulfide surface treatment of electrodeposited p-type cuprous oxide thin films. *Electronic Materials Letters*, 10(2), 379-382. http://dx.doi.org/10.1007/s13391-013-3099-x - Jayathilaka, K. M., Kapaklis, V., Siripala, W. & Jayanetti, J. K. (2014). Surface treatment of electrodeposited n-type Cu₂O thin films for applications in Cu₂O based devices. physica status solidi (RRL)-Rapid Research Letters, 8(6), 592-595. http://dx.doi.org/10.1002/pssr.201409011 - Korotcenkov, G. (2007). Metal oxides for solid-state gas sensors: What determines our choice? *Materials Science and Engineering: B*,139(1), 1-23. http://dx.doi.org/10.1016/j.mseb.2007.01.044 - Meixner, H. & Lampe, U. (1996). Metal Oxide Sensors. Sensors and Actuators B: Chemica, 33, pp 198, 202. - Meng, F. Di, X., Dong, H., Y., Z., Zhu, C., Li, C. & Y. J., C. (2013). Ppb H₂S gas sensing characteristics of Cu₂O/CuO submicrospheres at low-temperature. *Sensors & Actuators: B. Chemical*, 183, pp197-204,197-204. http://dx.doi.org/10.1016/j.snb.2013.02.112 - Rahman, A. S., Islam, M. A., & Shorowordi, K. M. (2015). Electrodeposition and Characterization of Copper Oxide Thin Films for Solar Cell Applications. Procedia Engineering Volume 105 679-685. http://dx.doi.org/10.1016/j.proeng.2015.05.048 - Sagade, A. A. & Sharma, R. (2008). Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. Sensors and Actuators B: Chemical, 133(1), 135-143. http://dx.doi.org/10.1016/j.snb.2008.02.015 - Schlesinger, T. E., Rajeshwar, K. & De Tacconi, N. R. (2010). *Electrodeposition of Semiconductors*. New York: Springer:. http://dx.doi.org/10.1002/9780470602638.ch14 - Shinde, V. R., Gujar, T. P., Lokhande, C. D., Mane, R. S. & Han, S. H. (2007). Development of morphological dependent chemically deposited nanocrystalline ZnO films for liquefied petroleum gas (LPG) sensor. *Sensors and Actuators B: Chemical*, 123(2), 882-887. http://dx.doi.org/10.1016/j.snb.2006.10.044 - Shishiyanu, S. T. S. T. & Lupan, O. 1. (2006). Novel NO₂ gas sensor based on cuprous oxide thin films. *Sensors and Actuators B: Chemical*, 113(1), 468-476. http://dx.doi.org/10.1016/j.snb.2005.03.061 - Shukla, T. (2012). Synthesis of tin oxide thick film and its investigation as a LPG sensor at room temperature. *Journal of Sensor Technology*, 2(3),102-108. http://dx.doi.org/10.4236/jst.2012.23015 - Siripala, W. & Kumara, K. P. (1989). A photoelectrochemical investigation of the n-and p-type semiconducting behaviour of copper (I) oxide films. Semiconductor Science and Technology, 4(6), 465. http://dx.doi.org/10.1088/0268-1242/4/6/007 - Siripala, W., Jayathileka, K. M. & Jayanetti, J. K. (2009). Low cost solar cells with electrodeposited cuprous oxide. *Journal of Bionanoscience*, 3(2), 118-123. http://dx.doi.org/10.1166/jbns.2009.1018 - Sun, Y. F., Liu, S. B., Meng, F. L., Liu, J. Y., Jin, Z., Kong, L. T. & Liu, J.H. (2012). Metal oxide nanostructures and their gas sensing properties: A review. *Sensors*, 12(3), 2610-2631. http://dx.doi.org/10.3390/s120302610 - Teterycz, H. K. (2001). A New Metal Oxide Catalyst in Alcohol Condensation. *Applied Catalysis A: General, 214*, pp 243-249. http://dx.doi.org/10.1016/S0926-860X(01)00499-9 - Wagner, T., Haffer, S., Weinberger, C., Klaus, D. & Tiemann, M. (2013).Mesoporous materials as gas sensors. *Chemical Society**Reviews, 42(9), 4036-4053. http://dx.doi.org/10.1039/C2CS35379B - Wang, C., Yin, L., Zhang, L., Xiang, D. & Gao, R. (2010). Metal oxide gas sensors: sensitivity and influencing factors. Sensors, 10(3), 2088-2106. http://dx.doi.org/10.3390/s100302088 - Yadav, B. C., Yadav, A., Singh, S. & Singh, K. (2013). Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor. *Sensors and Actuators B: Chemical*, 177, 605-611. http://dx.doi.org/10.1016/j.snb.2012.11.045 - Yamazoe, N., Sakai, G. & Shimanoe, K. (2003). Oxide semiconductor gas sensors. *Catalysis Surveys from Asia*, 7(1), 63-75. http://dx.doi.org/10.1023/A:1023436725457 - Yoon, D. H., Yu, J. H. & Choi, G. M. (1998). CO gas Sensing Properties of ZnO-CuO Composite. *Sensors and Actuators B: Chemical.*, 46 pp15-23, 46(1), 15-23. http://dx.doi.org/10.1016/S0925-4005(97)00317-1 - Zhang, J., Liu, J., Peng, Q., Wang, X. & Li, Y. (2006). Nearly monodisperse Cu₂O and CuO nanospheres: preparation and applications for sensitive gas sensors. *Chemistry of materials*, 18(4), 867-871. http://dx.doi.org/10.1021/cm052256f - Received: 31-3-2016 Revised: 21-06-2016 Accepted: 24-06-2016