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1. Introduction 

1.1. Background 
In modern times ROC curves have been widely used for 

medical decision making among other applications. The 
goodness of a diagnostic test can be measured using 
sensitivity and specificity of the test. An ROC curve is a 
plot of the sensitivity versus 1 - specificity as the test 
threshold is varied [25]. One of the main uses of ROC 
curve analysis is to detect the comparative benefits of 
alternative diagnostic tests in the field of medicine. The 
most popular summary measure of an ROC curve is the 
area under the curve (AUC) and alternative diagnostic tests 
have been compared by comparing their AUCs [17,29]. 

The classic paper of Hanley and McNeil [11] first 
popularized the theory for comparing two AUCs 
pertaining to two independent ROC curves. Hanley and 
McNeil [12] went on to extend this method for comparing 
two correlated curves. This method takes into 
consideration the correlation between the areas that is 
induced by the paired nature of the data. The Wilcoxon’s 
non-parametric method is used in Hanley and McNeil [12] 
for estimating the AUC’ and its standard errors. Another 
popular method of comparing correlated AUCs is the 
method of DeLong, DeLong and Clarke-Pearson [7]. The 
Mann Whitney method is used in DeLong, DeLong and 
Clarke-Pearson [7] for estimating the AUC and its 
standard errors. Hanley and McNeil [12] criticized the 

trapezoidal rule (Mann Whitney test) used in the non-
parametric estimation for underestimating the AUC. They 
indicated preference for the Dorfman and Alf [8] method 
in this regard. Subsequently, Park, Goo and Jo [28] 
showed that the estimate of the AUC based on the 
Wilcoxon statistic also underestimates the true value of 
the AUC and they also recommended the maximum 
likelihood approach of Dorfman and Alf [8] for the 
estimation of the AUC. This Dorfman and Alf [8] was 
initially developed for comparing independent ROC 
curves. In 1984 this method was extended by Metz, Wang, 
and Kronman [26] to compare two correlated ROC curves. 
The packages for ROC analysis, namely ROCKIT [11] 
and StAR [35] implement both the independent and 
correlated comparison of ROC for this maximum 
likelihood method. 

1.2. Objectives 
The nonparametric methods of used by authors using 

nonparametric methods have been criticized in the 
literature due to these methods underestimating the AUC 
when dealing with both independent and correlated data. 
A method which has received much acclaim in this area is 
the method of Dorfman and Alf [8] extended by Metz, 
Wang, and Kronman [26] to compare two correlated ROC 
curves. For correlated ROC curves , Goo & Jo, 2004 and 
Veragra, Normbuena, Ferrada, Slater & Melo, 2008 went 
on to develop software, namely, ROCKIT and StAR for 
comparing 2 correlated ROC curves using Metz, Wang, 
and Kronman [26] method. However they did not study 
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the properties of their test and only analyzed a few 
examples. Thus the first objective of this paper is to 
develop an asymptotic bivariate statistical test that is 
based on Metz, Wang, and Kronman [26] approach of 
estimation for correlated data and examine the properties 
of these tests using large scale simulations. 

One issue that should be borne in mind is that Metz, 
Wang, and Kronman [26] developed their approach for 
correlated data only for comparing 2 ROC curves at a time. 
The secondary objective of this paper is to determine the 
most appropriate cut-off of a cardiac stress test to 
determine angiogram results. 

1.3. Brief Explanation of Methodology 

The theory is developed for the correlated case where 
an asymptotic bivariate test was derived for comparing 
two AUCs at once. For large samples the test statistic 
derived follows a distribution which is proportional to the 
Beta distribution with parameters depending on the 
number of AUC curves compared (2) and the number of 
independent quantities making up the AUC (n). The 
values of the estimates of the AUCs, and their standard 
errors and correlations between pairs of AUCs were based 
Metz, Wang, and Kronman [26] maximum likelihood 
approach. The paired case is a special case of the general 
case as here p=2 and this test thus becomes an asymptotic 
bivariate test. 

Table 1. Variables Collected for the Purpose of the Study 

 Variable Type Levels Total Number 
used in the study 

Number imputed 
that were used in 
the study 

Description 

1.0 Angiogram Results Nominal 0 – No Disease 
1 – Disease Present 

144 
96 

34 
78 

Disease status 
identified through the 
angiogram 

2.0 Cardiac Stress Test Result Nominal / 
Ordinal 

0 - Not carried out 
1 - Stage 1 Difficulty 
2 - Stage 2 Difficulty  
3 - Stage 3 Difficulty or  
other signs for concern  
4 – Completed Bruce protocol 
test or completed up to stage 3 
or beyond 

49 
81 
55 
42 
 
13 
 
 

0 
0 
0 
0 
 
0 
 
 

Performance with 
respect to the CST 

3.0 
Strong Indication of the 
Disease expressed by 
medical consultants  

Binary 0 – No 
1 – Yes 

Not used 
For study 

 
-  

4.0 Age Continuous  240 0 Patients Age 

5.0 Gender Binary 0 – Female 
1- Male 

91 
149 

0 
0  

6.0 Hypertension      

6.1 Hypertension - History  Binary 0 – No 
1 – Yes 

109 
131 

0 
0  

6.2 Hypertension - Pressure  Continuous  240 0 Pressure on admission 

6.3 Hypertension – Pulse Continuous  240 0 Pulse on admission 

7.0 Cholesterol      

7.1 Cholesterol – LDL Continuous  Not used  - 

 
7.2 Cholesterol – Triglyceride Continuous  Not used  - 

7.3 Cholesterol - HDL Continuous  Not used - 

7.4 Cholesterol - Total Continuous  Not used - 

8.0 Diabetes Mellitus Binary 0 – No 
1 – Yes 

157 
83 

0 
0  

9.0 Family History of disease 
or known related factors Binary 0 – No 

1 – Yes 
135 
105 

0 
0  

10.0 Cigarette Consumption Binary 0 – No 
1 – Yes 

158 
82 

0 
0  

11.0 Alcohol Consumption Binary 0 – No 
1 – Yes 

167 
73 

0 
0  

12.0 Marital Status Binary 0 – No 
1 – Yes 

5 
240 

0 
0  

13.0 Date Date  240 0  

1.4. Data for the Example 
The method developed is applied to correlated data 

consisting of all patients who had a Cardiac stress 
test(CST) at the Sri Jayawardenepura General Hospital in 
Sri Lanka during 2008 and 2009. Data collected includes 
the CST result, angiogram result, demographic information 
on patient, history of cardiovascular disease of patient and 

information on related diseases. One problem with the 
data was the fact that due to the high cost of an angiogram 
many patients that had passed the CST were not subjected 
to an angiogram resulting in missing data. The problem 
was overcome by using multiple imputation [18,19,23]. 
The procedure of Royston [31] was used to impute the 
missing values. The software used for this purpose was 
Stata10’s ICE module. The estimated (data based) values 
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of the AUCs and their variance-covariance matrix were 
obtained using the package ROCKIT [28]. Table 1 gives 
the variables collected for the purpose of the study 
together with their levels, total number of observations 
selected from each level for the analysis and the number 
of imputed values selected for the analysis. This last 
statistic is related to section 5.2. 

Section 2 gives a review of the literature pertaining to 
the problem. In section 3 the theorems, definitions, results 
and proofs related to deriving the new test statistic and 
developing the bivariate test are presented. Section 4 
consists of a simulation study to examine the properties of 
the test. Section 5 gives an illustration of the methodology 
developed in section 3 on an example. Conclusions and 
Discussion are given in Section 6. 

2. Literature Review 
Our paper is based on the comparison of the 

performance of binary classifiers by using two correlated 
Receiver Operating Characteristic (ROC) curves. The 
Area under the curve (AUC) is the most popular summary 
measure of ROC curves [14,29].  

To test for significant differences between two 
correlated AUCs of ROC curves, the main factor that 
needs to be is the outcome distribution. This will 
determine the approach to be used in estimating the AUCs 
and its variance-covariance matrix. Possible approaches 
are parametric, semi-parametric and non-parametric. In 
the case of comparing correlated curves the two best 
known methods, namely, Hanley & McNeil, 1983 and 
Delong, Delong & Clarke-Pearson both use nonparametric 
methods where the AUC and its variance covariance 
matrix are estimated using Wilcoxons method and Mann 
Whitney method respectively. For each approach, 
different methods of estimating the AUC have been used. 
For the parametric approach, that is suggested in the paper 
Dorfman and Alf [8] method of fitting smooth curves 
based on the binormal assumption is used where the ROC 
curve can be completely described by two parameters 
estimated using Maximum Likelihood Estimation (MLE).  

The literature on two sample tests for the comparison of 
AUCs of ROC curves have two important papers 
regarding dealing with missing data. Spritzler, DeGruttola 
and Pei [34] discuss that the usual tests used in this case 
have poor properties when the data is missing and suggest 
two alternative tests to be used when data is missing 
completely at random (MCAR) and missing at random 
(MAR) respectively. They show that their tests have 
improved properties. Harel and Zhou explain that when all 
subjects are screened using a common test and only a 
subset of these subjects are tested using a gold standard 
test, then there is a bias in the estimates of sensitivity and 
specificity and thus in the AUC itself, which is known as 
verification bias. Using simulation studies Harel and Zhou 
illustrate that multiple imputation can be used for 
correcting verification bias. They indicate that after 
imputing the missing data and given the complete data set 
any of the complete-data procedures can be used in the 
analysis of the ROC curves. The Spritzler, DeGruttola and 
Pei [34] approach varies from our approach because they 
construct new tests in place of standard tests for 
comparing AUCs in the presence of missingness while we 

use multiple imputation to impute the missing values and 
use the standard tests on the complete data to compare the 
AUCs. 

3. Method 

3.1. Estimating the AUC’s of Two Correlated 
ROC Curve Using the Dorfman and Alf 
Method 

Grey and Morgan [10], explain the signal-detection 
paradigm on which the estimation is based. Dorfman and 
Alf [8] show how the AUC curve can be estimated using 
Maximum Likelihood methods where the curve can be 
determined by two parameters, namely, a and b. 

The values of a  and b  along with other parameters of 
the ROC curve were estimated using the method of 
scoring proposed in Grey and Morgan [10]. 

Simulation: The method of scoring used is an iterative 
process which uses initial parameter estimates. Grey and 
Morgan [10] clearly explains this. Degenerate solution for 
the parameter estimates of the ROC curve can occur from 
empty cells in the data matrix. Dorfman and Berbaum, 
1995 explain how to overcome this. 
Calculation of the AUC and variance of the AUC: 

It is possible to obtain the AUC of an ROC curve using 
the parameters a and b [8] In order to calculate the 
variance of the AUC, the delta method (Casella and 
Berger [5]) is made use of. 

3.2. Development of a Bivariate Test for 
Comparing the AUC’s of 2 Correlated ROC 
Curves 

The theory developed under section 3.2 is applicable to 
correlated data. Metz, Wang, Kronman [26] have extended 
the Dorfman and Alf [8] procedure to be applied only for 
the comparison of two correlated ROC curves at a time. 
They argue that for the case of correlated data the procedure 
works efficiently only for pairwise comparison. The algorithm 
given for estimating correlation for paired data (Corroc2.F 
available in website http://www.bio.ri.ccf.org/doc/corroc2.f.) 
has therefore been given only for pairwise comparisons. 
Thus, section 3.2 discusses the special case of the 
asymptotic bivariate test for p=2 (correlated case). 

3.2.1. Relevant Theorems, Definitions and Results 
Using the theorems proposed by Hotelling [16], 

Williams, Woodall, Birch & Sullivan and Mardia, Kent & 
Bibbey [22] and the following result the proof in section 
3.2.2. was derived.  
Result 1 

If iX  is a n by p matrix of p variables each having n 

elements and it has distribution ( ),N p μ Σ  then it follows 

that X  (the sample mean of the iX ’s) has a distribution 

,N p n
 
 
 

Σμ . It follows from Theorem 3 that
 

( )( )2Sµ
′

= − −X μ X μ
 
has a p-dimensional Wishart 
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distribution with parameters n and ′Σ where the variance-

covariance matrix of X  is 
n

′
=
ΣΣ

 
 

3.2.2. Proof (proving that the asymptotic distribution 
of the test statistic developed for testing the equality of 
two correlated AUCs is proportional to the Beta 
distribution) 

Let  

 1

2

AUC

AUC
 

=  
  

AUC  

Where iAUC  is the AUC of the ith ROC curve where 
i=1,2 

Let ˆAUC  be an estimate of AUC , let μ  be the 

expected value of ˆAUC and let Σ  be the associated 

variance-covariance matrix of ˆAUC . Then as ˆAUC  is 
the Dorfman and Alf [8] maximum likelihood estimate 
(MLE) of AUC  nd as MLE’s are asymptotically normal 

(for large samples). That is ( )ˆ ~ ,2NAUC μ Σ  

Suppose the estimate ˆAUC  of AUC  of an ROC curve 
is made up of the sum of n  independent quantities where, 
n is a function of 1n  (the number of positive responses) 
and 2n  (the number of negative responses) [35]. The 

ˆAUC  is made up of 1 2n n  quantities (pairs) of which n = 
min ( )1 2,n n  are independent. Thus n is the number 

associated with ˆAUC . Let nt = n1 + n2. 

Σ̂  is the Dorfman and Alf [8] MLE of the covariance 
matrix Σ  of the ˆAUC . According to Theorem 3 [22] the 
sampling distribution of the MLE of the 

( )( )ˆ ˆ ′
− −AUC μ AUC μ  matrix is asymptotically ( ),W np Σ  

as ˆAUC  has an asymptotic multivariate normal 
distribution. Thus asymptotically according to theorem 3 
[22] and Result 1, ( )ˆ ~ , .n W npΣ Σ  

We want to test the null hypothesis (H0) that all AUC s 
are the same on average versus the alternative hypothesis 
(H1) that all AUC s are not the same on average. 

That is :0H =μ K . where K  is a constant vector, 

versus :1H ≠μ K . 

As we do not know K  it has to be estimated. K  can be 
estimated as K the simple average of the ˆAUC  (that is 

individual ˆ iAUC ’s). That is 

2 ˆ
1

2

AUCi
i
∑
==K . 

From Theorem 2, the general form of the Hotelling’s 
2T  statistic [16] is  

 ( ) ( )12 ˆ ˆ ˆTG
′ −

= − −AUC K Σ AUC K . 

The dimensionality (p=2) needs to be reduced by 1 for 
estimating K . Therefore take q=p-1=1 instead of p. Then 

for large samples, 
( )

2 ~ .12 ,1
2 2

nT BetaG nn  −  
 

 

Here p=2 is the number of AUCs and n is the number 
of independent quantities used to calculate the AUCs. For 
the case of large samples (large n1 and n2 ) n will be large. 
The test statistic 2TG  can be used to test oH . The 

percentage points for the test statistic’s distribution can be 
obtained by 

 
( )

.12 ,1
2 2

n Beta nn  −  
 

 

3.2.3. Duncan’s Multiple Range Test 
Theorem 4 [1]: 
When there are more than two correlated curves to be 

compared then multiple comparisons have to be used of 
each pair. In this case as repeated tests are used, the 
overall type I error rate increases with the number of 
pairwise comparisons. One method of keeping the overall 
type I error rate to α would be to use a much lower 
pairwise type I error rate (α′ ). If N is the number of all 
possible pairwise comparisons then (α') can be shown to 
be 

 ( )1 1 Nα α′= − −  

where N is the number of all possible pairwise 

comparisons ( )2cN p= . One such method of 

determining the value of α′  is attributed to Bonferroni [3]. 

3.3.2. The test for Pairwise Comparisons 
The test developed for comparing two correlated AUC 

curves can be applied here for all-pairwise-comparisons 
taking p=2. The stringent significance level of α' is used 
for all tests. 

3.3.3. The Use of ROCKIT 
The software ROCKIT was developed in 2004 by Park, 

Goo and Jo [28] for analysis of ROC curves particularly 
with respect to the comparison of two AUCs. It uses the 
Dorfman and Alf [8] method of estimation of AUCs for 
comparing two AUCs. However it does not use stringent 
significance levels to adjust for multiple comparisons. 
Thus ROCKIT was used solely for the purpose of 
obtaining the parameter estimates of the AUCs and its 
variance-covariance matrix, but the pairwise tests for 
comparisons of AUCs was done manually.  

4. Simulation Study 
 Simulation studies of the proposed test were carried 

out for the case of 2 correlated ROC curves. Both the type 
I error and the power of the test were studied under each 
case. The study used a significance level of 5% for testing. 
(i) Case : Comparison of 2 correlated ROC curves. 
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Furthermore correlated ROC curves were also 
simulated taking a , b , nr  and sr  values similar to those 
in Metz et al. [26] which are typical parameter values for 
clinical data. Here nr  and sr  denote the correlation 
coefficients of the bivariate normal “noise only” and 
bivariate normal “signal present” densities respectively. 
Data were simulated for 5 category rating scale data for 
sample sizes of 100 and 500 (i.e. sample sizes of 50 and 
250 with respect to the positive and negative groups 
respectively). From Table 2 it can be seen that as the 
sample size increases the Type I error generally tends to 

be less ‘conservative’ and more in line with the stipulated 
size of the test. To compare the power of the test data was 
simulated for 5 category rating scale data for sample sizes 
of 100 and 500 (i.e. sample sizes of 50 and 250 with 
respect to the positive and negative groups respectively). 
From the results given in Table 3 it can be seen that the 
power of the test increases as the sample size is increased. 
For the paired case a sample size of 100 seems to be 
satisfactory. When the overlap between the Gaussian 
distributions were less the test statistic performed better 
with respect to the power of the test. 

Table 2. Rejection of 0H  Under 0H : (comparing 2 correlated ROC curves simultaneously) 

Sample size 1a  2a  1b  2b  nr  sr  Proportion of rejections 

100 

1.3 1.3 0.85 0.85 0.5 0.85 0.0380 
1.0 1.0 0.85 0.85 0.5 0.85 0.0360 
1.7 1.7 0.85 0.85 0.5 0.85 0.0310 
1.9 1.9 0.85 0.85 0.5 0.85 0.0470 

500 

1.3 1.3 0.85 0.85 0.5 0.85 0.0370 
1.0 1.0 0.85 0.85 0.5 0.85 0.0370 
1.7 1.7 0.85 0.85 0.5 0.85 0.0470 
1.9 1.9 0.85 0.85 0.5 0.85 0.0450 

Table 3. Proportion of rejections of 0H  Under 1H : (comparing 2 correlated ROC curves simultaneously) 

Sample size 1a  2a  1b  2b  nr  sr  Proportion of rejections 

100 

1.0 1.3 0.5 1.7 0.5 0.85 0.6000 
1.0 1.7 0.5 1.7 0.5 0.85 0.3110 
1.0 2.0 0.5 1.7 0.5 0.85 0.1340 
1.3 1.7 0.5 1.7 0.5 0.85 0.7830 
1.3 2.0 0.5 1.7 0.5 0.85 0.5770 
1.7 2.0 0.5 1.7 0.5 0.85 0.9160 

500 

1.0 1.3 0.5 1.7 0.5 0.85 1.0000 
1.0 1.7 0.5 1.7 0.5 0.85 0.9660 
1.0 2.0 0.5 1.7 0.5 0.85 0.7010 
1.3 1.7 0.5 1.7 0.5 0.85 1.0000 
1.3 2.0 0.5 1.7 0.5 0.85 1.0000 
1.7 2.0 0.5 1.7 0.5 0.85 1.0000 

5. Application 

5.1. The Data 
The data are from the Sri Jayawardenapura General 

Hospital, in Sri Lanka and was collected with the 
objective of identifying the sensitivity of the Cardiac 
Stress Test (CST) as a means of predicting the angiogram 
results (Coronary Artery Disease (CAD)). This involved 
the determining of a suitable “cut-off” in the CST for 
predicting the CAD results efficiently. As the same data 
set was used for all “cut-offs” this results in paired data.  

 The Sri Jayawardenepura General Hospital was chosen 
due to the administrative infeasibility of obtaining a 
simple random sample from the entire record of past 
patients a convenience sample had been selected using the 
bed head tickets (BHT) of those who had undergone a 
CST in 2008 or 2009. The data collected included: the 
CAD result which was finally coded as passed or failed, 
the CST result which was determined to have four levels 
(1- patient had difficulty at stage 1, 2 - difficulty at stage 2, 
3 - difficulty at stage 3 or had other signs for concern, 4 – 
Completed Bruce protocol test or completed test up to 

stage 3 or beyond and hence declared as out of danger by 
medical experts), information on possible prognostic 
factors such as age, sex, hypertension, Diabetes Mellitus, 
alcohol and Cigarette consumption and family history. A 
seemingly important prognostic factor, cholesterol level 
was not included as most patients were taking cholesterol 
reducing drugs. How the status of the CAD result is 
obtained from the gold standard angiogram is explained in 
Cardiac Catheterization and Angiogram [37]. Clearly, it is 
obtained by methods independent of CST. The sample 
size of the data set was determined using the design 
review procedure of Bolland, Sooriyarachchi and 
Whitehead [2]. The sample size was calculated using Stata 
10 and this was found to be 419 but there were only 202 
complete records at the end of the data collection.  

5.2. Missing Values and Their Imputation 
A problem regarding this data was the amount of 

missingness. A majority of patients passing the CST had 
not done the angiogram due to the high cost of 
angiograms. To determine sensitivity and specificity, we 
sought to collect data on CAD status and CST level; 
however, typically those with higher levels of CST are 
less willing to do an angiogram resulting in missing data 
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for CAD status. When CST=4 there are 13 observations 
for which all CAD values are missing. Seneratna and 
Sooriyarachchi [33] discuss verification bias with respect 
to this data set and explain that there is little cause for 
alarm as explained previously in this paper. As the 
missingness in the CAD result does not depend on the 
result of the CAD status itself, but on the CST, according 
to the definitions of Little and Rubin [19] and Carpenter 
and Kenward [4] this data can be considered as missing at 
random (MAR). Apart from the missing values in the 
response variable (CAD) there were also several missing 
values in the explanatory variables. The opinion of the 
medical doctors involved in the study regarding the 
missingness of the explanatory variables was that these 
values could be biased as those missing values were not 
conditional on another variable and hence according to the 
definition of Little and Rubin [19] are missing not at 
random (MNAR). Current research [6], indicates that 
while using imputed missing values that are missing at 
random (MAR) or missing completely at random (MCAR) 
do not bias the results, the same may not be the case for 
missing values which are missing not at random (MNAR). 
In this case one has to be very careful in using these 
values due to possible bias. In order to increase the sample 
size and thus the power of hypothesis tests used and to 
study the sensitivity and specificity of the CST on a 
reasonably large sample it was decided to impute only the 
CAD values.  

For the purpose of imputation Stata10’s ICE module 
[31] was used. Since the response variable in this study 
was a dichotomous one, and hence, the final model to be 
used was decided to be a logistic model, as recommended 
by Schafer [32] this same logistic model was used for the 
imputation procedure. Once this model was fitted the 
predicted values along with its standard error was 
calculated by Stata. Then from this posterior distribution, 
Stata randomly selects a value which is none other than 
the imputed observation. In this study following Van- 
Leeuwen , Zweers, Opmeer, Ballegooie, Brugge and Valk 
[18], 100 such imputations were averaged out to 
determine the missing values for CAD. The averaged out 
observations were grouped as ‘diseased’ if the estimated 
probability of disease from the model was greater than 0.5 
or else grouped as ‘not diseased’. If a different threshold 
(different from 0.5) can be reasoned out to be more 
appropriate then that threshold can be used. However, the 
missing values in the sample’s explanatory variables were 
not imputed and this resulted in a substantial decrease in 
the effective sample size to 240 patients.  

Further, the work carried out by Spritzler, DeGruttola 
and Pei [34] depicted the properties of the AUC in the 
presence of missingness and recommended against the use 
of the trapezoidal rule. Therefore, the Dorfman and Alf [8] 
method was adopted. In this study the statistical modules 
ICE developed for the statistical package Stata 10, were 

used. ICE was first developed by Royston [31] in 2004 
and the newest version MI is available for Stata 11. 

5.3. ROC Curves 
Hosmer and Lemeshow [15] explain that by plotting 

sensitivity values against (1-specificity), is obtained, what 
is known as the ROC curve, and the area under this curve 
(AUC) provides they explain, a measure of discrimination. 
As a rule of thumb Hosmer and Lemeshow [15] point out 
that: If AUC = 0.50, suggests no discrimination. That is, 
might as well flip a coin; If 0.7 ≤ AUC < 0.8, acceptable 
discrimination; If 0.8 ≤ AUC < 0.9, excellent 
discrimination; If AUC > 0.9, outstanding discrimination. 

In order to determine whether the performance of CST 
may be over-stated because first it was used to impute the 
status of CAD and then it was used again to generate ROC 
curves, a before and after analysis (not reported here) was 
done for determining the association between CST and 
CAD variables. Here the Pearson's Chi-Square test was 
used. The p-value of the test before and after was 0.019 
and less than 0.001 respectively. Thus the significance 
before imputation is maintained and increased after 
imputation. This could may be because of the increase in 
power due to the increase in sample size. 

5.4. Modeling the Different “Cut-offs” 
Receiver Operating Characteristic (ROC) curves were 

used to identify the best cut-off for the CST. Three 
different cut-off’s were examined, the first being rating 1 
of CST versus the other ratings (grouping 1), the second 
being rating 1 and 2 of CST versus the other ratings 
(grouping 2) and the third being rating 1, 2, 3 of CST 
versus rating 4 of CST (grouping 3). In order to construct 
the ROC curves 3 different cut-off models were created. 

For each of these cut-off’s logistic models were fitted 
between CST and CAD after adjusting for important 
confounding variables. As it was of interest to see the 
effects of including all the candidate regressors just so that 
nothing obvious is missed, the backward elimination 
procedure was used for selecting important confounding 
variables. 

On using backward elimination the cut-off 1 model 
results in selecting the variables Age, Sex, Hypertension 
(HT), Diabetes Mellitus (DM), family history (FH) and 
Alcohol (Alc). The cut-off 2 model includes the variables 
CST, Age, Sex, HT, DM, FH and Alc. The cut-off 3 
model includes the main effects CST, Age, Sex, HT, DM, 
FH and Alc and the two factor interactions CST*age, 
CST*Sex, CST*DM. Here different combination of 
variables are used for the different cut-offs. One might 
argue that common covariates are more suitable. The 
justification for our choice is that we want to find the best 
cut-off after adjusting for important covariates. Our third 
objective was this. 

Table 4. Pairwise Estimated AUCs, Standard errors and Correlation 
Statistic 

(Estimate) 
Grouping 

1 versus 2 1 versus 3 2 versus 3 
AUC 0.9011 0.9039 0.9040 0.9320 0.9079 0.9314 

SE (AUC) 0.0195 0.0192 0.0191 0.0155 0.0187 0.0156 
Correlation between the two AUCs 

of the ROC curves 0.9488 0.8046 0.8201 
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5.5. Use of ROCKIT for Obtaining Required 
Parameters for the Multivariate Test 

Using the predicted values from the models related to 
each cut-off, in ROCKIT [28] the areas under each ROC 
curve, their respective standard errors and the correlations 
between each pair of AUCs were obtained. The method of 
estimation of these parameters in ROCKIT is the Dorfman 
and Alf method of maximum likelihood [8]. 

Table 4 gives for each pair of ROC curves (for each 
cut-off or grouping) the estimated AUCs their standard 
errors and correlation. 

5.6. Application of the Bivariate Test to 
Paired Data 

5.6.1. Using the Developed Test for Comparison of 
Pairwise AUCs (p=2) 

(i)We want to test the null hypothesis (H0) that AUC1 is 
the same as AUC2 versus the alternative hypothesis that 
the two AUCs are not the same. Under H0, the test statistic 
developed in section 3.2.2 is  

 ( ) ( )12 ˆ ˆ ˆ .TG
′ −

= − −AUC K Σ AUC K  

Data in Table 2 gives 
0.9011ˆ
0.9039
 

=  
 

AUC  

 
0.00038 0.00036ˆ .
0.00036 0.00037
 

=  
 

Σ  

Using the values in Table 2 gives 

 [ ]0.9011 0.9039
0.9025.

2
K

+
= =  

Using MATLAB the value of the test statistic 2TG  was 

determined to be 0.196. Here 1n = number of patients with 
CAD (positive) = 96 and 2n = number of patients without 
CAD (negative) = 144. Thus, n= minimum (n1,n2) = 96.  

The simulations in table 6 indicate that the total sample 
size (96+144=240) can be considered to be large enough 
for asymptotic properties to hold for the paired case. Thus 
asymptotically, 

Under H0,  

 
( )

2 ~ 12 ,1
2 2

nT BetaG q n qn − − −  
 

 

p = number of groups = 2 and q = p-1 = 1. As this is a two 
sided test α=0.025 giving an α0.0085=׳ for the Bonferroni 
correction. 

From Matlab, Beta (0.5, 47), 0.85% = 1.2138e-006 and Beta 

(0.5, 47), 99.15% = 0.0714. 
Thus the 0.85% and 99.15% points of the test statistic 

are  

 ( )
[0.5,47 0.85%]

295
, 0.0001141

96
Beta =  

 ( )
[0.5,47 99.15%]

295
, 6.712

96
Beta =   

As 0.0001141 < 0.196< 6.712 we do not reject H0 and 
conclude that the AUCs are the same.  

5.6.2. Pairwise Comparison of AUC Curves 
As the results were significant indicating differences 

between the three AUCs the three groups were compared 
pairwise using Duncan’s multiple range test [1]. Here, 

( )1 1 Nα α′= − −  where N=3 (=3C2 ) and 5%α = . Thus 

( )
1
3

1 1 0.05α′ = − −  =0.017 0.0085.
2
α′

=  
Comparing AUCs of groups 1 and 2  

 2 1:oH AUC AUC=  

 2 1:1H AUC AUC≠  
Using Hanley and McNeil [12] the test statistic is  

 0.9049 0.9017 0.5298.1/20.000361 0.000372
2 0.9503 0.0190 0.0193

−
=

+ 
 − × × × 

 

Based on the normality assumption, the test statistic p-
value = 0.7019 and thus the results are not significant at 
α′% level. 

Similarly AUCs of groups 3 and 1 and groups 3 and 2 
can be compared and the respective test statistics are 
2.4118 (resulting in a p-value of 0.007937) and 2.1688 
(resulting in a p-value of 0.01505). While these tests 
indicate a significant difference between the AUCs of 
groups 3 and 1 there is no significant difference between 
the AUCs of groups 3 and 2. 

However if one sided test are carried out with the 
alternative hypotheses being 2 1:1H AUC AUC> , 

3 1:1H AUC AUC>  and 3 2:1H AUC AUC>  hen while 
the first null hypothesis is not rejected the other two null 
hypotheses are rejected at %α′  level indicating that the 
AUC of group 3 is larger than the AUCs of groups 1 and 2. 
The reason for using the one sided tests is to satisfy our 
practical objective, objective 3. Here we were interested in 
determining whether in the local scenario too the best 
cutoff for discrimination is the global “Bruce-Protocol” 
cutoff. For that we had to recommend one of the 3 cutoffs 
as the best.  

5.7. Conclusions from Results 
The AUCs are not all the same and 0H  is rejected at 

the α = 5% level. Duncan’s multiple range test was 
initially used to do two sided tests for all-pairwise-
comparison methods. This indicated that the only 
significant difference at %α′  significance level was 
between the AUCs of groups 3 and 1. In order to 
recommend one cut-off one-sided significance tests were 
carried out for all-pairwise-comparison methods and this 
indicated that the AUC of group 3 was significantly larger 
than the AUCs of groups 1 and 2. 
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6. Discussion 
In this section results obtained are discussed with 

respect to both statistical and medical findings. Further 
some drawbacks of the research are discussed and further 
work suggested. 

6.1. Statistical and Medical Findings 
Several authors in the past [11,12,20,21,25,27] have 

dealt with the problem of comparing two AUCs. Often it 
may be required to compare multiple alternative tests, for 
example, one might want to compare the cardiac stress test, 
the electrocardiogram and the echocardiogram with 
respect to their abilities to diagnose coronary artery 
disease using the angiogram as the gold standard. Up to 
date there is no developed method except Delong, Delong, 
Clarke-Pearson method [7] for comparing several AUCs 
at once, however, as discussed this existing method has 
several drawbacks. This paper addresses this important 
need by developing a bivariate test and using multiple 
comparisons. The significance level is adjusted for these 
comparisons by using the Bonferroni correction [3] for 
comparing several AUCs. For large samples (asymptotically) 
this test statistic has a distribution proportional to the Beta 
distribution, under the null hypothesis, provided that the 
estimated AUCs can be assumed to be normally 
distributed. This assumption of normality is one which all 
previous authors related to this subject have used. As there 
were several missing values, making it almost impossible 
to estimate the specificity and sensitivity of the test the 
missing value imputation method for Van- Leeuwen, 
Zweers, Opmeer, Ballegooie, Brugge and Valk [18] was 
used for the response variable. However, this same 
technique could not be used for the missing values in the 
explanatory variables as these values were found to be 
missing not at random (MNAR) as defined by Little and 
Rubin [19]. On rejecting the null hypothesis pertaining to 
the test it was found that ROCKIT can be used to compare 
all pairwise AUCs. However ROCKIT does not adjust for 
multiple testing and uses the required significance level 
for all tests, making the overall significance level inflated. 
In this paper, we suggest to use a stringent significant 
level based on the Bonferroni adjustment [3] for all-
pairwise-comparison methods so as to keep the overall 
significance level within required limits. 

Medically the most important conclusion reached was 
that the Bruce-protocol cut-off for the CST as a diagnostic 
of CAD was seen to be the most favorable cut-off for this 
Sri Lankan data which is a finding consistent with world 
standards. The other two cut-offs examined are 
significantly different to this one. Some other medically 
important findings were that age, sex, Diabetes Mellitus, 
hypertension, alcohol and family history are all prognostic 
factors for CAD. In addition, CST was important as a 
diagnostic of CAD not only on its own, but also in 
combination with age, sex and Diabetes Mellitus status in 
order to predict CAD results. Also prognostic variables 
hypertension, alcohol and family history should be taken 
into account before coming to a conclusion. It is 
noteworthy to mention here that some studies in the past 
have found that moderate amounts of alcohol have been 
beneficial for CAD. However, in this study the variable 

alcohol intake is binary and the levels are ‘yes’ and ‘no’, 
thus we could not test this hypothesis.  

6.2. Limitations and Further Work 
One major limitation of the study was that the 

observations having missing values for the explanatory 
variables had to be removed from the analysis as these 
could not be imputed. Statistically, there was the issue of 
these values being NMAR and the doctors were aware that 
there was bias in this missingness. Imputation of NMAR 
missing values are a current area of research. This requires 
further study though no software is available for the 
purpose. Due to this limitation the sample of size 300 was 
reduced to 240 resulting in a reduction in power. In 
addition the results would have been more generalizable if 
data was obtained from hospitals all over Sri Lanka 
without restricting it to a single general hospital. This was 
done because the angiogram is a very expensive and 
relatively new technique in Sri Lanka and very few 
hospitals have the facility for doing it. Asymptotically the 
test statistic follows a distribution proportional to the Beta 
distribution (under the null hypothesis) as asymptotically 
the AUCs have an approximately normal distribution. The 
other major drawback was the fact that Metz, Wang and 
Kronman [26] have developed their method of 
determining the AUC’s and their standard errors and 
correlations for correlated data only for paired data and 
thus only a bivariate procedure could be used.  
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