

Software Reliability Estimation

Using Cubic Splines Network

Model

A thesis submitted for the Degree of Master of
Philosophy

K.W.K.B.P.L.M. Kelanibandara

University of Colombo School of Computing

2012 December

ii

Declaration

The Thesis is my original work and has not been submitted previously for a degree at

this or any other university/institute. To the best of my knowledge it does not contain

any material published or written by another person, except as acknowledge in the text.

Student Number: MPhil/PT/2006/012

Author‟s name: K.W.K.B.P.L.M. Kelanibandara Date ………………

Signature ……………………………………….

This is to certify that this thesis is based on the work of Ms K.W.K.B.P.L.M.

Kelanibandara under our supervision. The thesis has been prepared according to the

format stipulated and is of acceptable standard.

Certify by

Supervisor 1 Name: Prof. G.N. Wikramanayake Date ………………...

Signature ………………………..

Supervisor 2 Name: Dr. (Mrs) J.S. Goonathillake Date ………………..

Signature …………………………

iii

 Acknowledgment

First of all I would like to express my sincere gratitude to Prof. G.N. Wikramanayake,

Professor/Director University of Colombo School of Computing, who has been my

principal supervisor since the beginning of my study. Especially he provided me with

many helpful suggestions, important guidance and constant encouragement during the

course of this work. I would like to take this opportunity in thanking him in getting this

work successfully within his kind attention.

I also wish like to express my second thank and appreciation to Dr. J.S. Goonathillake,

Senior Lecturer, Department of Information Engineering, University of Colombo

School of Computing who also has been my supervisor since the beginning of my

study, made many valuable suggestions and gave constructive advices and feedback

from the beginning to the end.

Special thanks are due to Prof. N.D. Kodikara, the Head of the Department of Post

Graduate Studies and University of Colombo School of Computing for providing me

useful guidelines for the thesis.

I would like to draw my special thanks to Mr. M.T.W. Ponnamperuma, Former

Chairman, Vocational Training Authority of Sri Lanka, for his valuable assistance and

encouragements specially to attend for the conferences.

My sincere thanks go to Mr. Tissa Bandara and Mr. Gallaba, Directors of Vocational

Training authority for the fullest support in succeeding my research work.

I would like to thank my colleague Ms. Probodini Jayasinghe who gave me support for

my studies. Finally my thanks go to my parents, sisters and brother in giving me

support and encouragement in succeeding this thesis.

iv

Abstract

The term quality in general, is a feeling. Thus, it is hard to describe consistently as a

feeling is not consistent. Software quality is essentially a kind of quality particularly

associating with software. Thus, the term software quality is also hard to describe.

Hence, researchers use software quality models. Each software quality model consists

of several factors which affect the software quality and they are called software quality

factors. Software reliability is one of such software quality factors in nearly all the

software quality models. Hence, software in order to be a high quality one, all the

quality factors including software reliability has to be guaranteed. However, it is

evident that software reliability is not guaranteed in almost all the commercial software

development. This has been due to the lack of accuracy of the reliability estimation and

the time taken to estimate the reliability in existing software reliability estimation

models or software reliability growth models.

Among the commonly used software reliability growth models, Non Homogeneous

Poisson Model (NHPP model) shows more accuracy than the other models. However,

in order to estimate the reliability, it requires more input data (i.e. a minimum of twenty

five failure data). Thus, it takes considerable time. In this thesis, a novel software

reliability growth model called Cubic Spline Network model (CSN model) has been

introduced for improved accuracy with respect to the existing models.

The proposed model requires relatively smaller number of past failure data as input and

thus, this research will prove that it is more practical to use in the commercial software

developments. Cubic splines network model has sensitivity of tuning for smaller or

higher reliability estimation which has also not been introduced in the literature.

v

Table of Contents

Content Page Number

1. Introduction.. 1

 1.1 Software Quality .. 1

 1.2 Application of Software Reliability by Software Industry.. 5

 1.3 Objectives .. 7

 1.3.1 Sub Objectives... 7

 1.4 Scope .. 7

 1.5 Methodology.. 7

 1.6 Motivation ... 8

 1.7 The Rest of the Thesis .. 10

2. Software Reliability .. 11

 2.1 Software Reliability Engineering .. 11

 2.2 Software Reliability Benefits ... 12

 2.3 Software Reliability Against Hardware Reliability.. 13

 2.4 Software Reliability Activities... 15

 2.5 Operational Profile ... 16

 2.6 Software Reliability Metrics.. 17

 2.7 Related Other Topics .. 19

 2.7.1 Traditional/Hardware Reliability .. 19

 2.7.2 Software Fault Tolerance... 19

vi

 2.7.3 Software Testing ... 20

 2.7.4 Social & Legal Concerns ... 20

3. Software Reliability Estimation ... 21

 3.1 Software Reliability Prediction Models .. 21

 3.2 Software Reliability Estimation Models or SRGMS.. 23

 3.3 History of SRGMS ... 24

 3.4 The SRGM .. 24

 3.5 SRGM Classifications... 24

 3.5.1 Exponential NHPP Models ... 25

 3.5.2 Non Exponential NHPP Models ... 26

 3.5.3 Bayesian Models... 27

 3.6 Assumptions Used in Software Reliability Growth Models 31

 3.7 Existing Neural Network Based SRGMS ... 33

 3.8 Issues Associated with the Current SRGMS ... 34

 3.8.1 Uncertainty in the Software Behavior ... 35

 3.8.2 Lack of Flexibility of the SRGM .. 36

 3.8.3 Complexity of Parameter Estimation of the SRGM ... 36

 3.9 Features of a Useful Software Reliability Growth Model....................................... 37

4. Cubic Spline Network Software Reliability Growth Model.. 38

 4.1 Artificial Neural Networks .. 38

 4.2 Spline Interpolation .. 39

 4.3 Software Reliability Growth Model with Cubic Splines .. 39

vii

 4.3.1 The Role of Boundary Conditions .. 44

 4.3.2 Calculations of the SRGM ... 45

 4.4 Tool to Estimate Software Reliability .. 49

 4.4.1 Accuracy ...………………………………………………………………...……..50

 4.4.2 Flexibility.. 51

5. Evaluation .. 52

 5.1 The Selection of the Data .. 52

 5.2 Quality of the Failure Data .. 53

 5.3 Data Sets Used ... 53

 5.3.1 CS I - Time Between Failure Data (S27)... 54

 5.3.2 CS II – Time Between Failure Data (S2) .. 55

 5.4 Cubic Splines Network (CSN) Software Reliability Estimation Model 55

 5.4.1 CSN Model Estimation for CS I.. 56

 5.4.2 Comparison of the Results with the Actual Data .. 57

 5.4.3 Comparison of the Results with the Other Models .. 57

 5.4.3.1 Finding the Most Accurate Model in SMERFS^3 58

 5.4.3.2 Comparison of the CSN Results with NHPP Model 60

 5.4.3.3 Comparison of the Results with Other SRGMS ... 62

 5.5 Tunable Feature of CSN Model .. 65

6. Conclusions and Future Work.. 67

viii

References .. 69

Appendix A – Graphical Representations of CSN Model EstimationsI

Appendix B – Comparative Study of CSN Model and NHPP Model....................................VII

Appendix C - Other Research Findings ... XXII

Appendix D - List of Publications ... XXVI

ix

 List of Figures

Figure 3.1: The actual and the estimated reliabilities of the famous models 30

Figure 3.2: NHPP model reliability estimation at different failures.................................... 31

Figure 4.1: CSN for software reliability estimation .. 40

Figure 4.2: The number of graphs which can be drawn between 2 points 43

Figure 5.1: Estimated and actual reliabilites for the CS II .. 56

Figure 5.2: The output from SMERFS by each model for CS I... 59

Figure 5.3: The output from SMERFS for each model for CS II 60

Figure 5.4: The standardized errors for dataset with 86 records in (Lyu, 1996) 61

Figure 5.5: The standardized errors for CS II ... 61

Figure 5.6: Comparison of estimation ability ... 64

Figure 5.7: The output from CSN model at different omega values for CS I 65

x

List of Tables

Table 1.1: The quality attributes of famous software quality models. 5

Table 3.1: Exponential NHPP Model examples ... 26

Table 3.2: Non Exponential NHPP Model examples ... 27

Table 3.3: Bayesian Model examples ... 27

Table 3.4: Real world applications of the recommended SRGMS. 28

Table 3.5: The erroneous assumptions appeared in the SRGMS and the reality of them.... 33

Table 3.6: Assumptions of SRGMS ... 32

Table 4.1: CS I – Dataset (1 to 6 of 41data) ... 46

Table 4.2: The calculated c coefficient values for the data in table 4.1Error! Bookmark not defined.

Table 4.3: The calculated b coefficient values for the data in table 4.1 48

Table 4.4: The calculated d coefficient values for the data in table 4.1 48

Table 4.5: The estimated output from the cubic spline layer .. 49

Table 4.6: The final estimated output from the network ... 49

Table 5.1: The failure data taken from (Lyu,1996) of CS I .. 55

Table 5.2: The failure data taken from (Lyu,1996) of CS II ... 55

Table 5.3: CSN model Estimated Reliability for CS I .. 56

Table 5.4: Software Reliability Models facilitated in SMERFS^3 58

Table 5.5: Output values for CSN model and other models in SMERFS for CS I.............. 63

Table 5.6: The calculations of CSN model at different omega values for CS I 64

xi

Abbreviations

AIAA - American Institute of Aeronautics and Astronautics

ANN – Artificial Neural Network

ANSI – American National Standards Institute

CMM - Capability Maturity Model

CPU – Central Processing Unit

CS I – Case Study I

CS II – Case Study II

CSN - Cubic Splines Network

FURPS – Functionality Usability Reliability Performance Supportability

FURPS + - enhance FURPS by IBM

IBM – International Business Mechanic

IEEE – Institute of Electrical and Electronics Engineers

I / O – Input / Output

ISO – International Organization for Standardization

KLOC – thousand Lines Of Code

KSLOC – thousand Source Lines Of Code

LOC – Lines Of Code

MTBF - Mean Time Between Failures

NASA - National Aeronautics and Space Administration

NHPP - None Homogenous Poisson Process

SMERFS - Statistical Modeling and Estimation of Reliability Functions for Software

xii

SLOC – Source Lines Of Code

SRE - Software Reliability Engineering

SRGM - Software Reliability Growth Model

URPS – Usability Reliability Performance Supportability

WASR - Workshop on Applied Software Reliability

1

1. Introduction

The increasing dependency on computer aided systems consequence more and

more software systems in operation. However, some of them can be disruptive

if the software fails to meet the required level of performance. People are with

the attitude of striking off software due to lack of performance. This attitude is

no longer practical if the software usage is mature or the software functions

are safety critical. When the consequences of the software problems are

significant enough, the software quality engineers has to come forward to give

solutions.

1.1 Software Quality

Generally, the quality is neither visible, nor tangible and is immeasurable. The

quality is rather a feeling such that, while using, if the product causes

happiness or comfort-ability in any particular aspect, the quality of the product

in that particular aspect is higher and vice versa. For example, if the users

experience trouble-free manipulation of the software, then the quality aspect

usability of that particular software is privileged.

Software quality has no constant definition (Hoyer, et al., 2001). It is

situational and it depends on the application. The software quality has a

broadened scope. In order to understand the term software quality, it is

important to pay attention to the literature to find how the quality has been

defined by the people who have studied deeply in this subject.

Crosby summarizes his perspective on quality (Crosby, 1979) as conformance

to requirements. Walter Edwards Deming (Deming, et al., 1986) states that,

quality must be defined in terms of customer satisfaction. Armand Villain

Feigenbaum explains his perspective on quality through the following text

(Feigenbaum, 1983) “Quality is a customer determination, not an engineer’s

2

determination, not a marketing determination, nor a general management

determination. Kaoru Ishikawa explains “What is quality control? in Japanese

Way” (Ishika, 1985) “We engage in quality control in order to manufacture

products with the quality which can satisfy the requirements of consumers.

Juran Trilogy‟s Definition of the word qualit (Juran, 1988) as “fitness for use”

for the task of managing quality. Shert Wart defines that there are two

common aspects of quality: One of them has to do with the consideration of

the quality of a thing as an objective reality independent of the existence of

man. The other has to do with what we think, feel or sense as a result of the

objective reality.

IEEE defines the software quality as the degree to which software possesses a

desired combination of attributes (IEEE, 1990).

ISO9126 defines the software quality as: “the totality of features and

characteristics of a software product that bear on its ability to satisfy stated

or implied needs” (ISO, 2001).

All the above definitions confirm the fact that the quality has a varied

meaning and generally it is engaged with the satisfaction of the requirements

of the user. Hence, It is important to discuss how the term quality which is

situational and has a broader scope with a varied meaning can be described.

Software quality is described in the means of models which are called

software quality models and these have their own quality attributes (McCall

et. al., 1977). Following presents some software quality models for a better

understanding.

ISO 9126 defines software quality with six software quality attributes as

functionality, reliability, usability, effectiveness, maintainability and

portability (ISO, 2001).

3

Another famous and useful categorization of factors that affect the software

quality was proposed by McCall, Richards, and Walters (MaCall, et al., 1998).

According to this categorization, quality is described in three categories as

product operation, product revision and product transition. There are eleven

(11) quality factors which would fall into these three quality categories.

Product operation quality attributes are correctness, reliability, efficiency,

integrity and usability. Product revision quality attributes are maintainability,

testability and flexibility. Product transition quality attributes are portability,

re-usability and testability.

IEEE 1061 standard defines software quality in five main attributes and they

are similar to the ISO main software quality attributes and software reliability

is one of the five software quality attributes (IEEE, 1990).

Boahems describes (Boehm, et al., 1976) the quality model in three levels as

high level, intermediate level and primitive level. High level characteristics

represent the basic high level requirements and it includes as-is-utility (how

well, i.e., easily, reliably, efficiently can I use it as-is), maintainability and

portability. Intermediate level represents the software quality expected from

the software, i.e., portability, reliability, efficiency, usability, testability,

understandability and flexibility. Primitive level represents the foundation for

defining the quality matrices.

FURPS originally proposed by Robert Graby as FURPS (Functionality,

Usability, Reliability, Performance and Supportability) and later enhanced by

IBM Rational Software as FURPS+. These models categorize the software

quality attributes as Functional (F) (Functionality) and as None Functional

(URPS) (Usability, Reliability, Performance, and Supportability). The quality

attributes are Functionality, Usability, Reliability, Performance, and

Supportability (Gray, 1992).

4

Dromey software quality model represented by R. Geoff Dromey considers

the quality evaluation defers from the product (Dromey, 1995). A dynamic

quality model which depends on the focused software is needed to be

successfully applied for different systems. This model attempt to match

product properties with the software quality attributes. There are three basic

elements as such product properties, quality attributes and linking product

properties with quality attributes in this model. Product properties are

correctness, internal, contextual and descriptive. Functionality and reliability

are the attributes which would contribute to the correctness product property

and the attributes of the internal product property are maintainability,

efficiency and reliability. Maintainability, re-usability, portability and

reliability are the attributes of contextual product property and the attributes

which would contribute to descriptive product property are maintainability, re-

usability, portability and usability. The summary of these quality model

attributes can be tabulated as shown in Table 1.1.

5

Quality Attribute ISO 9126 McCall IEEE

1061

Boahems FURPS/FURPS
+

Dromey

Functionality X X X

Reliability X X X X X X

Usability X X X X X

Effectiveness X X

Maintainability X X X X X

Portability X X X

Correctness X

Efficiency X X X

Integrity X

Flexibility X X X

Testability X X

Portability X X

Re Usability X X

Interoperability X

As-is Utility X

Understandability X

Performance X

Supportability X
Table 1.1: The quality attributes of famous software quality models

According to the Table 1.1, reliability and usability are the two quality

attributes which are common to most of the listed software quality models.

This depicts that the reliability and the usability essentially have a drastic

impact on software quality. Hence if a company is to develop high quality

software, it is important to employ some efforts on software reliability and

usability. However, this thesis focuses only on software reliability.

1.2 Application of Software Reliability by Software Industry

It is evident that the degree of practicing software reliability in commercial

software development is still a question. Following facts were taken from the

keynote address of the chair of Workshop on Applied Software Reliability

6

(WASR) 2006 of International Conference on Dependable Systems and

Networks (Agbari, et al., 2006):

“Research on software reliability has been active for several decades now and

has produced massive amount of literature to explore new ideas, and system

prototypes to experiment with the proposed ideas. Notwithstanding this

proficiency, only in a few instances has research work found its way into

industrial applications. This apparent uncoordination is exacerbated by the

increasing need for quality and dependability guarantees in the more and

more computerized modern world.”

This clearly elaborates that, there is an urgent need of more practical solutions

for software quality guarantee for instance software reliability estimation.

“Measurement in software is still in its infancy. No good quantitative methods

have been developed to represent Software Reliability without excessive

limitations. Various approaches can be used to improve the reliability of

software, however, it is hard to balance development time and budget with

software reliability” (Martin, et al., 2008)

“Unfortunately the methods to handle software reliability by far did not get

that development which hardware reliability has undergone in last 20

decades. “ (Hoppe, 1996)

The above texts elaborate the fact that a lack of usage of reliability in the

industry. However, after interviewing some of engineers of several

international and local software companies, it was found that there is very

little usage of software reliability estimation in the industry.

This thesis discusses the reasons for lack of usage of software reliability

estimate in the industry. Based on the reasons, the features of a useful model

have been identified and new SRGM using Cubic Spline Network has been

7

designed. There are significant improvements in the new SRGM with respect

to the existing models.

1.3 Objectives

The accuracy level of the existing software reliability estimation models is not

up to the standard. New software reliability estimation model called Cubic

Splines Network Software Reliability Growth Model is needed to be designed

so as to improve the accuracy of the existing software reliability estimation

models. Finally the model is needed to be tested for accuracy to prove that the

model enhances the accuracy.

1.3.1 Sub Objectives

To mitigate input data size for software reliability estimation in order to

improve the usage of reliability estimation by software industry.

To introduce an automated tool for estimating the reliability using Cubic

Splines Network model (CSN).

1.4 Scope

In order to test the accuracy of CSN model, real failure data of a software

project is required. However, it is a very time consuming process to carryout

software testing for a real project and could even take years. This is not

feasible within the available time and thus secondary data which have already

been collected and published were used to test the accuracy (Lyu, 1996).

1.5 Methodology

The accuracies of the existing SRGMs are first analyzed. Then the facts which

affect the accuracy are identified. The ways to avoid the effects of the facts

8

which impair the accuracy are studied. The most suitable way of avoiding the

effects is to be understood. Then according to the findings, new SRGM is to

be designed. The new model is to be tested using the existing datasets. Finally

the new model is statistically proved for the accuracy.

1.6 Motivation

Today, people are highly dependent on computer aided systems. However,

along with the computer aided systems, the major and important role is played

by the software. Numerous types of software can be found ranging from free

of charge to billions of dollars.

The size and complexity of computer-aided systems software have grown

dramatically, and the trend will continue in the future too. Examples of highly

complex computer aided systems software are in the aviation industry, in

scientific researches, in telecommunication industry and for military activities.

For example, the NASA Space Shuttle on board software is approximately

500,000 lines of code and the ground control and processing software is

approximately 3.5 million lines of code. The software used in the

telecommunication industry to control the phone carries hundreds of millions

of lines of source code. Windows operating system used in many home and

office computers is of 28 million lines of code.

In comparison with advancements of hardware components, software achieves

less progress caring a larger burden of the total system. The potential of

integrating the independently developed software into such hardware system

has enabled software designers to develop high complex systems. However, in

comparison to the hardware technology, the software technology has not

succeeded in keeping measures such as quality. Software reports major source

of outages in many systems.

9

The consequences of failures in software have been impacted in several major

systems.

“In the NASA Voyager project, the Uranus encounter was in jeopardy because

of late software deliveries and reduced capability in the Deep Space Network.

Several Space Shuttle missions have been delayed due to hardware/software

interaction problems. Software glitches in an automated baggage- handling

system forced Denver International Airport to sit empty more than a year after

airplanes were to fill its gates and runways. The Hong Kong Airport

experienced a similar problem” (Martine, et al., 1976).

Unfortunately, software can also kill people. The following is an example for

such situation.

 “The massive Therac-25 radiation therapy machine had enjoyed a perfect

safety record until software errors in its sophisticated control systems

malfunctioned and claimed several patients' lives in 1985 and 1986. On

October 26, 1992, the Computer Aided Dispatch system of the London

Ambulance Service broke down right after its installation, paralyzing the

capability of the world's largest ambulance service to handle 5000 daily

requests in carrying patients in emergency situations. In the recent aviation

industry, although the real causes for several airliner crashes in the past few

years remained mysteries, experts pointed out that software control could be

the chief suspect in some of these incidences due to its inappropriate response

to the pilots' desperate inquires during an abnormal flight conditions” (Lee,

1992).

It is clear that the failures of the software systems carry disasters impacts even

the human lives. Software reliability is the science of studying about the

software failures. Software reliability estimation quantifies the software

reliability using software failure data collected during the testing. This thesis

10

focuses on accurate software reliability estimation which can easily be used in

software industry.

1.7 The Rest of the Thesis

The thesis contains six main chapters. The introduction chapter gives an

approach to the work objectives, scope and the motivation. Chapter 2 presents

the theories regarding the software reliability, its benefits, and key

terminologies. A critical review about software reliability estimation, history,

existing software reliability growth models and the problems with the existing

software reliability estimation models has been done in chapter 3. In chapter

4, the research outcome, the cubic splines network model is described. The

evaluation of research outcome, comparative findings of the cubic splines

model, the special features of cubic splines model are described in the chapter

5. The conclusions and future work are described in the chapter 6.

11

2. Software Reliability

Software reliability is equated with the failures of the software system (Fries

et. al., 1996; Lyu, 1996; AIAA/ANSI, 1993). Engineering discipline of

satudying about the software reliability is Software Reliability Engineering

(SRE). Important terminologies under the discipline are such as fault, error,

failure, software reliability estimation, software reliability prediction, software

reliability models, and software reliability activities. This chapter describes

the term software reliability engineering, definitions of the software

reliability, benefits of the software reliability application in each phase of the

software development and three main activities in software reliability.

2.1 Software Reliability Engineering

Software Reliability Engineering (SRE) is established disciplines that can help

organizations to improve the reliability of their products and processes. The

American Institute of Aeronautics and Astronautics (AIAA) defines SRE as

"the application of statistical techniques to data collected during system

development and operation to specify, predict, estimate, and assess the

reliability of software-based systems" (AIAA/ANSI, 1993).

Software reliability is defined as the probability of failure-free software

operation for a specified period of time in a specified environment

(Schneidewind, 1993) (AIAA/ANSI, 1993). SRE is therefore defined as the

quantitative study of the operational behavior of software-based systems with

respect to user requirements concerning reliability.

There are examples of applications of SRE in the large software companies.

Ref. (Agbari, et al., 2006) states that, “As a proven technique, SRE has been

adopted either as standard or as best current practice by more than 50

organizations in their software projects and repor, including AT&T, Lucent,

12

IBM, NASA, Microsoft, and many others in Europe, Asia, and North

America”. However, this is a very small number compared to the software

development companies in the world.

Software reliability engineering is centered on a key attribute of software

reliability. As discussed in the chapter 1, among the attributes of software

quality such as functionality, usability, portability and maintainability etc.,

software reliability is generally accepted as the major factor in software

quality since it quantifies software failures, which can make a powerful

system inoperative. It is important to discuss the direct benefits that an

organization or a customer can acquire by employing software reliability. The

benefits are the reasons why an organization should promote the usage of

software reliability.

2.2 Software Reliability Benefits

An organization attains several benefits through the usage of software

reliability engineering. Using software reliability engineering disciplines,

practitioners who develop the software system and the customer who acquire

the product, can have a determination about the continuity of the software

invocation and hence the software quality aspects. When the software system

development is done through the agreement between vendor and customer, the

reliability objective of the software should be either a pre agreed one of

software quality metrics or it should be as a part of standard practice of the

organization. From the customers view point, it is important to have a

guarantee that the agreed reliability objective is achieved in the released

software.

By employing the software reliability disciplines during the requirements

formulation, the validity of the design can be improved. Some of reliability

issues during the requirement formulation focus on reducing the erroneous

13

requirements in consideration, accounting of the risk of failure occurrences of

each requirement, and the change management issues of future changes of the

requirements.

Design phase of the software development process is the most important and

high accuracy needed phase. Critical operations of the software must be

considered and the reliability actions must be included in the design to

improve the availability of such operations. Software safety criterion can be

assisted and the release time of the software can be determined using the

software reliability during the testing. The maintenance size and the effort

could be determined through the software reliability engineering disciplines.

According to the criticality of the operation, the maintenance efforts and

resources can be allocated and this will improve the productivity.

The software reliability is comparable with the hardware reliability. The

history of hardware reliability runs to the long past than software reliability. In

fact, the software reliability has influenced by hardware reliability.

2.3 Software Reliability against Hardware Reliability

The total system consists of software and hardware components. However,

software and hardware reliability is recognized differently. Changing of

hardware takes time and need to undergo steps like component gathering,

customization, assembly, inspection and testing etc. Software has no physical

existence and has no life without hardware components. Any line of software

code can be subjected to a failure.

More important factor with software reliability concerns is that software does

not wear out or burn out. Furthermore any software fault can be subjected to a

failure without any prior notice. However, hardware provides powerful

notices of degradation.

14

Same software can be distributed with many copies without an additional cost

where as manufacturing of the same hardware product takes the same time

and requires the same cost. Similarly, repair of software requires changing

software coding where as repair of hardware is generally done through the

replacement of the component by a new one.

Software reliability is expressed in execution time but hardware reliability is

expressed in clock time.

There are three important terminologies that we must concentrate on software

reliability concerns namely fault, error and failure.

 Fault

The result that causes from the mistakes in the software is called as a fault

(faulty instruction(s) or data).

 Error

When invocating a faulty instruction or a data by an appropriate input pattern,

the fault produces an error.

 Failure

If the erroneous data affect the delivered service (in value and/or in the timing

of their delivery), failure occurs.

15

2.4 Software Reliability Activities

Software reliability is comprised of three activities:

1. Error prevention

2. Fault detection and removal

3. Measurements to maximize reliability (Rosenberg, et al., 1998)

The error prevention techniques are more important and each of them will fit

well in any development process. The error prevention techniques used in the

industry are designed by contract, bug tracking systems, monitoring, coding

standards, definitive programming, culture of development, and code reviews.

When employing more techniques in a project, that project is closer to achieve

a comprehensive and coherent error prevention program.

Software testing during the lifecycle is done for fault detection and for

removal. During the coding, module testing is carried out. Making use of

architectural design of the software, the integration testing is carried out.

Integration of the modules is examined during the integration testing

subsequent to the module testing. By encompassing the software

requirements, the system testing is carried out. This will verify the faults in

the complete system invocation. Finally the acceptance testing is done to

ensure the requirements collected from the customer. Several strategies and

techniques are used in test selection, test design and stop testing to high level

fault detection and removal.

Software reliability estimation and prediction are used as measurements in

maximizing the reliability. Usage of operational profile during the testing will

enhance the efficiency in testing. Following section describes the term

operational profile.

16

2.5 Operational Profile

Operational profile quantitatively characterizes how the software will be used

during its operational phase. Operational profile includes developing customer

type list, developing user type list, listing system models, developing

functional profiles and converting functional profile to an operational profile.

Customer type shows which type of customers use this software (e.g. large

retail stores) and user type shows which kind of users use this software (e.g.

computer program operator, clerk). System modes include which kinds of

system modes are invoked by each user (e.g. retail sales, database cleanup)

and each system mode includes several functions. A functional profile shows

which kind of functions are used (number of functions, variable types, scope

of the function etc.), converting functional profile to an operational profile

includes calculating probabilities of operations. This can be used for testing

procedure, i.e., allocation of test resources, input data for test.

Major changes can occur with respect to several of the factors when software

becomes operational. In the operational environment, the failure rate is a

function of the fault content of the program, of the variability of input and

computer states, and of software maintenance policies. Software in the

operational environment may not exhibit the reduction in failure rate with

execution time that is an implicit assumption in most prediction models. Thus,

the prediction of operational reliability from data obtained during test may not

hold true during operation. To mitigate this problem, use an operational

profile, for driving tests, that is representative of the operational environment.

The following section describes the important measures in software reliability

concerns.

17

2.6 Software Reliability Metrics

Measurement is commonplace in other engineering fields, but not in software

engineering. Quantifying the software reliability is still a problem. Measuring

software reliability remains a difficult problem because of the lack of

understanding of the nature of software. There is no clear definition to what

aspects are related to software reliability and most of them are related. Hence

a suitable way to measure software reliability cannot be found.

It is important to have an understanding about the measurements that is related

to reliability to reflect the characteristics, if reliability cannot be measured

directly. The current practices of software reliability measurements can be

divided into four categories (Rosenberg, et al., 1998):

 Product metrics

Software size is thought to be reflected the complexity, development effort

and reliability. Lines Of Code (LOC), or LOC in thousands (KLOC), is an

intuitive initial approach to measuring software size. But there is no standard

way of counting. Typically, source code is used (SLOC, KSLOC) and

comments and other non-executable statements are not counted. This method

cannot faithfully compare software not written in the same language. The

advent of new technologies of code reuses and code generation technique also

cast doubt on this simple method.

Complexity is directly related to software reliability, therefore representing

complexity is important. Complexity-oriented metric is a method of

determining the complexity of a program‟s control structure, by simplifying

the code into a graphical representation. Representative metric is McCabe's

Complexity Metric.

18

Test coverage metrics are a way of estimating fault and reliability by

performing tests on software products, based on the assumption that software

reliability is a function of the portion of software that has been successfully

verified or tested. Detailed discussion about various software testing methods

can be found in topic the Software Testing (Glenford, 1979).

 Project management metrics

Researchers have realized that good management can result in better products.

Research has demonstrated that a relationship exists between the development

process and the ability to complete projects on time and within the desired

quality objectives. Costs increase when developers use inadequate processes.

Higher reliability can be achieved by using better development process, risk

management process, configuration management process, etc.

 Process metrics

Based on the assumption that the quality of the product is a direct function of

the process, process metrics can be used to estimate, monitor and improve the

reliability and quality of software. ISO-9000 certification, or "quality

management standards", is the generic reference for a family of standards

developed by the International Standards Organization (ISO).

 Fault and failure metrics

The goal of collecting fault and failure metrics is to be able to determine when

the software is approaching failure-free execution. Minimally, both the

number of faults found during testing (i.e., before delivery) and the failures

(or other problems) reported by users after delivery are collected, summarized

and analyzed to achieve this goal. Test strategy is highly relative to the

19

effectiveness of fault metrics, because if the testing scenario does not cover

the full functionality of the software, the software may pass all tests and yet be

prone to failure once delivered. Usually, failure metrics are based upon

customer information regarding failures found after release of the software.

The failure data collected is therefore used to calculate failure density, Mean

Time Between Failures (MTBF) or other parameters to measure or predict

software reliability.

Some important facts regarding software reliability has been described in the

following section.

2.7 Related Other Topics

Software Reliability relates to many areas where software quality is

concerned.

2.7.1 Traditional/Hardware Reliability

The initial software reliability study is based on traditional and hardware

reliability. Many of the concepts and analytical methods that are used in

traditional reliability can be used to assess and improve software reliability as

well.

2.7.2 Software Fault Tolerance

Software fault tolerance is a necessary part of a system with high reliability. It

is a way of handling unknown and unpredictable software (and hardware)

failures (faults), by providing a set of functionally equivalent software

modules developed by diverse and independent production teams. The

assumption is the design diversity of software, which itself is difficult to

achieve.

20

2.7.3 Software Testing

Software testing serves as a way to measure and improve software reliability.

It plays an important role in the design, implementation, validation and release

phases. It is not a mature field. Advances in this field will have great impact

on software industry.

2.7.4 Social & Legal Concerns

As software permeates to every corner of our daily life, software related

problems and the quality of software products can cause serious problems,

such as the Therac-25 accident (Lee, 1992). The defects in software are

significantly different than those in hardware and other components of the

system: they are usually design defects, and a lot of them are related to

problems in specification. The unfeasibility of completely testing a software

module complicates the problem because bug-free software cannot be

guaranteed for a moderately complex piece of software. Bug-free software

product cannot be achieved even with the hardest attempts during the

development. Losses caused by software defects cause more and more social

and legal concerns. Guaranteeing not known bugs is certainly not a good-

enough approach to the problem.

Estimation of software reliability is one of most important topic in software

reliability. It has taken many researchers attention and it is still a question.

Following chapter describes the attempts taken by the researchers so far to

estimate the software reliability.

21

3. Software Reliability Estimation

Software reliability models are used to estimate the software reliability.

Further they are mathematical expressions those specify the general form of

software failure process. This chapter critically reviews the types of software

reliability models, existing SRGMs, models classifications, their assumptions

and the issues of the existing models.

According to the phase in which software reliability models are used to get the

reliability, there are two types of models as described below (Wood,1996 ;

Lyu, 1996 ; ANSI/AIAAA, 1993).

1. Software reliability prediction models

2. Software Reliability Estimation Models or SRGM

3.1 Software Reliability Prediction Models

These models predict the software reliability based on the reliability metrics

measured or calculated during early stages of software development life cycle

(prior to the integrated testing) (AIAA/ANSI, 1993).

The reliability is forecasted by comparing the software with a similar project

in which the failure probability is known. The software that used to compare

the reliability of the developing software is known as the proof software (Lyu,

1996).

The reliability of the proof program is known at any time during the software

development life cycle. As such there is an advantage for the developing

software since its reliability can be calculated at any time comparing with the

proof software (Lyu, 1996; AIAA/ANSI, 1993).

22

The similarities between the proof software and the developing software are

compared in terms of architectural similarities, operational profile similarity,

services delivery similarity, and the similarity of the reliability achievement

compared to the proof program (Lyu, 1996).

However the validity of the prediction depends on the similarities between the

proof software and the developing software. Generally the random behavior

of the software failures, sleeping faults in the software, the change of the

operational profile are affected to the software reliability behaviors. Changes

in the operational profile take place due to the causes like hardware ware out

or malicious program affection to the system software which affect the

hardware resource usage and mismatch in software design especially in co-

functional level. Due to the changes in the reliability behaviors there are no

two software which show purely similarities in reliability concerns (Gray,

1992; Dolores, et al., 2001).

Since the difficulty of finding exactly similar software, there is an alternative

method for software reliability prediction. That is, the software reliability is

measured by calculating the software reliability matrices which are possible to

compute or available to calculate. The reliability metrics are such as SLOC,

fault density, initial number of faults, fault exposure ratio (the probability of

executing single fault during single execution), the time for prediction is to be

valid, failure probability per fault and unit and initial failure rate (Gray,1992;

Lyu,1996; AIAA/ANSI,1993). References (Agbari,2006; Fries et. al.,1996;

Wood,1996; William et. al.,1983; Lyu,1996; AIAA/ANSI,1993) state that

none of these models (Martine,1976) show the accuracy or wide applicability

to date. Hence inventing a new software reliability prediction model is not

useful and this study focuses on software reliability estimation which is rather

accurate and widely applicable.

23

3.2 Software Reliability Estimation Models or SRGMs

SRGM estimates the reliability based on observed failure data which are

collected during the integrated testing and onwards. A numerous SRGMs can

be found in literature and these models take observed failure time as input

(Wood, 1996; Dolores, 2001; Lyu, 1996; AIAA/ANSI, 1993). The observed

failure time data is twofold as interval data and failure time data. The interval

data defines as the number of failures observed over a desired and constant

period. The failure time data defines the time taken to occur a failure (next

failure). According to the definition of the software reliability discussed in the

Chapter 2, it is a time of failure free software operation. Hence the estimation

of time to next failure is more useful than estimating number of failures for

the period. As such this thesis focuses to utilize failure time data.

The reliability is quantified with respect to the time, which can be categorized

into three as execution time, calendar time and clock time. It is possible to

define reliability with respect to other basis such as Program Runs. The actual

CPU usage time by the software, from the start of the program to the end is

the execution time. The time people normally experience which includes the

time during which a computer may not be running is considered as calendar

time. However, the elapsed time from the start to end of the software running

is called as clock time which includes the time which CPU doesn't use for

program execution (Wood, 1996; AIAA/ANSI, 1993). However, finding the

execution time is very difficult. The actual CPU usage time is not easy to

measure as operating software and other auxiliary software are also executed

in parallel to particular software execution. On the other hand, the calendar

time does not give a reasonable sense since the all durations which the

computer may not run during the testing period are not equal. Hence the

measurements are not accurate. Most of the SRGMs consider the clock time

and it is rather practical (Wood, 1996; Lyu, 1996; AIAA/ANSI, 1993).

24

3.3 History of SRGMs

Software reliability modeling was geared by Jalinski, Moranda, Shooman and

Cousinhood doing pioneer work in early 70s. Their goals were to predict

future failure behavior and approaches used time between failures or observed

number of failures per given time period as data (Lyu, 1996; AIAA/ANSI,

1993).

3.4 The SRGM

The mathematical and statistical functions used in software reliability growth

modeling, employ several computational steps. The equations for the models

themselves have parameters that are estimated using techniques like least

squares fit or maximum likelihood estimation. Then the models, usually

equations in some exponential form, must be executed. Verifying that the

selected model is valid for the particular data set may require iteration and

study of the model functions. From these results predictions about the number

of remaining faults or the time to next failure can be made (Wood,1996;

AIAA/ANSI,1993). There are huge number of SRGMs can be found in the

literature (Wood, 1996; Dolores, 2001; Hudepohl et. al., 1996; Lyu, 1996;

Schneidewind, 1993; AIAA/ANSI, 1993). In order to understand the existing

SRGMs, classification of them is needed. Following section describes the

existing SRGMs based on the specific classification.

3.5 SRGM Classifications

SRGM have been classified in various ways in different literature (Wood,

1996; Lyu, 1996; AIAA/ANSI, 1993). Model classification has been done

based on the model form. In all most all the literature discuses the model

classification assuming the models are statistical models (Wood, 1996; Lyu,

25

1996; AIAA/ANSI, 1993). In this thesis, classification scheme of

recommended practice of software reliability engineering are discussed since

it is more popular and is recognized as the standard practice (AIAA/ANSI,

1993).

There are three classes of SRGMs according to the above classification. They

are Exponential NHPP models, None Exponential NHPP models, and

Bayesian models.

Generally, Poisson Process probability distribution function takes the form

 () . The mean time function is () . Homogeneous Poisson

Process models assume a constant mean time function while Non-

Homogeneous Poisson Process models assume a mean time function to be

non-liner (i.e., () ()). Following sections describe the examples of

software reliability estimation models, model forms and mean time functions

in each class of models.

3.5.1 Exponential NHPP Models

Representative models in this class are Shooman's model, Musa's Basic

Model, Jelinski and Moranda's model, Generalized Exponential model and

Scheneidewind‟s models. Table 3.1 gives the reliability functions or mean

time to failure functions for each of these Exponential NHPP models.

Following are the definitions of used parameters in the models

E0 - is the initial number of faults in the program that will lead to failures. It

is also viewed as the number of failures that would be experienced if testing

continued indefinitely

Ec - is the number of faults in the program, which have been found and

corrected, once x units of time have been expended

26

K - is a constant of proportionality: failures per time unit per remaining fault

α Failure rate at the beginning of interval S

β Negative of derivative of failure rate divided by failure rate (i.e., relative

failure rate)

N= E0

IT The number of instructions

 1

Model f(t) or mvf(m(t))

Shooman‟s model

Musa‟s Basic Model

Jelinski and Moranda‟s model
Scheneidewind‟s models

Table 3.1: Exponential NHPP Model examples

3.5.2 Non Exponential NHPP Models

Representative models in this class are Duane's model, Brook and MoHey's

Binomial and Poison models, Yamada's S-Shaped model and Musa and

Okumoto's Logarithmic Poisson models. Table 3.2 gives the reliability

functions or mean time to failure functions for each of these Non Exponential

NHPP models.

27

Model f(t) or m(t)

Duane's model

Brook and MoHey's

Binomial and Poison models

Yamada's S-Shaped model

Musa and Okumoto-

Logarithmic Poisson model

Table 3.2: Non-Exponential NHPP Model examples

3.5.3 Bayesian Models

Representative models are those developed by Little Wood (AIAA/ANSI,

1993). Table 3.3 gives the reliability functions or mean time to failure

functions for each of these Bayesian models.

Model f(t) or m(t)

Little Wood

and

Table 3.3: Bayesian Model examples

The models discussed so far are among the famous models. The real world

applications of the recommended models can be tabulated as shown in Table

3.4 (AIAA/ANSI, 1993).

28

Model Real world applications

Schneidewind 1. In Fortran by Naval Surface warfare center, Dahlgren
Virgin as a part of SMERFS

2. IBM, Houston, Texas, Reliability prediction and
assessment of On-board NASA space shuttle software

3. Naval surface warfare center, Dahlgren, Virginia,
Research in reliability prediction and analysis of the
TRIDENT I and II fire control software

4. NASA JPT, Pasadena, California, Experiments with
multi model software reliability approach

5. Hughes Aircraft company, Fullerton, California,
Integrated, multimode, approach to reliability prediction

Generalized

exponential
model

No implementation as a standalone application. But in tools

such as SMERFS, SRMP(London) RELTOOLS at AT &T
labs

Musa

Okumoto
Logarithmic
Poisson

Execution time
model

1. In SMERFS

2. In AT&T labs set of programs

Littlewood/
Verrall model

1. In SMERFS
2. In SRMP

Table 3.4: Real world applications of the recommended SRGMs

However, the accuracy of the SRGMs is still a question (Wood, 1996; Dolores

et. al., 2001; Lyu, 1996; AIAA/ANSI, 1993). The accuracy of the models in

the same class is generally the same, as the general reliability function of them

is same. Hence, it is enough to argue about the accuracy if at least one model

in each class is considered. Following figure depicts the estimated reliability

and the actual reliability. The calculations have been done using a tool which

is discussed in Chapter 5.

According to the Figure 3.1, it is clear that the estimations of the SRGMs are

average values except the None Homogeneous Poisson Process model. Hence

29

the accuracies of these models are not acceptable. Although NHPP model

shows accuracy, there are limitations associating with the model.

FN
O

A
ct

ua
l

G
eo

m
et

ri
c

Ja
lin

sk
i

M
or

en
da

Li
tt

le
 L

in
er

M
us

a
B

as
ic

M
us

a
Lo

g

N
H

PP

Li
tt

le
w

oo
d

9 15830 2797 16373 19638 16682 11685 15626 2828

10 21932 5533 10503 14682 10210 7249 9770 5513

11 2485 33396 39643 46641 38598 36191 35525 33364

12 11000 21471 26421 34549 24273 24268 22461 21510

13 2880 37327 41576 51538 38213 40530 35053 37512

14 61182 5445 3241 24 6840 374185 2537 5135

15 4800 39038 41050 53580 36435 42688 32686 39677

16 38005 3324 3701 11637 1284 5237 2054 3755

17 16200 26524 26132 39907 19948 30392 18058 27690

18 6000 45922 44195 59810 35959 50390 31674 47538

19 1000 58724 55616 72149 45391 63553 39901 60726

20 10000 45880 41472 58265 29508 50932 26251 48197

21 220 67720 61742 79357 47249 73248 41399 70450

22 35580 18590 13147 26788 3077 23177 4590 20941

23 81000 262 2674 233 21350 41 4511 16

25 47857 16862 9212 20540 10302 22025 5386 19520

26 154800 44655 76698 39413 75482 31778 23237 37781

27 170460 56758 96444 56094 83614 41244 24991 49011

28 108540 391 5787 801 1878 57 1060 63

29 73800 10994 3334 8008 7646 16410 2210 12908

30 1860 111072 93218 101584 102676 121194 55820 114128

 Table 3.5: The actual and the estimated

30

Figure 3.1: The actual and the estimated reliabilities of the famous models

Specially, NHPP model requires more data (25 failures) in order to make a

valid estimation. The Figure 3.1 has been drawn based on the results at the

41st failure. The results at a different failures are different than these. Hence

the accuracy varies with the size of the dataset. Further, the low the dataset

size, the low the accuracy is.

0

100000

200000

300000

400000

500000

600000

700000

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

T
im

e
 t

o
 f

a
il
u

re

Failure Number

Comparison of Models

Actual

Geometric

Jelinski

Little Linear

Musa's Basic

Musa's Log

None
Homogenious
Little Q

31

The Figure 3.2 shows the software reliability estimation of NPHH model for

CS I, at 25th, 30th, 35th, and 41st failures. According to the Figure 3.2, it is clear

that the accuracy of the estimation varies with the size of the dataset. The

accuracy of SRGM estimations is affected due to several reasons. First and

foremost is the mismatching assumption. Following section describes the

assumptions used in the models.

 Figure 3.2: NHPP model reliability estimation at different failures

3.6 Assumptions Used in Software Reliability Growth Models

Numerous assumptions are associated with the SRGMs. The erroneous

assumptions and the reality of them have been tabulated below (Wood, 1996).

0

200000

400000

600000

800000

1000000

1200000

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

Fno 25

Fno 30

Fno 35

Fno 41

32

No Assumption Reality

01 Defects are
repaired
immediately when
they are discovered

Defects are not repaired immediately, but this can be
partially accommodated by not counting duplicates. Test
time may be artificially accumulated if a non-repaired
defect prevents other defects from being found.

02 Defect repair is
perfect

Defect repair introduces new defects. The new defects are
less likely to be discovered by test since the retest for the
repaired code is not usually as comprehensive as the
original testing.

03 No new code is
introduced during
QA test

New code is frequently introduced throughout the entire
test period, both defect repair and new features. This is
accounted in parameter estimation since actual defect
discoveries are used, but may change the shape of the
curve, i.e., make it less concave. There are techniques to
account for new code introduction.

04 Defects are only
reported by the
product testing
group

Defects are reported by lots of groups because of parallel
testing activity. If we add the test time for those groups, we
have the problem of equivalency between an hour of QA
test time and an hour of test time from a group that is
testing a different product. This can be accommodated by
restricting defects to those discovered by QA, but that
eliminates important data. This problem means that defects
do not correlate perfectly with test time.

05 Each unit of time
(calendar,
execution, number
of test cases) is
equivalent

This is certainly not true for calendar time or cases as
discussed earlier. For execution time, “corner” tests
sometimes are more likely to find defects, so those tests
create more stress on a per hour basis. When there is a
section of code that has not been as thoroughly tested as
other code, e.g., a product that is under schedule pressure,
tests of that code will usually find more defects. Many tests
are return to ensure defect repair has been done properly,
and these returns should be less likely to find new defects.
However, as long as test sequences are reasonably
consistent from release to release, this can be accounted for
if necessary from lessons learned on previous releases.

06 Test represent
operational profile

Customers run so many different configurations and
applications that it is difficult to define an appropriate
operational profile. In some cases, the sheer size and
transaction volume of the production system makes the
operational environment impractical to replicate. The tests
contained in operational environment impractical to
replicate. The tests contained in the QA test library test
basic functionality and operation, error recovery, and
specific areas with which we have had problems in the past.
Additional tests are continually being added, but the code
also learns the old tests, i.e., the defects that the old tests
would have uncovered have been repaired.

33

07 Failures are
independent

Our experience is that this is reasonable except when there
is a section of code that has not been as thoroughly tested
as other code, e.g., a product behind schedule that was not
thoroughly unit tested. Tests run against this section of
code may find a disproportionate share of defects.

Table 3.6: The erroneous assumptions appeared in the SRGMs

 Table 3.6 summarizes how these assumptions are used in SRGMs. According

to the table, all the models use the 1-6 assumptions where as Jelinski-Moranda

de- eutrophication model uses the assumptions 1-7. The accuracy of those

models is not doubt to be low. However, the assumptions like „6‟ are

unavoidable because in-house software testing is essential.

Table 3.7: Assumptions of SRGMs

3.7 Existing Neural Network Based SRGMs

Usage of artificial neural networks for software reliability estimation is an

emerging technique and it is not yet widely used in software reliability

estimating. However, neural network based SRGMs show more accuracy in

predicting. Some of the attempts of applying ANN in software reliability

growth modeling are described below.

The first attempt of applying some kind of ANN architecture to estimate the

software reliability was done by (Karunaniti et. al., 1991 ; Karunanithi et.al.,

Model Assumptions

Jelinski-Moranda model 1,2,3,4,5,6,7

Nonhomogeneous Poisson process model 1,2,3,4,5,6

Scheidewind‟s model 1,2,3,4,5,6

Musa‟s basic execution time model 1,2,3,4,5,6

Hyper-exponential model 1,2,3,4,5,6

Weibull model 1,2,3,4,5,6

S-shaped reliability growth model 1,2,3,4,5,6

Duane‟s model 1,2,3,4,5,6

Geometric model 1,2,3,4,5,6

Musa-Okumoto logarithmic poisson model 1,2,3,4,5,6

Littlewood-Verrall reliability growth model 1,2,3,4,5,6

34

1992a ; Karunanithi et. al., 1992b ; Karunanithi et. al., 1992 ; Karunanithi et.

al., 1993 ; Karunanithi et. al., 1996). Subsequently, many research papers in

the literature, discuss the usage of ANN for various aspects in software

reliability modeling such as software reliability prediction, assessment,

predicting fault prone modules, combinational software reliability growth

modeling etc. There are attempts of usage of ANN for reliability growth

modeling.

There are two classes of ANNs used for software reliability modeling (Yu-

Shen Su, 2007). First class uses the cumulative execution time as input and

produces accumulated number of failures as output while the second class

uses the multiple failure time as input and produces the time to next failure as

output. The ANN discusses in this thesis comes under the second class. The

ANN models comes under the first class are comparable with software

estimation models those use interval data will be discussed in Chapter 5. It is

evident to say that there exist issues with the architecture of existing ANN

models which comes under the second class (Yu-Shen Su, 2007). Those

issues affect to the accuracy of the estimating software reliability and hence

a more accurate ANN models is needed.

3.8 Issues Associated with the Current SRGMs

As already discussed in the previous section, the accuracy and time taken to

give a valid estimation are the main issues. This section describes the factors

which affect to the accuracy.

-Uncertainty of the software behavior;

- Lack of flexibility of the SRGM to adapt for changes occurs in the
software;

-Complexity of the parameter estimation of the SRGM;

35

-The premise of most prediction models is that the failure rate is a

direct function of the number of faults in the program and the failure

rate will be reduced (reliability will be increased) as faults are detected

and eliminated during test or operations;

-Change in failure criteria;

-Significant changes in the code under test;

-Significant changes in the computing environment;

-More failure data are needed to SRGM to estimate the reliability;

These factors are discussed in the following sections.

3.8.1 Uncertainty in the Software Behavior

Software behavior is uncertain, (Lyu,1996; AIAA/ANSI,1993). Consequently,

it is not accurate to assume that the failure data would not follow a particular

distribution. Assuming such a distribution, the SRGM implicitly expects a

pattern for failure data and with respect to such distribution, parameters like

mean value of time to failure, total number of remaining failures are also

calculated. A valid mean time to represent the failure dataset can be

considered if the values of the dataset are most likely distributed around the

mean time. Uncertainty of dataset visualizes the fact that there is no value in

which the dataset is most likely distributed around. To achieve the uncertainty

of the failure occurrence and the uncertain software behavior, the assumptions

like dataset to follow a particular distribution, calculation of mean has to be

eliminated in the SRGM. Similarly, the parameters associated with the SRGM

have to be re-estimated for each new estimation. That is when a new

estimation has to be made, the parameters of the SRGM equation should be

estimated again using the current failure data.

36

3.8.2 Lack of Flexibility of the SRGM

Changes in the software are twofold as code changes and operational profile

changes (Schneidewind, 1993). During the software testing phase and during

maintenance phase bugs are encountered and fixed. When fixing bugs, the

software codes are normally changed. As a result of large scale code changes,

the behavior of the software may also change. Hence, the previously

calculated reliability is no longer relevant to the current software. Therefore,

SRGM must be capable of accommodating the software code changes. This

can be done considering only recent failure data (i.e., without considering all

past data as all the past data do not represent the current software behavior)

when calculating the reliability (Schneidewind, 1993).

When changing the software operational environment, such as software is

installed in the real hardware (i.e., real operational environment) or existing

hardware changes, generally the software behavior is changed. To estimate the

changed reliability accurately by SRGM, it should be capable of estimating

reliability with a minimum number of failure data. This feature is used only in

Scheniedewinds models (Schneidewind, 1993).

3.8.3 Complexity of Parameter Estimation of the SRGM

In most of SRGM‟s, parameter estimation has complex calculations. Most

literatures address numerical methods such as least square method, and

maximum likelihood method for parameter estimation. When the calculations

are complex, those models are difficult to use and hence they are most likely to

be rejected in the commercial environments. This is one of the reasons why the

software reliability is not practiced in the commercial environments. Simple

calculations for parameter estimation are required when designing an SRGM.

Similarly when the complex mathematics is used, it is difficult to understand for

37

people who have low mathematical background. The reality is, it is difficult to

assume highly mathematical people in the commercial software development.

3.9 Features of a Useful Software Reliability Growth Model

 According to the listed features, it is clear that any useful model should

not follow any statistical distribution. Hence the usage of parametric

statistical methods will not contribute to enhance the accuracy of

reliability estimation.

 Similarly, the reliability is a random process. It is important to give a

considerable contribution to achieve the randomness in the estimation

process.

 Recent past failure data are only implied the exact figure of the software

reliability.

Basically, the research focuses on employing the randomness, when estimating

the reliability. As such the aim was to design an SRGM without employing the

statistical distributions. Considering these features, the cubic spline network

model was designed.

The following chapter describes new Cubic Spline Network SRGM.

38

4. Cubic Spline Network Software Reliability

Growth Model

New model discusses in this thesis is Cubic Spline Network Software

Reliability Growth model (CSN Model). CSN model is based on artificial

neural network. This chapter describes the CSN model architecture,

calculations associated with the model, numerical example to explain the

calculations, the role of the boundary condition which is a feature of CSN

model and the tool developed to automate the calculations associate with the

model. Theory of Artificial neural network is described in the following

section.

4.1 Artificial Neural Networks

Neural network models in artificial intelligence are usually referred to as

Artificial Neural Networks (ANNs); these are essentially simple mathematical

models defining a function .

Neural networks are made up of many artificial neurons. An artificial neuron is

simply an electronically modeled biological neuron. How many neurons are

used depends on the task at hand. It could be as few as three or as many as

several thousand. There are many different ways of connecting artificial

neurons together to create a neural network and most common is called a feed

forward network.

ANNs are used especially for computational pattern recognition since it has self

learning ability. This ability has been used to overcome the random behavior of

the failures. Furthermore, during the training of ANN, the situational feature of

the failure behaviors can be employed. Number of inputs can be limited without

affecting the accuracy of the estimation. Especially the tunable feature which

39

will be discussed in this chapter is due to the ANN. In this thesis, cubic splines

are used to generate the activation functions.

4.2 Spline Interpolation

In the mathematical field of numerical analysis, spline interpolation is a form of

interpolation where an interpolate is a special type of piecewise polynomial

called a spline. Spline interpolation is preferred over polynomial interpolation

because the interpolation error can be made small. In cubic spline interpolation,

the polynomial type concern is cubic polynomial. It takes the form of a third

order polynomial. In mathematics, any natural phenomena can be describes in

third order polynomials. As such the cubic spline interpolation is used as the

activation function. Why the spline interpolation is suitable to use in activation

function is described below.

By using the cubic spline interpolation as the activation function of this ANN,

arbitrary pattern of the input dataset can be employed as cubic spline

interpolation does not assume any pre defined distribution for the dataset.

Similarly, this is not a statistical distribution and as a result, the issues with the

statistical SRGMs are not affected to this. The accuracy does not vary with the

dataset size in spline interpolation and hence the input dataset size can be

reduced.

4.3 Software Reliability Growth Model with Cubic Splines

This is an ANN based model to capture the input–output (I/O) relationships of

software systems to corresponding failures and to improve the accuracy of

reliability estimation.

40

With the input vector of  15 ...,  n4nn x,x,x (where n in considering the

boundary condition), the corresponding mapping of cubic spline network can

be written as  15 ...ˆ
 n4nnn x,x,xg=x . This model for software reliability

estimation is designed as a three-layer structure with an input layer, cubic

spline layer, and output layer. It is the minimum number of layers according

to the design. Each layer has fixed number of nodes. Input layer has five

nodes corresponding to each input (five is the minimum expected inputs to

make estimation). Cubic spline layer has three nodes each corresponding to

the boundary conditions (only three boundary conditions are considered as per

the derivates considered. It is described in section 4.5.1). The input data vector

is connected to the input nodes of the networks:

Figure 4.1: CSN for software reliability estimation

X= [xn− 5 , xn− 4 , . .. , xn−1] , for predicting the time to nth failure.

We can derive the activation functions using cubic splines.

41

Given a function f which passing through the xn− 5
, xn− 4

, .. . , xn−1 nodes, can

be represented in splines
iS defined on , where n-5 i n-1.






1

5

)()(
n

ni=

i xS=S=xf

A cubic spline interpolate S, for f is a function that satisfies the following six

conditions,

i. The spline forms a continuous function

 i.e.)(xS=)(xS i+ii+i+ 111 for each i= n− 5,n− 4, . .. , n− 2

ii. The spline forms a smooth function

 i.e.)(xS=)(xS i+

'

ii+

'

i+ 111
 for each i.

iii. The second derivative is continuous

 i.e.)(xS=)(xS i+

''

ii+

''

i+ 111
for each i.

iv. S is a cubic polynomial, denoted iS on subinterval

1i+i X,X

for each i.

v. The spline passes through each node)f(x=)S(x ii

 for each i.

vi. One of following the boundary conditions is satisfied

015 =)(xS=)(xS n

''

n

''



 ii xx ,1

42

a. Here (() ()) Set boundary

derivatives for specified values.

b. Here (() ()) Set boundary

derivatives for specified values

c. Here (() ())

The existing dataset is considered as intervals (i.e., ith interval is

). However in this reliability estimation model, the cubic splines are

used for future estimation and hence the boundary conditions are important.

This network captures three network nodes in the cubic spline layer; each is

corresponding to the each boundary condition above. At the output layer, the

resultant value from the cubic spline layer is multiplied by respective omega

values and then they are summed in order to get the final estimation value. By

varying the omega values the results can be enhanced.

The formulas for calculations can be derived as follows.

32)x(Xd+)x(Xc+)x(Xb+a=(X)S iiiiiiii 

For each i and ai, bi, ci and di are real constants.

Let for all

The equations are simplified in finding the coefficients as follows.

 ii

'' c=)(xS 2)1(

 ii a=)f(x)2(

43

 iiii+ hd+c=c 31  4

  52c3//1 1 )c+)((h)a)(ah(

=b

1+iiii+ii

i

The activation function of the kth cubic spline node for estimating the nth

failure is

+)x(xb+a=)(xS nnk2,nk2,nnkn 22,  
3

2

2

22,)x(xd+)x(xc nnk2,nnnkn  

for .

When k= 1 , the boundary condition 015 =)(xS=)(xS n

''

n

''


 is applied.

When k= 2 , the boundary condition α=)(xS=)(xS n

''

n

''

15 
 is applied.

When k= 3 , the boundary condition β=)(xS=)(xS n

''

n

''

15 
 is applied.

The weight ω
k that connects the kth weighted node and the output node are

indicated by the weighting vector]ω,ω,[ω=ω 321 .

The final output of the cubic spline networks summing layer is:

 

3

1

12,

=k

k+nkn ω)(XS=y

The reliability estimation of the nth failure is y.

3,2,1k

))(/ 3 ())(/ 3 (

) (2

1 1 1

1 1 1 1

 → (3)   

   

  

   

i i i i i i

i i i i i i i

a a h a a h

c h c h h c h

44

4.3.1 The Role of Boundary Conditions

In this SRGM, the boundary conditions are used as the c coefficients. They

are the coefficients of second order polynomial segment of S. The most

important knowledge we find about the boundary conditions is that they are

equivalent to the second derivatives of the curve (S).

In general, the first derivative of the curve is its tangent. The second

derivative is the rate of change of the tangent (i.e., tangent of the tangent).

Within given two consecutive points, there can only be one exact line and

there can be infinite number of other type curves.

 Figure 4.2: The number of graphs which can be drawn between 2 points

A and B are any given points on xy-plane. The curves are differed according

to the second derivatives at A and B.

The tangent of the line is proportional to the deference of y coordinates. In

this SRGM the tangent of the curve is assumed to be proportional to the

relative difference of the consecutive time to failure values. Hence the second

derivative is assumed to be proportional to the change of relative difference of

the consecutive tangent values.

45

Following boundary conditions are used in this SRGM.

a. (() ())

 b. (() ())

 c. (() ())

The boundary conditions are derived from the assumptions of the tangent

proportional to the relative difference of the consecutive time to failure values

and the second derivative is proportional to the change of relative difference

of the consecutive tangent values.

The derivation of boundary condition :

 ((() ()) (() ()) (() ())

 (() ()) (() ()))

 (() ())

Similarly α is calculated considering three recent derivatives and β is

calculated considering one recent derivative.

4.3.2 Calculations of the SRGM

A numerical example is considered here to understand the calculations used in

this model. Five recent failure data are taken as input and for calculating the

boundary conditions six recent data are taken. Following dataset is used to

show the calculations.

46

FNO(ti ,i=1.2. ..,6)
Time To Failure
(f(ti), i=1,2,..,6)

1 20336

2 11776

3 40933

4 34794

5 17136

6 148446

 Table 4.1 CS I – Dataset (1 to 6 of 41data)

Using the equations (1) to (5) and the three boundary conditions following

parameter values can be calculated.

1ih For all 5,...,2,1i

Suppose 3 metrics A, B and C as follows,



















14100

01410

00141

A

























5

4

3

2

1

c

c

c

c

c

B

























234

123

012

2

2

2

aaa

aaa

aaa

C

A*B=C

When 51 ,cc are defined form the boundary conditions, we can solve the above

for 432 ,, ccc

47

Let‟s take as constants:

 (() () ())

 =-70592

 (() () ())

 =-23038

 (() () ())

 = 297936

Now we can calculate C values as follows :

 (() ())

 ()

 ()

 ()

The Table 4.2 shows the calculated values for C.

48

From the equation (5) we get the following relationship:

 52c3//1 1 )c+)((h)a)(ah(=b 1+iiii+iii

The following are the calculated vales for bi

Table 4.3: The calculated b coefficient values for the data in Table 4.1

According to the equation (4)

 iii+i hd+c=c 31 .

The
id

values are as follows

Table 4.4: The calculated d coefficient values for the data in Table 4.1

According to the equation

 32)x(Xd+)x(Xc+)x(Xb+a=(X)S iiiiiiii 

c1 25622

c2 -19263.29

c3 -19160.86

c4 72868.71

c5 25622

b1 18496.76

b2 13090.14

b3 -29173.67

b4 74190.19

b5 -165527.33

d1 -14961.76

d2 34.14

d3 30676.52

d4 -15748.9

d5 -8540.67

49

The following are the calculated values for the boundary condition. By

varying the boundary conditions the c,b,d metrics can be calculated. The

estimated reliability for each boundary condition is as follows.

Table 4.5: The estimated output from the cubic spline layer

Final estimation can be done using the following equation.

 

3

1

12,

=k

k+nkn ω)(XS=y

In fact, the omega kω values play a significant role in this SRGM. Omega

values can be used to tune the estimation. If the omega value is high then this

SRGM can be used to estimate the higher reliability more accurately.

Similarly when the omega value is smaller, smaller reliability will be

estimated more accurately. This flexibility is gained by using Artificial

Neural Networks. NHPP model doesn't have this flexibility.

Here the omega values are considered as all equal values and it is equals to

0.4/6 .

The final output is

Table 4.6: The final estimated output from the network

4.4 Tool to Estimate Software Reliability

A software tool has been developed to estimate the reliability using the cubic

spline network model. It is a PHP application which uses MySql as the data

Estimate1 331000

Estimate2 351431.33

Estimate3 542376

Final Estimation 81653.82

50

storage. The reason to choose PHP is it runs in Linux platform which is less

vulnerable to the malicious attacks. This tool was developed as a web based

tool since it is easy to hire the tool without needing to install in a local

computer. Mysql is mostly compatible to the PHP and again it is open source.

There is an ANN simulation software. However, none of such tools was used

for this development since this tool is developed to have more flexibility in

commercializing.

The tool has the capability of import failure data from a text file saved in the

home folder or one at a time. The time measurement unit has to be the same

measurement units and the practicality of each failure is also in the same level.

The calculations are automated. It is flexible with the ability of changing the

logic without needing many changes to the database layer or to the front layer.

The calculations can be done for simultaneous failure values in the same

dataset or at a given failure value of the dataset. The simultaneous calculations

can be exported Excel file format and the new Excel file is created in the

home folder.

Accuracy and Flexibility are the important features of the tool.

4.4.1 Accuracy

The foremost important feature identified when developing this tool was the

accuracy. First, manual calculations was done in an excel file for the dataset.

While coding the activation function in PHP, manual output of the Excel file

was referred in each step. The white box testing was carried out by generating

the additional outputs to assure the accuracy in calculations.

51

4.4.2 Flexibility

The tool was designed in 3-Tire architecture. The business logic was coded in

an independent file whereas the output is displayed in a different file. In this

way, the ease of change is achieved. Furthermore, there is an input flexibility.

If a user has dataset in a text file, the tool provides a way to upload the data

directly from the text file. However, some users will need to enter the data one

by one through the interface. The tool has the capability to handle that too.

The output can be taken into excel format so that users has the flexibility to

use them for analytical purposes as required.

52

5. Evaluation

This chapter aims to discuss the evaluation of the CSN model estimation. In

order to perform this task, datasets are required. First sections of this chapter

describe the selection of datasets. Then the CSN model estimations have been

done for the selected datasets. In order to compare the accuracy of CSN model,

it is required to compare this model with the most accurate famous model. As

such, the famous SRGMs have been evaluated to find the most accurate model

and then it has been compared with CSN model for the accuracy.

5.1 The Selection of the Data

To validate the models, a quality datasets are needed. (The quality of the dataset

will be discussed in section 5.2). According to the time frame and the

availability of resources, it was unable to develop a software system and test for

long time to collect the data. Similarly, it was unable to collect failure data from

the organizations or from individuals who are engaging in software testing as

they are reluctant to share them.

There are several reasons why individuals as well as organizations hesitate to

share data. Individuals worry about revealing illegal (perhaps not illegal)

activities that may be reverse-engineered from the collected data. As failure

data can potentially reveal product dependability statistics or loopholes that can

be misused. Organizations fear that competitors may assess and/or misuse data

and analyse results.

Often, industrial researchers are willing to share data with academic researchers

and there are long delays exists due to the legal concerns. As well as there are

often so limitations that be impossible to publish any meaningful research

results based on the shared data (Lyu, 1996). There are publicly available

53

failure reports. However, the quality (i.e., the accuracy) cannot be assured as

many failure data collection exercises have been based on manual (i.e., not

automated) collections using pen and paper.

5.2 Quality of the Failure Data

A high quality dataset represents all failure data (i.e., all the occurred failures

have been recorded in the dataset) during the testing period as well as the

dataset represents failure data only (i.e., the recorded problems are all failures).

The failure data collection process has been found to have a number of

problems. The importance of these problems is not to be underestimated as

there are often critical negative impacts on the quality of the collected data set.

The problems associated with the data collection process are as follows.

During the data collection, people have to make the decisions like how to

classify a particular failure or how to deal with unusual circumstances. In order

to do so, they must have to have the understanding about the requirements.

However, usually people engaging with the data collections are testers who do

not have full familiarity with the requirements. Furthermore, it is not practical

to give full familiarity about the requirements to them.

All failure detection efforts are not the same. Some failures are easily detectable

while others are difficulty. (i.e., application crashes are easy to detect whereas

the un-expected output time is not easy to detect until some of the following

events occurs). This is also affected to the quality of the collected data set.

5.3 Data Sets Used

The datasets considered are taken from (Lyu, 1996). The Software Reliability

Datasets used in this thesis were compiled by Prof. John Musa of Bell

Telephone Laboratories. The dataset consists of software failure data of 16

54

projects. Careful controls had been employed during data collection to ensure

that the data would be of high quality. It represents projects from a variety of

applications including real time command and control, word processing,

commercial, and military applications. Further, these datasets have been used

by many researchers in many literatures to validate the software SRGMs

(Okamura, et al., 2004; Cai, et al., 2001).

There are two case studies used to test the accuracy of the models. The reasons

to select the particular data sets are there. They show a high variations which

drastically affects the accuracy and there are considerable low number of data

(i.e., 41 and 54 data) contain in the dataset. Hence it is easy to present them in

the graphs and in calculations.

5.3.1 Case Study I - Time between failure data

Table 5.1: The failure data taken from (Lyu, 1996) of CS I

Failure Number Time to Failure Failure Number Time to Failure
1 20336 22 35580

2 11776 23 81000

3 40933 24 643095

4 34794 25 47857

5 17136 26 154800

6 148446 27 170460

7 7995 28 108540

8 1636 29 73800

9 15830 30 1860

10 21932 31 336600

11 2485 32 268140

12 11000 33 74880

13 2880 34 286200

14 61182 35 25320

15 4800 36 7080

16 38005 37 59820

17 16200 38 87900

18 6000 39 76200

19 1000 40 89280

20 10000 41 1209600

21 220

55

5.3.2 Case Study II – Time between failure data

FailureN

umber

Time to

Failure

Failure

Number

Time to

Failure

Failure

Number

Time to

Failure

1 191 19 625 37 661

2 222 20 912 38 50

3 280 21 638 39 729

4 290 22 293 40 900

5 290 23 1212 41 180

6 385 24 612 42 4225

7 570 25 675 43 15600

8 610 26 1215 44 0

9 365 27 2715 45 0

10 390 28 3551 46 300

11 275 29 800 47 9021

12 360 30 3910 48 2519

13 800 31 6900 49 6890

14 1210 32 3300 50 3348

15 407 33 1510 51 2750

16 50 34 195 52 6675

17 660 35 1956 53 6945

18 1507 36 135 54 7899

Table 5.2: The failure data taken from (Lyu, 1996) of CS II

5.4 Cubic Splines Network (CSN) Software Reliability Estimation

Model

For the above datasets, the reliability estimations using CSN model are

discussed in this section.

56

5.4.1 CSN Model Estimation for Case Study I

Following Table 5.3 shows the actually and estimated reliability values for

each Failure Number.

Table 5.3: CSN model Estimated Reliability for CS I

FNo Actual Time
Estimated

Time
FNo Actual Time

Estimated

Time

9 15830 24696 25 47857 394748

10 21932 28946 26 154800 79836

11 2485 2696 27 170460 67951

12 11000 9042 28 108540 7202

13 2880 4972 29 73800 10374

14 61182 569 30 1860 11319

15 4800 41287 31 336600 1027239

16 38005 8765 32 268140 20089620

17 16200 23063 33 74880 21488

18 6000 317 34 286200 15821

19 1000 1506 35 25320 122321

20 10000 3369 36 7080 33926

21 220 5692 37 59820 111515

22 35580 3701 38 87900 105684

23 81000 23608 39 76200 13531

24 643095 28156 40 89280 1744

57

5.4.2 Comparison of the Results with the Actual Data

Validity of the estimation was checked using estimated and actual time to

failure values for the dataset. The dataset was considered from the 9th failure

onwards (for x =9, 10…39).

Figure 5.1: Estimated and actual reliability for the CS II

5.4.3 Comparison of the Results with the Other Models

In order to find the accuracy of CS model, it is essential to compare the output

with the other models. Since the calculations from scratch of the other models

are not available, it was difficult to find the output values of them. There are

software reliability modeling tools available on the Internet. One of these is

SMERFS; a public domain tool developed by Dr. William Farr of the Naval

Surface Warfare Laboratory and employs several others of the models. This

tool was selected since it is utilized for the real world applications especially

like NASA's Software Assurance Technology Center at the Goddard Space

0

100000

200000

300000

400000

500000

600000

700000

9 11 13 15 17 19 21 23 25 27 29 33 35 37 39

Actual

Estimated

58

Flight Center. Following Table 5.4 shows the software reliability models used

in SMERFS^3(Version 3).

Time Between Failure Models

 Geometric Model

 Jelinski / Moranda Model

 Littlewood and Verrall Linear Model

 Littlewood and Verrall Quadratic Model

 Musa‟s Basic Model

 Musa‟s Logarithmic Model

 Non-homogeneous Poisson Model

Table 5.4: Software Reliability Models facilitated in SMERFS^3

5.4.3.1 Finding the Most Accurate Model in SMERFS^3

Figure 5.3 and 5.4 are taken through SMERFS by entering the datasets of

Table 5.1 and 5.2 respectively. The doted points in each graph show the

actual values whereas the other curves show the estimations of each model.

59

Figure 5.2: The output from SMERFS by each model for CS I

These curves show that, NHPP model curve is more sensitive towards the

actual values and the curves of the other models show an average value. This

can be further clarified by the following Figure 5.3.

60

Figure 5.3: The output from SMERFS by each model for CS II

According to the interpretation which can be made by analyzing the two

figures is that NHPP model is more accurate than the other models. However

this can be tested further statistically to prove that NHPP model is more

accurate.

5.4.3.2 Comparison of the CSN Results with NHPP Model

The statistical test used is goodness of fit test (Kleinbaum, et al., 1997). The

error which can be calculated through “Actual Time – Calculated Time” is

standardized and then are plotted against the failure numbers. If the curve lies

between -3 to +3 and the curve doesn‟t show any pattern, then the dataset is

statistically said to fit with the Calculated Time values. Following figures

show the graphs for the standardized errors.

61

Figure 5.4: The standardized errors for dataset with 86 records in (Lyu, 1996)

Figure 5.5: The standardized errors for CS II

According to the graphs it can be seen that CSN curve lies between -3 and +3

while NHPP curve is distributed beyond 3. Hence it can be statistically

concluded that CSN model is more suitable for those datasets than NHPP

-3

-2

-1

0

1

2

3

4

11 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 76 79 82 85

CSN

NHPP

-4

-3

-2

-1

0

1

2

3

4

5

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

CSN

NHPP

62

model. Further this has been tested mathematically and the calculations are

available in Appendix B. The conclusions drawn through the said calculation

is also CSN model is more suitable.

5.4.3.3 Comparison of the Results with Other SRGMs

The (Table 5.1) dataset with 41 failures are entered to this model and output

of each model are collected and tabulated as follows.

63

Table 5.5: Output values for CSN model and other models in SMERFS for CS I

FNO Actual GeometricJelinski/MorandaLittle LinearMusa's BasicMusa's Log None-homogenoius poisonLittlewood Q

6 148446 28602.92 38931.44 37338.67 38536.71 30594.34 47662.55 29481.49

7 7995 30307.59 39926.68 40169.2 42188.26 32440.77 40128.51 30810.64

8 1636 32113.86 40974.13 42999.73 42394.47 34398.65 39739.67 32344.26

9 15830 34027.77 42078.03 45830.26 42436.79 36474.69 41204.47 24082.37

10 21932 36055.76 43243.05 48660.79 42848.46 38676.02 42248.94 36024.96

11 2485 38204.6 44474.43 51491.32 43425.42 41010.2 40342.13 38172.04

12 11000 40481.51 45777.99 54321.86 43491.28 43485.26 41548.51 40523.6

13 2880 42894.13 47160.27 57152.39 43784.02 46109.69 40608.52 43079.64

14 61182 45450.52 48628.62 59982.92 43860.99 488892.52 49928.01 45840.17

15 4800 48159.28 50191.35 62813.45 45528.46 51843.29 41733.79 48805.18

16 38005 51029.47 51857.86 65643.98 45661.93 54972.16 47927.12 51974.67

17 16200 54070.71 53638.83 68474.51 46732.62 58289.85 44569.54 55348.65

18 6000 57293.21 55546.49 71305.04 47196.61 61807.78 42833.07 58927.11

19 1000 60707.77 57598.83 74135.57 47369.63 65538.02 41876.78 62710.05

20 10000 64325.82 59800.03 76966.1 47398.53 69493.38 43977.53 66697.48

21 220 68159.5 62180.82 79796.63 47688.47 73687.47 41838.02 70889.39

22 35580 72221.66 64759.04 82627.16 47694.87 78134.67 50857.93 75285.78

23 81000 76525.92 67560.32 85457.69 48741.1 82850.28 64008.16 79886.66

24 643095 81086.7 70614.9 88288.22 51209.29 87850.48 235008.8 84692.02

25 47857 85919.29 73958.77 91118.75 75801.4 93152.46 66829.03 89701.86

26 154800 91039.9 77635.06 93949.28 78046.34 98774.42 105327.9 94916.19

27 170460 96465.68 81695.96 96779.81 85773.37 104735.68 116501.69 100335

28 108540 102214.83 86205.13 99610.34 95170 111056.72 98331.92 105958.29

29 73800 108306.61 91241.15 102440.87 101682.84 117759.25 87723.99 111786.07

30 1860 114761.46 96902.07 105271.4 106363.88 124866.28 59481.61 117818.33

31 336600 121600.99 103311.91 108101.93 106484.6 132402.25 209240.29 124055.08

32 268140 128848.15 110629.79 110932.46 130748.83 140393.03 191928.22 130496.3

33 74880 136527.23 119063.41 113762.99 153977.29 148866.06 105274.03 137142.02

34 286200 144663.96 128888.97 116593.52 161171.86 157850.47 220042.78 143992.21

35 25320 153285.62 140482.08 119424.06 191907.26 167377.1 87182.72 151046.89

36 7080 162421.11 154366.83 122254.59 194893.61 177478.69 77613.3 158306.05

37 59820 172101.07 171297.25 125085.12 195736.94 188189.94 108840.11 165769.7

38 87900 182357.92 192398.9 127915.65 203009.59 199547.63 128071.09 173437.82

39 76200 193226.06 219429.87 130746.18 214189.18 211590.78 123960.42 181310.44

64

The following Figure 5.6 shows output values of other SRGMs and CSN

model outputs.

Figure 5.6: Comparison of estimation ability

0

100000

200000

300000

400000

500000

600000

700000

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0

T
im

e
 t

o
 f

a
il
u

re

Failure Number

Comparission of Models

Actual

Geometric

Jelinski

Little Linear

Musa's Basic

Musa's Log

None
Homogenious
Little Q

CSN

65

5.5 Tunable Feature of CSN Model

Following Table 5.6 shows the CSN model estimation for the same dataset

with varied omega value:

Table 5.6: The calculations of CSN model at different omega values for CS I

FNO TTF Omega=0.4/6 Omega=0.5/6 Omega=0.7/6

11 2485 7167.72 8959.64 12543.5

12 11000 9839.89 12299.87 17219.81

13 2880 4903.8 6129.75 8581.65

14 61182 2944.25 3680.31 5152.44

15 4800 35488.54 44360.68 62104.95

16 38005 18566.41 23208.01 32491.22

17 16200 21177.64 26472.06 37060.88

18 6000 5888.87 7361.08 10305.52

19 1000 2063.47 2579.33 3611.07

20 10000 4716.19 5895.23 8253.33

21 220 4863.11 6078.89 8510.44

22 35580 4480.49 5600.61 7840.86

23 81000 20956.36 26195.44 36673.62

24 643095 36495.56 45619.44 63867.22

25 47857 361678.76 452098.44 632937.82

26 154800 187286.1 234107.63 327750.68

27 170460 74009.8 92512.25 129517.15

28 108540 21902.8 27378.5 38329.9

29 73800 4499.42 5624.28 7873.99

30 1860 15601.2 19501.5 27302.1

31 336600 32327.92 40409.9 56573.86

32 268140 193884 242355 339297

33 74880 42050.13 52562.67 73587.73

34 286200 47096.27 58870.33 82418.47

35 25320 131104 163880 229432

36 7080 92062.4 115078 161109.2

37 59820 16464.53 20580.67 28812.93

38 87900 13927.47 17409.33 24373.07

39 76200 30068.53 37585.67 52619.93

40 89280 8812 11015 15421

41 1209600 25230.93 31538.67 44154.13

66

These data can be shown in the following Figure 5.7.

Figure 5.7: The output from CSN model at different omega values for CS I

The red colored curve shows the sensitivity towards the small values while the

green colored graph shows the sensitivity towards the big values.

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

TTF

Omega=0.4/6

Omega=0.5/6

Omega=0.7/6

67

6. Conclusions and Future Work

In this thesis, accurate software reliability estimation has been addressed.

Though software reliability is an important software quality factor, it is not

widely used in the software industry. This is due to the lack of accuracy in

software reliability estimation models and time taken to give a valid

estimation for existing software reliability estimation models. Usage of

statistical distribution for software reliability models, usage of invalid

assumptions and usage of failure data which had collected early in the testing

are mainly affected the accuracy of existing reliability estimation models.

CSN model does not employ the statistical distributions. Similarly, the model

does not assume invalid assumptions like no new code is introduced during

the testing and failures are independent. The model takes only recent failure

data and thus the accuracy improvement initiatives have been employed in

designing the model. Further, as CSN model takes only six recent failure data,

the time taken to estimate the reliability has been reduced. Hence this model

increases the opportunity to apply it in software industry.

According to the results in the thesis, NHPP model is more accurate than the

other famous models. CSN model has been statistically compared with the

NHPP model for accuracy and it proves that CSN model is more accurate than

NHPP model.

CSN model requires only six recent consecutive failure data to make

estimation whereas NHPP model requires at least twenty five recent failure

data to give a single estimation. Hence CSN model is more desirable towards

the achievement of business objectives than NHPP model. Further, CSN

model is tunable.

However estimation accuracy of CSN model is higher when there are less

sudden variations. CSN model shows the less accuracy with the presence of

68

sudden variations in the failure data. This can be considered as a limitation of

the CSN model.

CSN model can be used to assure reliability at the release time of the software

because there are no sudden changes expected in the reliability when releasing

the software.

Since software tool to automate calculations of CSN model has been

developed, this model can be used in the industry without any overhead of the

interior functions of the model.

Future work includes the improvement of omega calculation for a given

dataset.

69

References

Agbari Adnan Basile Claudio & Zbigniew Kalbarczyk (2006). Proceedings of

the International Conference on Dependable Systems & Networks,

Washington DC, IEEE Computer Societry.

AIAA/ANSI (1993). Recommended Practice for Software Reliability, The

American Institute of Aeronautics and Astronautics, Washington DC,

Aeruspace Center, R-013, 1992, - ISBN 1-56347-024-1.

Boehm B.M., Brown J. R. & Lipow M. (1976). Quantitative evaluation of

software quality, In Proceedings of the International Conference on Software

Engineering, San Fransisco, Vol 13-15 pp 592-605, IEEE Computer Society

Press.

Cai K.Y, Cai L, Wang W.D & Yu Z.Y (2001). On the Neural Network

Approach in Software Reliability Modeling, The Journal of Systems &

Software - Vol 47.

Crosby P. B. (1979). Quality is Free The Art of Making Quality Certain NY,

McGraw -Hill.

Deming & Edwards W (1986). Out of Crisis, MIT Press.

Dromey R. G. (1995). A Model for Software Product Quality, IEEE

Transactions on Software Engineering - Vol 2.

Feigenbaum A. V. (1983). Total Quality Control, McGraw - Hill.

Fries A. & Sen A. (1996). A Survey of Descrete Reliability Growth Models,

IEEE Transactions Reliability - Vol 45.

Glenford J. (1979). The Art of Software Testing, NY, John Wiley & Sons.

70

Gray R.B (1992). Practical Software Matrics for Project Management and

Process Improvement, Prentice Hall.

Hoppe Wolfgang (1996). An Indusry Applicable Approach to Predict

Software Reliability, Bremen, STN ATLAS Elektronik Gmbh.

Hudepohl J. P, Aud S. J, Khoshgoftaar T. M. & Allen E. B. (1996).

EMERALD: Software Matrics and Models on the Desktop, IEEE Software -

Vol 13(5) pp 56-60.

IEEE Std 610.12 (1990). IEEE Standard Glossary of Software Engineering

Terminology, NY.

Ishika K (1985). What is Quality Control? The Japanese Way, Prentice Hall,

NY.

ISO/IEC Std 9126-1 (2001). Software Engineering – Product Quality, Part 1:

Quality Models, International Organisation for Standards.

Juran J.M (1988). Juran's Quality Control Handbook, McGraw - Hill.

Karunaniti N, Malaiya Y. K. & Whitly D. (1991). Prediction of software

reliability using neural networks, Proceedings of the 2nd IEEE International

Symposium on Software Reliability Engineering, Los Alamitos CA - pp 124–

130.

Karunanithi N, Malaiya Y. K. (1992). The scaling problem in neural networks

for software reliability prediction, Proceedings of the Third International IEEE

Symposium of Software Reliability Engineering, Los Alamitos CA, pp 76–82.

Karunanithi N, Whitley D, Malaiya Y. K. (1992a). Using neural networks in

reliability prediction, IEEE Software - Vol 9 pp 53–59.

71

Karunanithi N, Whitley D, Malaiya Y. K. (1992b). Prediction of software

reliability using connectionist models, IEEE Transactions on Software

Engineering - Vol 18 pp 563–574.

Karunanithi N. (1993). A Neural Network Approach for Software Reliability

Growth Modeling In the Presence of Code Churn, ISSRE.

Karunanithi N, Malaiya Y. K. (1996). Neural networks for software reliability

engineering - NY.

Kleinbaum David G. (1997). Applied Regression Analysis and Multivariable

Methods, Thompson Higher Education, USA, ISBN- 0-495-38496-8.

Lee L (1992). The Day the Phones Stopped How People Get Hurt When

Computers Go Wrong, Donald I Fine Inc.

Lyu M.R (1996). Handbook of Software Reliability Engineering, IEEE

Computer Society Press.

Martin Jedlicka, Moravcik Oliver & Schreiber Peter (2008). Survey to

Software Reliability, 19th Central European Conference on Information and

Intelligent Systems, Varazdin.

Martine L. & Shooman (1976). Structural Models for Software Reliability

Prediction, 2nd International Conference on Software Engineering.

McCall J.A, Richards P.K & G.F Walters (1998). Software Quality

Assurance.

McCall J.A, Richards P.K & Walters G.F (1977). Factors in Software Quality,

Nat'1 Tech Information Services, - Vol 1-2.

72

Okamura H, Murayama A. & Dohi T. (2004). EM Algorithm for Descrete

Software Reliability Models: A Unified Parameter Estimation Mothod, IEEE

Int.Symp.

Rosenberg Linda, Hammer Ted & Shaw Jack (1998). Software Matrics and

Reliability, ISSRE.

Schneidewind N. F. (1993). Software Reliability Model with Optimal

Selection of Failure Data, IEEE Transactions on Software Engineering -

Vol 19(11) pp 1095-1104.

Sua Yu-Shen & Chin-Yu Huang (2006). Neural-network-based Approaches

for Software Reliability Estimation using Dynamic Weighted Combinational

Models, Journal of Systems and Software.

William H. & Far (1983). A Survey of Software Reliability Modeling and

Estimating, Naval Surface Weapons Center, NSWC, TR 82-171 pp 4-88.

Wood Alan (1996). Software Reliability Growth Models , Tandem Technical

Report- Vol 19.1-part number 130056.

I

Appendix A – Graphical Representations of CSN

Model Estimations

Appendix A presents the output of CSN model. Notice that CSN model

estimations are possible from 7th failure onwards. But in these data, the range

has been considered from 11th failure. The graphs are of datasets from I to X.

The omega value used for these calculations is 0.7.

Calculations for dataset I

0

200000

400000

600000

800000

1000000

1200000

1400000

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

CSN

Actual

II

Calculations for dataset II

Calculations for dataset III

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

CSN

Actual

0

1000

2000

3000

4000

5000

6000

11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86

CSN

Actual

III

Calculations for dataset IV

Calculations for dataset V

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1
1

1
5

1
9

2
3

2
7

3
1

3
5

3
9

4
3

4
7

5
1

5
5

5
9

6
3

6
7

7
1

7
5

7
9

8
3

8
7

9
1

9
5

9
9

1
0

3

CSN

Actual

0

2000

4000

6000

8000

10000

12000

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

CSN

Actual

IV

Calculations for dataset VI

Calculations for dataset VII

0

1000

2000

3000

4000

5000

6000

7000

8000

1
1

1
7

2
3

2
9

3
5

4
1

4
7

5
3

5
9

6
5

7
1

7
7

8
3

8
9

9
5

1
0

1

1
0

7

1
1

3

1
1

9

1
2

5

1
3

1

CSN

Actual

0

500000

1000000

1500000

2000000

2500000

1
1

1
9

2
7

3
5

4
3

5
1

5
9

6
7

7
5

8
3

9
1

9
9

1
0

7

1
1

5

1
2

3

1
3

1

1
3

9

1
4

7

1
5

5

1
6

3

1
7

1

1
7

9

1
8

7

1
9

5

CSN

Actual

V

Calculations for dataset VIII

Calculations for dataset IX

0

100

200

300

400

500

600

700

800

900

1000

1
1

1
9

2
7

3
5

4
3

5
1

5
9

6
7

7
5

8
3

9
1

9
9

1
0

7

1
1

5

1
2

3

1
3

1

1
3

9

1
4

7

1
5

5

1
6

3

1
7

1

1
7

9

1
8

7

1
9

5

2
0

3

CSN

Actual

0

500000

1000000

1500000

2000000

2500000

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

CSN

Actual

VI

Calculations for dataset X

0

1000

2000

3000

4000

5000

6000

1
1

2
6

4
1

5
6

7
1

8
6

1
0

1

1
1

6

1
3

1

1
4

6

1
6

1

1
7

6

1
9

1

2
0

6

2
2

1

2
3

6

2
5

1

2
6

6

2
8

1

2
9

6

3
1

1

3
2

6

3
4

1

3
5

6

3
7

1

3
8

6

CSN

Actual

VII

Appendix B – Comparative study of CSN model and

NHPP model

Results of the comparative study of CSN model and NHPP model have been

listed here for the datasets. (The comparative studies on dataset I and II are in

the thesis)

Comparative study for dataset III

FNO Error CS Erro NHPP FNO Error CS

11 97.58 434.13 -336.54 49 91.12 9.54 81.57

12 99.21 45.73 53.48 50 96.18 55.33 40.86

13 20.82 39.5 -18.69 51 71.03 40.14 30.89

14 92.64 39.89 52.75 52 216.23 372.71 -156.48

15 58.71 1.47 57.25 53 92.94 16.42 76.52

16 99.08 58.96 40.12 54 56.49 37.46 19.03

17 249.34 386.5 -137.15 55 98.44 43.21 55.23

18 21.4 142.03 -120.63 56 62.09 28.75 33.34

19 93.03 17.87 75.16 57 91.57 28.32 63.24

20 89.47 4.35 85.12 58 94.61 24.89 69.72

21 71.84 59.94 11.9 59 73.17 7.6 65.57

22 98.79 59.78 39.01 60 90.42 90.81 -0.39

23 40.82 64.04 -23.22 61 70.09 114.09 -44

24 19.67 108.76 -89.08 62 96.72 84.2 12.52

25 96.82 78.09 18.73 63 96.86 13.3 83.56

26 98.81 38.72 60.09 64 389.44 986.93 -597.49

27 70.19 157.39 -87.2 65 88.9 30.16 58.74

28 87.64 100.48 -12.85 66 305.36 366.02 -60.66

29 90.2 44.54 45.66 67 74.45 11.29 63.16

30 86.15 26.19 59.96 68 11.14 128.77 -117.63

31 67.13 162.7 -95.57 69 82.38 3.61 78.77

32 97.28 31.13 66.15 70 91.21 35.93 55.27

33 57.61 1.04 56.58 71 27.5 11.18 16.32

34 93.59 244.32 -150.73 72 68.64 38.96 29.68

35 94.45 39.12 55.33 73 99.71 36.83 62.88

36 72.65 37.45 35.2 74 4.25 12.94 -8.69

37 32.38 158.72 -126.35 75 83.78 21.39 62.38

38 76.11 1.51 74.61 76 74.57 13.08 61.49

39 71.54 36.74 34.79 77 93.57 1.74 91.83

40 99.89 51.73 48.16 78 95.29 18.69 76.6

41 13899.53 14666.8 -767.27 79 20.25 102.56 -82.31

42 237.73 416.72 -178.99 80 76.16 8.55 67.61

43 97.31 6 91.31 81 89.96 18.35 71.62

44 90.65 46.22 44.43 82 26.67 59.14 -32.48

45 27.15 88.45 -61.3 83 62.37 422.8 -360.43

46 43.07 58.91 -15.84 84 82.59 52.36 30.23

47 93.33 6.7 86.64 85 76.56 73.33 3.23

48 54.88 101.56 -46.68

Total -1074.34

Count of -ve values 26

Count of +ve values 49

Differen

ce

Erro

NHPP

Differen

ce

VIII

Comparative study for dataset IV

The omega value for this calculation is 0.43

FNO Difference FNO Difference FNO Difference

11 19.98 17.57 2.41 43 5.36 692.11 -686.75 75 5.95 40.47 -34.52

12 33.53 91.29 -57.77 44 9.32 12.96 -3.64 76 347.29 38.88 308.41

13 11.92 19.75 -7.83 45 44.85 386.73 -341.88 77 170.2 118.73 51.47

14 40.26 24.22 16.04 46 18.24 54.65 -36.4 78 182.36 496.58 -314.22

15 0.33 2041 -2040.67 47 182.93 44.36 138.58 79 37.56 470.15 -432.59

16 20.46 333.93 -313.48 48 29.38 1730.25 -1700.87 80 22.1 79.52 -57.42

17 2.29 975.83 -973.54 49 74.34 1369.6 -1295.26 81 24.87 386.54 -361.67

18 5.03 709.5 -704.47 50 14.24 52.84 -38.61 82 30.33 32.15 -1.81

19 0.47 42.35 -41.88 51 187.78 48.14 139.64 83 339.6 158.4 181.2

20 79.34 249.47 -170.13 52 55.89 47.62 8.26 84 164.03 42.15 121.89

21 34.61 250.37 -215.76 53 76.63 7569 -7492.37 85 1016.69 9.27 1007.42

22 4.72 32.38 -27.65 54 113.08 54.41 58.67 86 395.93 12022 -11626.07

23 59.59 346.13 -286.55 55 246.56 46 200.56 87 115.04 29.31 85.73

24 31.53 319.75 -288.22 56 25.68 36.71 -11.03 88 403.69 1211.1 -807.41

25 0.39 46.37 -45.98 57 34.39 2.56 31.83 89 283.4 584.5 -301.1

26 88.44 44 44.44 58 31.69 557.08 -525.39 90 36.39 44.71 -8.32

27 23.96 576.4 -552.44 59 47.91 103.66 -55.75 91 40.95 410.36 -369.41

28 15.39 3236.5 -3221.11 60 3.57 22.52 -18.95 92 33.91 185.29 -151.37

29 10.07 215.18 -205.11 61 26.92 34.78 -7.86 93 3.53 13.42 -9.89

30 10.73 39.04 -28.31 62 118.23 16.33 101.89 94 282.06 161.22 120.85

31 21.66 265.58 -243.92 63 28.02 53.32 -25.3 95 130.24 94.95 35.29

32 8.18 29.71 -21.53 64 354.31 38.89 315.42 96 33.58 22.19 11.39

33 29.54 250.65 -221.11 65 176.48 4319.5 -4143.02 97 515.74 29 486.74

34 10.38 2157.33 -2146.96 66 35.72 272.23 -236.51 98 183.73 13.59 170.13

35 6.76 11.13 -4.37 67 19.76 49.23 -29.47 99 92.19 231.13 -138.94

36 54.41 1270 -1215.59 68 364.65 50.04 314.61 100 112.5 4658.33 -4545.83

37 31.22 19.3 11.91 69 232.56 1518.83 -1286.27 101 29.98 14.89 15.09

38 39.29 59.18 -19.89 70 253.42 2310.5 -2057.08 102 499.84 309.81 190.02

39 159.17 2228.67 -2069.5 71 27.61 111.78 -84.18 103 278.44 236.84 41.61

40 101.93 688.78 -586.84 72 0.27 36.64 -36.37 104 11.96 105.85 -93.89

41 1.02 496.92 -495.9 73 228.96 211.69 17.27

42 9.38 305 -295.62 74 143.65 592.73 -449.08

Total -43000.13

Count of -ve values 50

Count of +ve values 25

Error%

CS

Erro%

NHPP

Error%

CS

Erro%

NHPP

Error%

CS

Erro%

NHPP

IX

Comparative study for dataset V

FNO FNO

11 99.76 7.55 92.21 41 99.94 127.11 -27.17

12 77.14 1302.36 -1225.22 42 99.6 0.88 98.71

13 88.32 1209.93 -1121.61 43 99.36 36.21 63.15

14 99.78 383 -283.22 44 97.43 37.59 59.84

15 80.7 19500 -19419.3 45 58.46 7064.67 -7006.21

16 99.77 34.35 65.42 46 92.78 812.42 -719.64

17 99.48 45.25 54.22 47 99.91 4.32 95.58

18 91.02 274.06 -183.04 48 98 52.25 45.76

19 89.15 734.04 -644.89 49 99.92 320.87 -220.95

20 99.35 358.95 -259.6 50 99.5 78.89 20.61

21 99.99 18.66 81.33 51 99.59 12.46 87.14

22 99.45 41.05 58.4 52 20.59 7201.67 -7181.08

23 77.9 966.68 -888.79 53 67.59 2349 -2281.41

24 97.86 48.19 49.66 54 98.75 1743.08 -1644.33

25 94.95 469.92 -374.96 55 98.37 1137 -1038.63

26 97.9 283.94 -186.05 56 99.14 2352.11 -2252.97

27 99.97 74.02 25.95 57 99.68 215.44 -115.76

28 88.14 38.58 49.56 58 93.05 1383.93 -1290.89

29 9.14 2511.63 -2502.48 59 99.88 15.29 84.59

30 39.41 20715 -20675.59 60 98.74 23.05 75.69

31 90.82 1136.29 -1045.48 61 98.43 30.82 67.61

32 99.8 1213.63 -1113.82 62 99.66 120.55 -20.88

33 99.08 152.71 -53.63 63 99.82 11.66 88.16

34 94.36 1011.32 -916.96 64 99.05 11.01 88.04

35 98.41 633.55 -535.15 65 99.5 9.83 89.67

36 0 0 0 66 51.59 22649 -22597.41

37 93.01 4089.4 -3996.39 67 99.73 48.24 51.48

38 99.99 26.48 73.51 68 50.96 701.4 -650.44

39 46.92 2018 -1971.08 69 98.31 23.05 75.26

40 73.99 1827.73 -1753.74 70 98.51 19.7 78.8

Error%

CS

Error%

NHPP

Differenc

e

Error%

CS

Error%

NHPP

Differenc

e

X

The omega value for this calculation is 0.01

FNO FNO

71 99.5 0.08 99.42 100 18.4 1864.84 -1846.44

72 99.78 24.89 74.89 101 97.49 1770.5 -1673.01

73 96.77 115.61 -18.84 102 97.4 416.34 -318.95

74 93.3 444.57 -351.27 103 96.04 1471.58 -1375.54

75 98.81 195.04 -96.23 104 99.91 20.64 79.27

76 99.99 37.98 62.02 105 99.67 34.33 65.34

77 98.8 40.39 58.41 106 960.72 4159.7 -3198.98

78 78.96 648.2 -569.24 107 232.11 2062.35 -1830.24

79 99.92 59.54 40.38 108 99.48 88.64 10.84

80 42.56 58.8 -16.23 109 98.42 133.88 -35.46

81 87.32 10.28 77.04 110 99.99 8.71 91.27

82 92.19 302.51 -210.32 111 91.51 171.55 -80.03

83 97.54 9 88.55 112 96.1 119.26 -23.17

84 97.65 28.96 68.69 113 95.93 747.88 -651.94

85 98.98 13.48 85.5 114 99.93 21.18 78.75

86 99.83 47.65 52.19 115 97.88 14.43 83.45

87 49.14 243.71 -194.57 116 83.04 802.88 -719.84

88 55.21 387.81 -332.61 117 70.94 473.86 -402.92

89 99.77 29.11 70.66 118 99.81 4.68 95.13

90 99.78 63.91 35.86 119 98.23 4.51 93.72

91 99.96 40.19 59.77 120 99.94 13.12 86.82

92 99.37 24.6 74.77 121 80.21 125.18 -44.97

93 98.59 8.56 90.04 122 98.61 2.54 96.07

94 97.37 585.47 -488.11 123 99.03 4.78 94.24

95 98.17 37.42 60.75 124 94.73 74.52 20.2

96 88.69 928.44 -839.75 125 48.35 988.48 -940.13

97 70.67 2296.33 -2225.66 126 99.54 8.76 90.78

98 99.95 27.83 72.12 127 98.9 7.55 91.34

99 52.54 559.18 -506.64 128 99.4 6.69 92.71

Total -121128.53

Count of -ve values 60

Count of +ve values 57

Error%

CS

Error%

NHPP

Differenc

e

Error%

CS

Error%

NHPP

Differenc

e

XI

Comparative study for dataset VI

Error CS

11 77.8 52.19 25.61 43 78.08 33.36 44.72

12 44.56 314.5 -269.94 44 34.75 6.6 28.15

13 73.65 171.25 -97.6 45 93.55 33.96 59.59

14 8.81 761.54 -752.74 46 92.73 37.19 55.54

15 81.69 95.76 -14.07 47 360.11 3775.67 -3415.56

16 39.44 139.84 -100.4 48 2.44 338.04 -335.6

17 98.53 63.12 35.41 49 97.02 52.68 44.34

18 203.26 80.43 122.83 50 67.41 63.09 4.32

19 491.19 711.38 -220.19 51 255.14 82.36 172.78

20 75.34 90.77 -15.43 52 1615.68 1067.1 548.59

21 91.73 27.9 63.82 53 69.42 24.27 45.15

22 167.27 291.35 -124.08 54 47.84 101.77 -53.93

23 62.08 4.45 57.63 55 93.17 10.35 82.82

24 71.59 220.38 -148.79 56 32.22 48.52 -16.29

25 87.36 40.62 46.74 57 93.12 26.28 66.84

26 22.92 28.22 -5.3 58 125.82 714.84 -589.02

27 400.09 2053.6 -1653.51 59 78.33 9.9 68.43

28 95.03 70.99 24.04 60 73.86 42.89 30.97

29 7.92 52.79 -44.87 61 0 0 0

30 89.47 1383.53 -1294.07 62 7.53 32.79 -25.26

31 448.79 525.19 -76.41 63 65.27 1.54 63.73

32 849.93 5438 -4588.07 64 76.48 4.89 71.58

33 0 0 0 65 91.96 52.64 39.32

34 296.83 2675.88 -2379.05 66 5.35 25.11 -19.76

35 94.52 10.46 84.05 67 814.44 2538 -1723.56

36 100.95 254.91 -153.96 68 1102.7 1559.81 -457.12

37 79.32 40.09 39.23 69 89.54 22.01 67.53

38 41.63 298.45 -256.82 70 27.83 1.36 26.47

39 92.81 36.53 56.28 71 56.3 531.7 -475.4

40 17.52 9.98 7.54 72 13.13 135.58 -122.45

41 84.8 148.4 -63.61 73 95.24 36.57 58.67

42 83.07 1.95 81.11 74 44.34 23.99 20.36

FN

O

Error

CS

Erro

NHPP

Differen

ce

FN

O

Erro

NHPP

Differenc

e

XII

The omega value for this calculation is 0.39

Error CS

75 64 21.81 42.19 105 98.11 33.16 64.94

76 87.31 16.4 70.91 106 43.49 12.03 31.46

77 36.42 30.59 5.83 107 70.17 0.03 70.14

78 85.73 105.16 -19.43 108 79.04 16.56 62.47

79 96.28 32.82 63.47 109 96.4 5.94 90.45

80 59.89 37.78 22.11 110 4.44 131.45 -127.01

81 31.06 1.01 30.05 111 64.1 17.76 46.34

82 70.61 32.28 38.33 112 84.86 16.87 67.98

83 99.24 47.07 52.17 113 83.13 59.55 23.59

84 16.34 34.84 -18.5 114 1.06 76.35 -75.3

85 99.11 44.83 54.28 115 93.75 62.15 31.6

86 22.57 25 -2.42 116 59.99 328.47 -268.48

87 83.7 28.31 55.38 117 88.75 9.29 79.46

88 65.2 14.58 50.63 118 49.61 12.74 36.86

89 22.08 908.21 -886.13 119 80.96 8.22 72.74

90 68.29 21.27 47.02 120 1328.34 2069.41 -741.07

91 43.11 12.66 30.45 121 424.24 584.28 -160.04

92 96.06 42.27 53.79 122 98.51 64.08 34.43

93 62.23 43.45 18.78 123 96.6 21.99 74.62

94 37.32 29.68 7.64 124 2964.39 468.01 2496.38

95 85.35 10.3 75.05 125 17528.72 4947 12581.72

96 743.75 2974.75 -2231 126 95.51 18.85 76.67

97 58.12 87.48 -29.36 127 4.38 108.98 -104.59

98 98.54 30.61 67.93 128 81.48 37.99 43.49

99 0.2 6.73 -6.53 129 96.73 16.07 80.66

100 92.07 22.69 69.39 130 0.07 5.9 -5.82

101 1671.14 1236.1 435.04 131 94.46 33.07 61.39

102 268.54 221.83 46.71 132 18.9 68.08 -49.19

103 71.99 310.41 -238.42 133 95.74 8.33 87.41

104 0 0 0 134 146.33 35.24 111.09

Total -4548.93

Count of -ve values 46

Count of +ve values 75

FN

O

Error

CS

Erro

NHPP

Differen

ce

FN

O

Erro

NHPP

Differenc

e

XIII

Comparative study for dataset VII

Fno
Error
CSN

Error
NHPP Difference Fno

Error
CSN

Error
NHPP Difference

11 77.68 538.54 -460.86 60 97.50 76.61 20.89

12 363.45 12368.26 -12004.81 61 76948.16 109507.31 -32559.15
13 99.20 12368.51 -12269.31 62 2182.28 3758.41 -1576.13

14 96.73 51.63 45.09 63 91.80 85.81 5.99
15 4758.44 49811.87 -45053.42 64 99.63 41.26 58.37

16 5651.50 99722.22 -94070.72 65 96.48 76.23 20.25
17 92.35 6556.83 -6464.49 66 29150.40 36898.23 -7747.83
18 31.61 24857.83 -24826.22 67 807.42 1540.95 -733.53

19 88.91 15259.74 -15170.83 68 864.65 73894.21 -73029.56
20 98.78 224.02 -125.24 69 95.41 34.69 60.72

21 163.99 5609.09 -5445.10 70 28386.13 111155.54 -82769.41
22 96.12 69.08 27.04 71 63.61 98.17 -34.56

23 95.87 50.73 45.13 72 17.56 940.55 -922.99
24 6706.43 24956.36 -18249.93 73 2113.19 44446.20 -42333.01

25 1.76 452.28 -450.52 74 764.33 111251.13 -110486.79
26 99.54 71.57 27.96 75 99.57 65.90 33.68

27 16.28 53.12 -36.84 76 55.20 18.20 37.00
28 2247.25 9986.35 -7739.10 77 66.94 149.69 -82.75

29 89.45 53.62 35.83 78 1626.95 31982.14 -30355.18
30 99.02 78.60 20.42 79 97.39 56.72 40.66

31 4239.01 5398.34 -1159.33 80 74.87 32.89 41.99
32 92.06 79.83 12.23 81 98.79 23.29 75.50
33 32.15 21.97 10.18 82 108.91 2777.86 -2668.95

34 452.22 1391.86 -939.64 83 111.87 1251.46 -1139.58
35 98.61 82.54 16.07 84 413.62 45211.06 -44797.44

36 9751.95 9329.03 422.92 85 41.52 3194.23 -3152.71
37 450.65 751.07 -300.41 86 99.78 59.41 40.36

38 11.11 3543.00 -3531.88 87 23067.09 45429.44 -22362.35
39 391.65 4842.62 -4450.97 88 55.10 67.98 -12.87

40 99.98 18.24 81.75 89 72.85 195.56 -122.71
41 96.57 70.72 25.85 90 87.46 238.42 -150.95

42 32.76 35.03 -2.27 91 99.60 63.73 35.87
43 93.10 64.40 28.69 92 10.72 104.28 -93.57

44 87.74 65.27 22.47 93 54.59 78.54 -23.95
45 95.39 70.83 24.57 94 513.59 15224.77 -14711.18
46 396.41 1348.98 -952.57 95 94.37 29.51 64.86

47 89.33 67.75 21.58 96 52.32 100.62 -48.31
48 13977.93 26556.58 -12578.65 97 91.96 5.15 86.82

49 9056.94 23595.69 -14538.75 98 1902386.71 13847612.00
-

11945225.29

50 33.10 5668.87 -5635.77 99 94.25 40.45 53.80

51 711.12 11751.67 -11040.56 100 1234.89 4047.71 -2812.82
52 99.94 0.00 99.94 101 1103.89 5849.97 -4746.09
53 81.06 46.45 34.60 102 99.49 83.03 16.46

54 89.44 469.54 -380.10 103 98.62 60.83 37.78
55 81.57 466.86 -385.29 104 9863.82 17837.35 -7973.53

56 100.00 65.49 34.50 105 352.36 1216.31 -863.95
57 80.67 56.12 24.56 106 245.30 77589.37 -77344.07

58 96.48 57.27 39.20 107 98.35 52.61 45.75
59 93.32 57.98 35.34 108 61.30 0.68 60.62

XIV

Fno
Error
CSN

Error
NHPP Difference Fno

Error
CSN

Error
NHPP Difference

109 2326.81 23356.86 -21030.04 154 24585.33 248080.38 -223495.05
110 96.33 47.19 49.14 155 98.31 74.64 23.68
111 918.24 2683.77 -1765.53 156 96.80 39.94 56.85

112 94.10 58.56 35.53 157 86.71 38.91 47.80
113 14666.21 26204.29 -11538.08 158 13868.78 83359.66 -69490.88

114 5567.15 15689.17 -10122.02 159 18632.41 83359.94 -64727.54
115 99.99 56.55 43.45 160 1740.36 62501.01 -60760.65

116 16585.33 33891.26 -17305.93 161 822.19 27735.84 -26913.66
117 91.63 55.93 35.70 162 99.23 31.78 67.45

118 7219.97 13978.38 -6758.41 163 81.76 19.20 62.56
119 1080.22 3381.37 -2301.14 164 98.60 58.11 40.49

120 10.40 29799.55 -29789.15 165 300.44 499.88 -199.44
121 5183.42 79604.31 -74420.90 166 79.86 31.95 47.92

122 95.51 23823.48 -23727.97 167 1067.62 3671.22 -2603.60
123 93.62 184.25 -90.62 168 37.92 161.11 -123.18

124 90.22 91.67 -1.45 169 778.17 18134.79 -17356.62
125 4315.56 79712.79 -75397.23 170 2639.19 28251.76 -25612.58
126 97.49 29.50 67.99 171 99.96 48.82 51.15

127 32.13 158.56 -126.43 172 74.10 28.23 45.87
128 1640.65 17073.43 -15432.78 173 98.93 89.58 9.34

129 26.84 1936.62 -1909.77 174 94.21 9.83 84.38
130 96.63 107.31 -10.69 175 709.99 5660.22 -4950.22

131 93.09 15.64 77.45 176 2488.07 17129.27 -14641.20
132 94.00 20.47 73.53 177 369.28 14262.35 -13893.07

133 405.96 3093.83 -2687.87 178 58.60 1263.49 -1204.89
134 940.86 7459.76 -6518.90 179 53.60 7095.49 -7041.89

135 89.39 777.98 -688.60 180 98.83 249.18 -150.35
136 99.01 107.36 -8.35 181 67.09 106.75 -39.67

137 87.70 113.39 -25.69 182 96.54 114.48 -17.94
138 99.56 60.62 38.94 183 98.57 30.68 67.89
139 28.50 19.31 9.20 184 18.14 198.76 -180.62

140 47.61 110.87 -63.26 185 71.79 117.02 -45.23
141 97.73 127.02 -29.29 186 96.48 28.14 68.35

142 93.34 141.76 -48.42 187 1747.78 24020.84 -22273.06
143 92.85 452.85 -360.00 188 350.71 4928.76 -4578.04

144 87.05 187.21 -100.16 189 94.06 10121.93 -10027.87
145 3443.72 122184.02 -118740.29 190 31.39 4929.28 -4897.90

146 98.04 29.56 68.48 191 96.21 2718.72 -2622.51
147 51.14 84.34 -33.20 192 99.78 0.81 98.97

148 98.32 58.31 40.01 193 242.88 1548.83 -1305.95
149 39.08 10.33 28.76 194 74.73 160.12 -85.39

150 63.47 61.62 1.85 195 86.15 161.04 -74.89
151 133.38 30904.09 -30770.71 196 96.77 173.46 -76.69

152 83.98 48.75 35.22 197 99.01 30.53 68.48

153 135.13 2219.80 -2084.67
 Total -13839003.26

 Count of +ve values 70.00
 Count of -ve values 117.00

XV

The omega value for this calculation is 0.66

FNO Error CS

171 4.34 22.63 -18.28

172 15.95 86.46 -70.51

173 51 11.93 39.07

174 3.48 9.9 -6.42

175 97.38 678.78 -581.4

176 73.12 24.88 48.25

177 7.88 23.07 -15.19

178 59.37 20.57 38.8

179 1.41 34.36 -32.95

180 1827.2 2212 -384.8

181 32 30 2

182 830.76 1084.33 -253.58

183 74.03 19.01 55.02

184 118.42 24.78 93.64

185 1078.57 2248.67 -1170.1

186 376.33 639.7 -263.37

187 93.68 9.67 84.01

188 657.65 281.38 376.27

189 51.9 8.87 43.03

190 57.88 29.65 28.23

191 555.29 129.48 425.81

192 246.13 100.42 145.71

193 95.54 9.17 86.37

194 20.97 32.56 -11.59

195 93.34 1.62 91.72

196 164.19 194.57 -30.38

197 80.12 22.95 57.16

198 41.81 30.44 11.37

199 54.26 33.12 21.14

200 9.71 25.66 -15.95

201 53.19 74.88 -21.69

202 24.86 3.92 20.94

203 2.96 76.7 -73.74

204 21.6 77.33 -55.73

205 96.15 20.22 75.93

206 22.51 120.51 -98

Total -3042.94

Count of -ve values 84

Count of +ve values 112

Error

NHPP

Differen

ce

XVI

Comparative study for dataset VIII

FNO Error CS Error CS

11 5.68 63.12 -57.44 51 39.8 48.81 -9.01

12 1649 3931 -2282 52 89.09 121.76 -32.67

13 312.97 909.75 -596.78 53 10.08 1019.75 -1009.67

14 97.86 37.07 60.8 54 47.4 104.04 -56.64

15 43.5 0.98 42.52 55 88.26 404.78 -316.52

16 180.76 352.44 -171.68 56 43.65 253.31 -209.66

17 68.33 14.12 54.21 57 96.17 61.21 34.97

18 5.29 4.32 0.97 58 1005.7 232.07 773.63

19 57.25 30.72 26.53 59 252.84 116.05 136.8

20 91.09 1260.67 -1169.58 60 70.06 21.98 48.08

21 74.3 43.69 30.61 61 35.77 287.33 -251.56

22 7151.51 3990 3161.51 62 91.17 54.42 36.75

23 54.69 40.73 13.96 63 28.59 39.11 -10.52

24 86.73 75.31 11.42 64 68.92 6.27 62.66

25 3516.42 731.4 2785.02 65 91.56 12.79 78.77

26 16.3 62.8 -46.49 66 1047.93 2199 -1151.07

27 16.77 54.24 -37.47 67 13.14 44.74 -31.6

28 92.55 75.74 16.8 68 72.88 34.17 38.71

29 11.25 71.45 -60.2 69 32.46 34.28 -1.82

30 17.31 13.53 3.78 70 44.19 18.22 25.98

31 308.66 211.43 97.23 71 36.27 125.59 -89.32

32 314.33 381.56 -67.22 72 50.79 224.33 -173.54

33 744.8 2045.5 -1300.7 73 72.21 159.68 -87.47

34 66.98 334.6 -267.62 74 95.89 26.33 69.56

35 66.06 4187 -4120.94 75 84.73 248.29 -163.55

36 77.95 33.18 44.78 76 20.69 339.36 -318.68

37 80.83 67.26 13.56 77 97.79 30.05 67.74

38 16.06 58.74 -42.69 78 85.19 61.04 24.15

39 774.97 995 -220.03 79 1056.41 211.44 844.98

40 1647.35 995.25 652.1 80 240.65 74.37 166.29

41 69.37 32.66 36.71 81 52.7 45.05 7.65

42 335.03 779.8 -444.77 82 93.16 10.65 82.51

43 340.69 828.6 -487.91 83 372.16 444.89 -72.73

44 83.03 99.95 -16.93 84 142.26 214.69 -72.43

45 54.3 30.42 23.88 85 45.79 257.57 -211.79

46 33.54 34.31 -0.77 86 95.84 116.58 -20.75

47 89.09 54.15 34.94 87 16.21 315.25 -299.04

48 333.02 101.3 231.71 88 96.66 50.96 45.7

49 40.83 43.67 -2.84 89 69.16 26.75 42.41

50 65.15 2.29 62.86 90 99.03 39.55 59.47

Error

NHPP

Differen

ce

FN

O

Error

NHPP

Differen

ce

XVII

FNO Error CS Error CS

91 131.85 86.79 45.05 131 91.38 11.1 80.27

92 131.85 150.86 -19 132 152.29 145.54 6.75

93 88.53 189.83 -101.3 133 2.95 117.43 -114.48

94 362.47 2347.5 -1985.03 134 82.34 117.93 -35.6

95 87.77 36.55 51.22 135 69.44 260.82 -191.38

96 186.12 53 133.12 136 99.2 49.94 49.26

97 38.26 27.63 10.63 137 288.94 5.65 283.29

98 43.87 209.71 -165.84 138 160.4 79.08 81.32

99 1649.94 4823 -3173.06 139 49.45 371.69 -322.24

100 92.56 45.22 47.34 140 155.95 372.15 -216.2

101 63.18 64.59 -1.41 141 96.58 234.16 -137.58

102 84.75 45.74 39.01 142 95.99 21.06 74.92

103 20.27 0.23 20.04 143 231.83 103.41 128.42

104 83.53 51.9 31.63 144 53.38 3.36 50.03

105 1467.66 492.33 975.32 145 57.79 79.4 -21.61

106 371.75 120.92 250.83 146 90.81 31.78 59.03

107 98.92 6.94 91.98 147 56.68 47.27 9.41

108 89.38 53.9 35.48 148 12.8 41.88 -29.08

109 1443.82 324.38 1119.44 149 6.23 9.8 -3.57

110 3136.36 1224.25 1912.11 150 47.57 40.6 6.97

111 90.47 13.45 77.02 151 52.89 131.35 -78.47

112 24.82 12.93 11.89 152 74.68 9.36 65.32

113 85.69 52.15 33.54 153 93.02 93.15 -0.13

114 2.14 43.87 -41.73 154 54.42 7.28 47.14

115 13.89 83.56 -69.67 155 28.05 11.14 16.91

116 30.98 20.65 10.33 156 89.45 34.5 54.95

117 585.46 523.33 62.12 157 67.55 3.4 64.15

118 56.22 35.69 20.53 158 17.48 102.61 -85.13

119 116.28 19.39 96.89 159 65.84 12.24 53.59

120 23.39 40.94 -17.54 160 528.35 828.14 -299.8

121 46.94 145.4 -98.46 161 136.06 223.27 -87.22

122 33.36 145.92 -112.56 162 93.62 18.86 74.76

123 94.18 22.09 72.09 163 76.31 32.38 43.93

124 1640.14 1021.8 618.34 164 6305.77 2042.33 4263.44

125 95.14 105.74 -10.6 165 243.22 103.74 139.48

126 52.51 37.02 15.49 166 50.69 42.65 8.04

127 309.51 844 -534.49 167 84.95 15.55 69.39

128 87.81 41.29 46.52 168 79.7 44.24 35.46

129 574.18 135.48 438.7 169 57.32 23.29 34.04

130 232.72 152.36 80.36 170 83.52 29.95 53.57

Error

NHPP

Differen

ce

FN

O

Error

NHPP

Differen

ce

XVIII

The omega value for this calculation is 0.66

FNO Error CS

171 4.34 22.63 -18.28

172 15.95 86.46 -70.51

173 51 11.93 39.07

174 3.48 9.9 -6.42

175 97.38 678.78 -581.4

176 73.12 24.88 48.25

177 7.88 23.07 -15.19

178 59.37 20.57 38.8

179 1.41 34.36 -32.95

180 1827.2 2212 -384.8

181 32 30 2

182 830.76 1084.33 -253.58

183 74.03 19.01 55.02

184 118.42 24.78 93.64

185 1078.57 2248.67 -1170.1

186 376.33 639.7 -263.37

187 93.68 9.67 84.01

188 657.65 281.38 376.27

189 51.9 8.87 43.03

190 57.88 29.65 28.23

191 555.29 129.48 425.81

192 246.13 100.42 145.71

193 95.54 9.17 86.37

194 20.97 32.56 -11.59

195 93.34 1.62 91.72

196 164.19 194.57 -30.38

197 80.12 22.95 57.16

198 41.81 30.44 11.37

199 54.26 33.12 21.14

200 9.71 25.66 -15.95

201 53.19 74.88 -21.69

202 24.86 3.92 20.94

203 2.96 76.7 -73.74

204 21.6 77.33 -55.73

205 96.15 20.22 75.93

206 22.51 120.51 -98

Total -3042.94

Count of -ve values 84

Count of +ve values 112

Error

NHPP

Differen

ce

XIX

Comparative study for dataset IX

FNO Error CS Difference Error CS Difference

11 77.68 538.54 -460.86 56 100 65.49 34.5

12 363.45 12368.26 -12004.81 57 80.67 56.12 24.56

13 99.2 12368.51 -12269.31 58 96.48 57.27 39.2

14 96.73 51.63 45.09 59 93.32 57.98 35.34

15 4758.44 49811.87 -45053.42 60 97.5 76.61 20.89

16 5651.5 99722.22 -94070.72 61 76948.16 109507.31 -32559.15

17 92.35 6556.83 -6464.49 62 2182.28 3758.41 -1576.13

18 31.61 24857.83 -24826.22 63 91.8 85.81 5.99

19 88.91 15259.74 -15170.83 64 99.63 41.26 58.37

20 98.78 224.02 -125.24 65 96.48 76.23 20.25

21 163.99 5609.09 -5445.1 66 29150.4 36898.23 -7747.83

22 96.12 69.08 27.04 67 807.42 1540.95 -733.53

23 95.87 50.73 45.13 68 864.65 73894.21 -73029.56

24 6706.43 24956.36 -18249.93 69 95.41 34.69 60.72

25 1.76 452.28 -450.52 70 28386.13 111155.54 -82769.41

26 99.54 71.57 27.96 71 63.61 98.17 -34.56

27 16.28 53.12 -36.84 72 17.56 940.55 -922.99

28 2247.25 9986.35 -7739.1 73 2113.19 44446.2 -42333.01

29 89.45 53.62 35.83 74 764.33 111251.13 -110486.79

30 99.02 78.6 20.42 75 99.57 65.9 33.68

31 4239.01 5398.34 -1159.33 76 55.2 18.2 37

32 92.06 79.83 12.23 77 66.94 149.69 -82.75

33 32.15 21.97 10.18 78 1626.95 31982.14 -30355.18

34 452.22 1391.86 -939.64 79 97.39 56.72 40.66

35 98.61 82.54 16.07 80 74.87 32.89 41.99

36 9751.95 9329.03 422.92 81 98.79 23.29 75.5

37 450.65 751.07 -300.41 82 108.91 2777.86 -2668.95

38 11.11 3543 -3531.88 83 111.87 1251.46 -1139.58

39 391.65 4842.62 -4450.97 84 413.62 45211.06 -44797.44

40 99.98 18.24 81.75 85 41.52 3194.23 -3152.71

41 96.57 70.72 25.85 86 99.78 59.41 40.36

42 32.76 35.03 -2.27 87 23067.09 45429.44 -22362.35

43 93.1 64.4 28.69 88 55.1 67.98 -12.87

44 87.74 65.27 22.47 89 72.85 195.56 -122.71

45 95.39 70.83 24.57 90 87.46 238.42 -150.95

46 396.41 1348.98 -952.57 91 99.6 63.73 35.87

47 89.33 67.75 21.58 92 10.72 104.28 -93.57

48 13977.93 26556.58 -12578.65 93 54.59 78.54 -23.95

49 9056.94 23595.69 -14538.75 94 513.59 15224.77 -14711.18

50 33.1 5668.87 -5635.77 95 94.37 29.51 64.86

51 711.12 11751.67 -11040.56 96 52.32 100.62 -48.31

52 99.94 0 99.94 97 91.96 5.15 86.82

53 81.06 46.45 34.6 98 1902386.71 13847612 -11945225.29

54 89.44 469.54 -380.1 99 94.25 40.45 53.8

55 81.57 466.86 -385.29 100 1234.89 4047.71 -2812.82

Error

NHPP

FN

O

Error

NHPP

XX

FNO Error CS Difference Error CS Difference

101 1103.89 5849.97 -4746.09 146 98.04 29.56 68.48

102 99.49 83.03 16.46 147 51.14 84.34 -33.2

103 98.62 60.83 37.78 148 98.32 58.31 40.01

104 9863.82 17837.35 -7973.53 149 39.08 10.33 28.76

105 352.36 1216.31 -863.95 150 63.47 61.62 1.85

106 245.3 77589.37 -77344.07 151 133.38 30904.09 -30770.71

107 98.35 52.61 45.75 152 83.98 48.75 35.22

108 61.3 0.68 60.62 153 135.13 2219.8 -2084.67

109 2326.81 23356.86 -21030.04 154 24585.33 248080.38 -223495.05

110 96.33 47.19 49.14 155 98.31 74.64 23.68

111 918.24 2683.77 -1765.53 156 96.8 39.94 56.85

112 94.1 58.56 35.53 157 86.71 38.91 47.8

113 14666.21 26204.29 -11538.08 158 13868.78 83359.66 -69490.88

114 5567.15 15689.17 -10122.02 159 18632.41 83359.94 -64727.54

115 99.99 56.55 43.45 160 1740.36 62501.01 -60760.65

116 16585.33 33891.26 -17305.93 161 822.19 27735.84 -26913.66

117 91.63 55.93 35.7 162 99.23 31.78 67.45

118 7219.97 13978.38 -6758.41 163 81.76 19.2 62.56

119 1080.22 3381.37 -2301.14 164 98.6 58.11 40.49

120 10.4 29799.55 -29789.15 165 300.44 499.88 -199.44

121 5183.42 79604.31 -74420.9 166 79.86 31.95 47.92

122 95.51 23823.48 -23727.97 167 1067.62 3671.22 -2603.6

123 93.62 184.25 -90.62 168 37.92 161.11 -123.18

124 90.22 91.67 -1.45 169 778.17 18134.79 -17356.62

125 4315.56 79712.79 -75397.23 170 2639.19 28251.76 -25612.58

126 97.49 29.5 67.99 171 99.96 48.82 51.15

127 32.13 158.56 -126.43 172 74.1 28.23 45.87

128 1640.65 17073.43 -15432.78 173 98.93 89.58 9.34

129 26.84 1936.62 -1909.77 174 94.21 9.83 84.38

130 96.63 107.31 -10.69 175 709.99 5660.22 -4950.22

131 93.09 15.64 77.45 176 2488.07 17129.27 -14641.2

132 94 20.47 73.53 177 369.28 14262.35 -13893.07

133 405.96 3093.83 -2687.87 178 58.6 1263.49 -1204.89

134 940.86 7459.76 -6518.9 179 53.6 7095.49 -7041.89

135 89.39 777.98 -688.6 180 98.83 249.18 -150.35

136 99.01 107.36 -8.35 181 67.09 106.75 -39.67

137 87.7 113.39 -25.69 182 96.54 114.48 -17.94

138 99.56 60.62 38.94 183 98.57 30.68 67.89

139 28.5 19.31 9.2 184 18.14 198.76 -180.62

140 47.61 110.87 -63.26 185 71.79 117.02 -45.23

141 97.73 127.02 -29.29 186 96.48 28.14 68.35

142 93.34 141.76 -48.42 187 1747.78 24020.84 -22273.06

143 92.85 452.85 -360 188 350.71 4928.76 -4578.04

144 87.05 187.21 -100.16 189 94.06 10121.93 -10027.87

145 3443.72 122184.02 -118740.29 190 31.39 4929.28 -4897.9

Error

NHPP

FN

O

Error

NHPP

XXI

The omega value used for the calculations is 0.1

FNO Error CS Difference Error CS Difference

191 96.21 2718.72 -2622.51 235 5887.44 17545.62 -11658.18

192 99.78 0.81 98.97 236 5078.26 18646.43 -13568.17

193 242.88 1548.83 -1305.95 237 99.09 26.56 72.54

194 74.73 160.12 -85.39 238 91.47 39.27 52.2

195 86.15 161.04 -74.89 239 90.08 38.3 51.78

196 96.77 173.46 -76.69 240 69.34 53.44 15.91

197 99.01 30.53 68.48 241 32.62 195.39 -162.77

198 29.58 142.41 -112.83 242 96.8 9.92 86.88

199 93.95 27.59 66.36 243 303.82 1964.63 -1660.81

200 92.91 46.7 46.21 244 84.12 20.81 63.31

201 86.18 37.23 48.94 245 60.27 1013.2 -952.93

202 69.88 230.16 -160.28 246 96.4 28.67 67.74

203 87.2 17.82 69.38 247 87.19 32.33 54.86

204 62.89 102.91 -40.02 248 328.74 1560.71 -1231.96

205 299.01 3138.6 -2839.58 249 134.64 723.6 -588.97

206 99.82 2552.96 -2453.14 250 92.73 187.36 -94.64

207 87.06 262.64 -175.58 251 98.62 93.35 5.27

208 1216.7 38897.99 -37681.29 252 68.65 660.59 -591.94

209 99.06 43.34 55.73 253 85.14 190.46 -105.32

210 83316.94 137169.22 -53852.27 254 87.84 216.76 -128.92

211 680.21 2219.79 -1539.58 255 99.69 34.58 65.11

212 98.5 171.56 -73.06 256 76.71 19.52 57.18

213 92.27 547.3 -455.03 257 99.03 26.69 72.33

214 99.62 30.23 69.39 258 1453.28 5663.1 -4209.82

215 82.02 17.98 64.04 259 736.08 2556.21 -1820.13

216 2637.15 34529.35 -31892.19 260 89.04 347.41 -258.37

217 97.26 50.39 46.87 261 99.56 41.86 57.7

218 80.49 44.48 36.01 262 76.18 119.7 -43.52

219 235.36 2034.93 -1799.57 263 71.4 0.45 70.96

220 94.24 50.92 43.32 264 97.38 43.32 54.06

221 82.31 46.33 35.97 265 1243.43 1258.96 -15.54

222 45.48 229.38 -183.9 266 80.33 25.88 54.45

223 80.78 19.84 60.94 267 239.24 698.71 -459.47

224 98.28 55.85 42.43 268 81 1.74 79.26

225 49.05 30.21 18.85 269 71.31 54.92 16.39

226 50.62 204.38 -153.76 270 65.5 254.75 -189.25

227 0.83 343.46 -342.63 271 98.75 11.19 87.56

228 977.32 8618.81 -7641.49 272 96.39 40.51 55.88

229 1846.5 29456.78 -27610.28 273 41.32 7.71 33.62

230 93.63 15.23 78.41 274 46293.48 112540.44 -66246.96

231 90.79 8.64 82.14 275 4121.9 24968.25 -20846.35

232 85.01 25.82 59.18 276 94.49 10.66 83.83

233 98.76 16.16 82.59 277 90.24 873.39 -783.14

234 97.29 29.88 67.41

Total -14131293.91

Count of -ve values 156

Count of +ve values 111

Error

NHPP

FN

O

Error

NHPP

XXII

Appendix C - Other Research Findings

The research focused on designing an accurate software reliability estimation

model. While achieving the objective, first outcome was a model which uses a

curve for the dataset. This was named as curve fitting model and then was

enhanced to use intelligence in selecting the optimal dataset for estimation.

However, this is not directly related to the finding of the research which have

been described in the chapters of this thesis. Hence, it has been added to the

appendix.

Two research papers were sent to the conferences from curve fitting model

and optimal selection of data. The research paper which describes optimal

selection of data was published. The curve fitting model procedure is

described in the following sections.

Curve fitting method for reliability estimation

Objectives of the model:

The objectives of our curve fitting model for software reliability estimation

are to estimate following attributes of the software.

(1) To estimate the time to next failure at a preferred confidence level without

assuming a distribution.

(2) To estimate the probability of observed failure at a given time period

(3) To estimate the optimal number of failures to be considered at each failure

point.

XXIII

Assumptions of the model:

(i) “new” failure data (which have not been counted previously) are only

collected

(ii) Time is measured by the calendar time

In practice, correction of encountered failure takes time. Due to none attention

for the correction, the same failure can be occurred repeatedly. This impacts

the accuracy since the same failure is being countered twice. CPU time

provides the most resolution, but in many applications only calendar time is

available. Hence we have considered taking the calendar time.

Philosophy of this model is failure detection has a random fashion whereas all

parametric statistical models assume that failure detection follows a

distribution. Further the recent failure data are more useful than previously

observed data. This is because of the software code that is changed during the

testing.

Curve fitting procedure:

(1) Use of operational profile: The testing is to be done using operational

profile.

(2) Collect the data: The data (time to next failure) are to be collected.

(3) Software reliability estimation based on the curve: The time to next failure

data are plotted against the failure number (Figure 1). The curve is to be

drawn as the best curve, i.e., smooth curve. The accuracy of the curve

influence to the estimation. Hence the maximum possible scale is to be used.

XXIV

The associated end point error of each measurement (which is half of the

minimum error) is to be drawn as shown in the Figure 1. The sketching is to

be done in such a way that maximum possible failure data points are to be

crossed.

Optimal selection of failure data:

It is clear that most recent data are only useful when estimating the reliability.

The method used select the optimal dataset is “optimal selection of failure

data based on the standard deviation” (the research publication regarding the

optimal selection of failure data can be found in the number one research

paper in Appendix D) . Suppose that the optimal dataset is at “r” th failure

data onwards. The selected range data curve is drawn to a maximum possible

scale to enhance the accuracy of the estimation.

Suppose the desired confidence level is α.

Our hypothesis is

H0: Software will not fail at least for “ti” hours

H1: Software will fail before “ti” hours

Calculate the area of the curve in the range of fi and fi-r. Let it to be S.

Calculate the area below ti, as marked by the blue color area in the Figure 1.

Suppose that area is S1.

The probability of reliability objective is not achieved is S1/S.

Let C=(S1/S)*100%

XXV

If C <=(100- α) we can conclude that our null hypothesis is true at α

confidence level. Hence we need to find ti in such a way that C =S1/S = (100

– α) to be true at α confidence level. The respective ti time is the estimation of

the reliability.

Figure C1: Time to taken to occur failures

Conclusions of the Curve Fitting Model

This model doesn‟t assume any statistical distribution in estimating software

reliability. The parameter estimation here is also not difficult. Further this

model doesn‟t require a through statistical knowledge. Hence this curve fitting

model is easy to use by any practitioner. However, the accuracy of the model

is not acceptable and need to enhance further.

ti

Failure

number
fi-r fi

Time to next

failure

XXVI

Appendix D - List of Publications

List of Publications through the research is as follows. First and second papers

were also presented in the particular conferences.

Research Papers

1. P.L.M Kelanibandara, G.N.Wikramanayake, and J.S. Goonethillake,

“Optimal Selection of Failure Data for Reliability Estimation Based on

Standard Deviation Method” , International Conference of Industrial

and Information Systems, August 2007, Peradeniya, Sri Lanka.

2. P.L.M Kelanibandara, G.N.Wikramanayake, and J.S. Goonethillake,

“Software Reliability Estimation Based on Cubic Splines Network” ,

International Conference of Computer Science and Engineering,WCE

2009 , July 2009, London, U.K.

3. P.L.M Kelanibandara, G.N.Wikramanayake, and J.S. Goonethillake,

“Software Reliability Estimation Model Based on Curve Fitting Model”

, International Journal of Information and Communication Technology

emerging Regions, To be submitted, UCSC, Sri Lanka.

