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model, alone is an exploratory approach. A few 
confirmatory inferential approaches are also available 
in literature for testing various hypotheses about three-
way interaction3,4,8. The focus of this paper is a follow 
up of the work by Wickremasinghe and Johnson8. 
They developed a likelihood ratio test for testing 
subhypotheses in nonreplicated three-way experiments. 
The null distribution of some convenient approximation 
of this test statistic has been simulated, and critical points 
computed by them using Monte Carlo methods, for 
selected cases. Thus, the critical points for the test were 
only approximate.

	 In this paper, the above null distribution is 
re-examined for exact values of the test statistic. This is 
based on Monte Carlo simulations that require running 
the alternating least squares algorithm iteratively9. 
The software package MATLAB® is used for this task. 
Critical points are computed for selected cases based 
on exact values. A numerical example with real data is 
used for illustrating the methods. Finally, a comparison 
is made between the approximate and exact results based 
on pre-analyzed data.

METHODS AND MATERIALS

Modelling nonreplicated three-way data: Let the 
subscripts i, j, and k represent a general level for each 
of the three factors, say A, B, and C, having ℓ, m, and n 
levels respectively. In the absence of replication, usual 
model for nonadditive three-way data for any general 
response yijk 

is given by

ijk i j k ij ik jk ijk ijky                     ......  (1)                         

Abstract: In the absence of replication, conventional analyses 
do not provide ways to examine three-way interaction in three-
way experiments. Tucker3 analysis based on alternating least 
squares algorithm is a general approach that can be used in 
such cases. However, Tucker3 options are not available with 
standard statistical packages. A few methods for estimating σ2 

and testing for three-way interaction using a “single component” 
Tucker3 model are available in literature. A method based on 
a convenient approximation to a likelihood ratio test is also 
available in limited cases for testing three-way interaction in 
sub-areas once interaction is present. In this paper the null 
distribution of the above likelihood ratio statistic is simulated 
using Monte Carlo methods based on exact values obtained 
from Tucker3 analysis. Critical points are also obtained for the 
test for selected  cases. Though the package 3-WAY PACK®  

handles Tucker3 analysis it does not conveniently support 
WINDOWS® based simulations and therefore MATLAB® is 
used for the simulation. The method is illustrated using two 
examples involving real data.

Keywords: Exact critical points, testing subhypotheses, three-
way interaction, tucker3 analysis.  

INTRODUCTION

The primary objective of a three-factor factorial 
experiment, or simply a three-way experiment, is 
to examine the interaction between the three factors 
simultaneously. If the interaction is present, the 
interpretations would be somewhat messy; otherwise 
they would be straightforward. When the experiment 
is replicated, an analysis of variance (ANOVA) can be 
used to test for three-way interaction. If the experiment 
is nonreplicated, the usual ANOVA fails. For analyzing 
data in such cases, the Tucker3 model 1,2 has been 
considered as a general approach by many3-7. Tucker3 
analysis, i.e. analysis of three-way data using the Tucker3 
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For i  = 1,2,....,ℓ: j = 1,2,....,m; and k = 1,2,....,n, where 
μ is the general mean and αi , βj , and γk denote the 
corresponding levels of main effects of the three factors;  
τij is the interaction for the ith level of A and jth level of 
B. Similarly, ρik and øjk are defined and πijk is a three-way 
interaction term. It is assumed that all parameters except 
the random error term are fixed and subject to usual sum-
to-zero restrictions, and εijk are assumed to be i.i.d. N(0,σ2), 
where σ2  is unknown. For the purpose of estimating σ2, 
conventionally it has been assumed that πijk = 0. However, 
this assumption is not valid in the presence of three-way 
interaction. A previous study4 considered the generalized 
Mandel-Johnson-Graybill type model to three factors 
where πijk is replaced by a multiplicative interaction term 
c gi hj ek with new parameters c, gi, hj, ek with assumptions 
that  gi, hj, and ek, each sum to zero over the respective 
subscripts, and the corresponding vectors g, h and e have 
unit norm. This study proposed a likelihood ratio test for 
testing πijk = 0 in (1) by testing  c = 0. This generalized 
model for three factors is given by

ijk i j k ij ik jk i j k ijky cg h e                 ......(2)

Let d be the ℓmn-vector of residuals from (1) with 
πijk = 0;  j* denote a vector of all 1’s; and    denote 
the matrix direct product. Then, d = E0 y where 

* * * * * *1 1 1
0 ( ) ( ) ( )m m n nm nE I j j I j j I j j              which  is    

symmetric and idempotent. It follows that 
2

0 0 0( ) . ( ).Var d E Var y E E   				     , since E0 is symmetric and 
idempotent. Also, the representation for πijk is a  special 
case with  a single component (i.e. s = t = u =1) of the 
Tucker3 model applied to the residual array, given by

1 1 1

s t u

ijk ip jq kr pqr ijk
p q r

d g h e c 
  

   
                                           

					      	       ...... (3)

Three other alternative expressions exist. They are,

Dg = GCg (E'    H') + Eg ,  		        ...... (4)                                                                                      

Dh = HCh (G'    E') + Eh ,		        	         ..... (5)                                                                                                   

and

De = ECe (H'    G') + Ee , 		                       ..... (6)
                                                                                                 
where Dg is an ℓ×mn matrix version of d; G, H and E 
(with elements gip ,hjq , and ekr respectively) are the 
component matrices of order ℓ×s, m×t, and n×u; Cg is 
the s×tu matrix version of the s×t×u core array; and Eg is 
an ℓ×mn matrix of random errors. Models (5) and (6) are 
similarly defined. In practice, one needs to use only one 

of the versions as the results are invariant to the model 
expression. A short review on Tucker3 model and its 
applications is given by Wickremasinghe10. 

	 Critical points for the likelihood ratio test proposed 
by Marasinghe and Boik4 for testing c = 0 can be read 
from tables computed by Boik11 with n1 = ℓ – 1, n2 = m – 1, 
and n3 = n – 1. If the result of the test is that there is no 
three-way interaction, then a conventional analysis of 
main effects and two-factor interactions would be made. 
If the result says three-way interaction is present, one may 
obtain a suitable estimate of σ2 and examine the pattern of 
this interaction and then analyze the data on those lines. 
Another option in this situation is to locate a sub-area free 
of three-way interaction, and then use it for conventional 
analysis. This is particularly useful when the sub-area 
consists of all the data except a few observations. In 
the latter, Wickremasinghe and Johnson8 developed a 
likelihood ratio test for testing subhypotheses  in model 
(2). This model has been commonly used in literature 
mainly because s = t = u =1 in the Tucker3 model gives 
an adequate fit to most small to moderate three-way data 
sets. This study is a follow up of their  work. 

Testing subhypotheses in three-way data: 
Wickremasinghe and Johnson8 proposed a likelihood 
ratio test for testing  H0 : Sg = 0, Th = 0, and Ue = 0 
where Sq0×ℓ ,Tr0×m , and Us0× n are contrast matrices of 

ranks q0 (< ℓ – 1), r0 (< m –1), and s0 (< n –1) respectively. 
If not rejected, the test would help identify a sub-area 
free of three-way interaction. The test is to reject H0 

for small values of 
2

*2

ˆ
ˆ

d d c
d d c
 

 
 

 , where d is as above, 
ĉ2 is the maximum likelihood estimate of c2 as given 
by Marasinghe and Boik4, and ĉ*2 is the square of the 
largest three-mode singular value of D*= (I – S–S) D 

(( I –T –T )   (I – U–U )) where D ℓ× mn is one of the three 
matrix versions of the vector d ; S – ,T – and U – denote 
the Moore-Penrose g-inverses of the corresponding 
matrices, respectively. Wickremasinghe and Johnson8 
simulated the null distribution of Λ for q0 = r0 = s0 = 1 after 
replacing ĉ2 by the min(ℓ1, m1, n1) and ĉ

*2 by the largest 
characteristic root of D* D*' , where ℓ1, m1, and n1 denote 
the largest characteristic root of DD' for the three matrix 
versions respectively. They also computed critical points 
for the test based on this approximation. The reason for 
using the  approximation has been twofold: First, See and 
Smith3 suggested that the above approximation works 
well for model (2) when the test for c = 0 is significantly 
rejected; Second, it was the lack of proper software at the 
time to compute the actual values of ĉ2 and ĉ*2 , which 
involve running the alternating least squares algorithm 
repeatedly for each case.
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RESULTS AND DISCUSSION

Simulation study

To carry out the above likelihood ratio test8 one needs to 
compute critical points based on the exact null distribution 
of the statistic Λ. Since the theoretical derivation of the 
null distribution of Λ is extremely difficult, the only 
other alternative is to simulate the null distribution using 
Monte Carlo methods.

	 In this study, the null distribution of Λ was simulated 
for several cases using the actual values of ĉ2 and ĉ*2. This 
was done for the case q0 = r0 = s0 = 1, and without loss of 
generality assuming σ 2 =1. 

Let Cℓ be any ℓ × ( ℓ–1) matrix of contrast coefficients 
satisfying 
Cℓ' Cℓ = I ℓ –1 and 1C C I j j  .
The ℓmn-vector of residuals, d, can be transformed into 
an (ℓ–1) (m–1) (n–1)-vector z  by z = (Cℓ ⊗ Cm ⊗ Cn)'d. 
This, gives
Var (z) = (Cℓ' ⊗ Cm' ⊗ Cn' ) Var (d) (Cℓ ⊗ C m ⊗ C n ). 

	 Now, by replacing Var(d) by σ2 E0 and using the 
properties of the contrast matrices, one gets Var(z)=σ2 

I (ℓ−1)(m−1)(n−1) which gives a reduction in dimension as 
well as independent components. These results were 

used by us following the same approach discussed by 
Wickremasinghe and Johnson8 for generating Λ under 
the null conditions, as follows:

	 The vector z was generated as z~N(µ,1) where µ is 
an (l−1)(m−1)(n−1)×1 vector of all zeros except that the 
first entry has value δ(=‌|‌c|/σ). Then vector z* was defined 
as the first (l−2)(m−2)(n−2) elements of z. Using these 
two vectors z and z*, ĉ2 and ĉ*2 were obtained through 
a MATLAB® programme Tuck3F.m (Appendix) which 
was called as a function inside another MATLAB® 
programme Simul.m (Appendix). Tuck3F.m performs 
Tucker3 analysis using alternating least squares algorithm 
as explained by Kroonenberg and De Leeuw9. Several 
combinations of l, m, and n with l ≥ m ≥ n, and for each 
combination δ ranging from 0 to 15, were selected for 
the simulation. The programme Simul.m was used for 
generating 1000 values of Λ for each l, m, n, and δ, and 
to obtain the average of ĉ2 over all 1000 values in each 
case. 

	 The empirical distribution was studied for the cases  
3×3×3 through 8×8×8 using the generated Λ values, and 
the exact null distribution was approximated by a beta 
distribution8 by the method of moments after smoothing 
the mean and the variance of the generated values using 
a nonlinear function of the form f (δ)=α(1–be– cδ2). This 
follows the observations that mean and the variance 
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Figure 1:	 Beta Q-Q plots for 3 ×3×4  and selected values of δ
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Simul.m, and they are 5.85, 7.57, 9.45, 10.88, and 9.88 
for the cases 3×3×3, 3×3×4, 3×3×5, 3×3×6 and 3 ×4×4 
respectively.

Examples

Experiment (1)

Wickremasinghe and Johnson8 analyzed a 3×3×4   
portion of a data set previously analyzed by Marasinghe 
and Boik4. This portion of data involve hardness of gold 
fillings made by 3 dentists (Dent 1, Dent 2, and Dent 3) 
under 3 methods of condensation (Cond 1, Cond 2, and 
Cond 3)  using 4 types of gold (Type 1, Type 2, Type 
3, and Type 4). The residual sum of squares (d'd) is 
33.1107 with 12 degrees of freedom. The residuals were 
decomposed using model (3) with single component 
(i.e. s = t = u = 1). The test for three-way interaction4, 
has been rejected at 1% level. The estimates of the 
parameters given by Simul.m (Appendix) are ĉ = 5.5269, 
ĝ' = (.0707, -.8364, .4171, .3485), ĥ' = (.2759, -.8035, 
.5275), ê' = (-.8110, .4875, .3234) which closely agreed 
with those given in the previous study 8 except for the 
signs of ĉ and some elements of the three vectors. This is 
quite acceptable due to properties of  Tucker3 solution10. 
A residual analysis was also carried out to check the 
assumptions on the errors in model (2), and it was found 
that the assumptions were not violated. 

	 All possible 54 hypotheses of rank 1 of the form  
H0: gi = gi' , hj = hj' , and ek = ek' were tested using our 

were increasing functions of δ and the relationship could 
well be modeled by the above nonlinear function. The 
goodness-of-fit of beta was tested using beta Q-Q plot. 
Figure 1 shows a sample of beta Q-Q plots for the case 
3×3×4 for δ = 1, 5, and 10. It was found that beta fitted 
very well for the null distribution of Λ in the smaller 
cases 3×3×3, 3×3×4, 3×3×5, 3×3×6 and 3×4×4 when the 
exact values were used. For these cases, 1%, 5% and 10% 
critical points for the test were computed for δ=0-10, and 
are given in Table 1. For δ > 10, one can read the table for 
δ =10 as the critical points were approximately the same. 
The reason for this is the fact that the nonlinear function 
f (δ)=α(1–be– cδ2 ) leveled off at values smaller than δ=10 
for both the mean and the variance in the cases studied. 
As a result, the smoothed parameters were constant after 
some point, depending on the combination but definitely 
for values of δ < 10. This resulted in giving the same 
critical points after some value for δ. One can easily see 
that in Table 1 for the combination (3, 3, 3) the critical 
points were almost constant for  δ > 6, and for (3, 3, 4) 
this was true for δ > 8. For the other combinations, the 
critical points were approximately the same for δ > 10. 
[For example, in the case (3, 3, 6) the values for δ =11, 
and δ =12 were (.411, .542, .613) and (.411, .542, .613) 
respectively.] 

 	 To actually carry out the test, one needs to know 
the value of  δ. This was estimated by using the method 
proposed by Wickremasinghe and Johnson8. This requires 
computing δ111=Ec2=0 (ĉ

2 / σ2) for each selected combination 
of  l, m, and n. These  were automatically obtained from 

	 Table 1:  One percent, 5%, and 10% critical points for the likelihood ratio test for selected cases of l, m, and n with l ≥ m ≥ n and δ 	
		  ranging from 0 to 10

	 (n,m,l)	 α	 δ		
			   0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

	 (3,3,3)	 0.01	 0.0421	 0.0437	 0.0499	 0.0594	 0.0665	 0.0693	 0.0699	 0.0699	 0.0700	 0.0700	 0.0700
		  0.05	 0.0873	 0.0949	 0.1157	 0.1398	 0.1552	 0.1606	 0.1617	 0.1619	 0.1619	 0.1619	 0.1619
		  0.10	 0.1218	 0.1350	 0.1684	 0.2041	 0.2252	 0.2323	 0.2338	 0.2339	 0.2340	 0.2340	 0.2340												          
	 (3,3,4)	 0.01	 0.1112	 0.1124	 0.1396	 0.1758	 0.1970	 0.2054	 0.2079	 0.2084	 0.2085	 0.2085	 0.2085
		  0.05	 0.1856	 0.1932	 0.2361	 0.2883	 0.3204	 0.3338	 0.3379	 0.3389	 0.3390	 0.3391	 0.3391
		  0.10	 0.2351	 0.2475	 0.2995	 0.3600	 0.3978	 0.4140	 0.4190	 0.4201	 0.4203	 0.4203	 0.4203												          
	 (3,3,5)	 0.01	 0.1551	 0.1759	 0.2230	 0.2657	 0.2901	 0.3019	 0.3085	 0.3133	 0.3173	 0.3207	 0.3235
		  0.05	 0.2427	 0.2694	 0.3300	 0.3876	 0.4228	 0.4394	 0.4468	 0.4510	 0.4541	 0.4567	 0.4588
		  0.10	 0.2984	 0.3277	 0.3947	 0.4593	 0.4998	 0.5186	 0.5262	 0.5298	 0.5321	 0.5341	 0.5356												          
	 (3,3,6)	 0.01	 0.2134	 0.2343	 0.2833	 0.3332	 0.3680	 0.3886	 0.3999	 0.4057	 0.4084	 0.4096	 0.4100
		  0.05	 0.3107	 0.3357	 0.3946	 0.4555	 0.4983	 0.5218	 0.5330	 0.5378	 0.5399	 0.5407	 0.5410
		  0.10	 0.3694	 0.3961	 0.4591	 0.5244	 0.5702	 0.5945	 0.6050	 0.6092	 0.6108	 0.6114	 0.6116												          
	 (3,4,4)	 0.01	 0.1984	 0.2187	 0.2658	 0.3126	 0.3450	 0.3651	 0.3776	 0.3853	 0.3898	 0.3923	 0.3935
		  0.05	 0.2953	 0.3202	 0.3785	 0.4374	 0.4781	 0.5009	 0.5126	 0.5188	 0.5221	 0.5238	 0.5246
		  0.10	 0.3545	 0.3815	 0.4445	 0.5086	 0.5526	 0.5760	 0.5867	 0.5917	 0.5942	 0.5954	 0.5960
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critical points. The estimate8 of *2ˆ   which involves 
δ111(= 7.57) is .5788 and 2 2 *2ˆ ˆ ˆ/c   30.5466/.5788 
= 52.77, which gives an estimate of δ approximately 
equal to 7. The 1%, 5%, and 10% critical points from 
Table 1 corresponding to 3×3×4 and δ =7, are .2084, 
.3389, and .4201 respectively. All but the 3 hypotheses, 
H0 : g1 = g3, h1= h3 , and e2 = e3 ; H0 : g1 = g4, h1= h3 and 
e2 = e3 ; and H0 : g3 = g4 , h1= h3; and  e2 = e3 for which Λ 
was .4931, .5374, and .6256, respectively, were rejected 
at 1% level. This result is the same as reported in the 
previous study8 based on approximate critical points. 

Experiment (2)

Average girth increments over 4 consecutive periods for 
3 Hevea clones tested under 4 different densities were 
analyzed. The data with real identifications suppressed, 
are given in Table 2. The residuals from (1) withs πilk = 0, 
of the 3×4×4 dataset in Table 2 were decomposed using 
single component Tucker3 model. The residual sum 
of squares was 7.9812 with 18 degrees of freedom. 
The initial test by Marasinghe and Boik4 suggested the 
presence of three-way interaction. The estimates of the 
parameters given by Simul.m (Appendix) are ĉ2 = 5.890, 
ĝ' = (-.5847, .7864, -.1993, .0005), ĥ' = (-.8587, .2050, 
.2666, .3866), and ê' = (-.5771, -.2141, .7881) where the 
vectors g, h, and e correspond to Period, Density and 
Clone, respectively. A residual analysis was also carried 
out to check the assumptions on the errors in model (2), 
and it was found that the assumptions were not violated. 
The estimate8 of *2ˆ  which involves δ111(= 9.88) is .2575 

and 2 2 *2ˆ ˆ ˆ/c  5.89/.2575 = 22.87, which gives an 
estimate of δ approximately equal to 5. The corresponding 
5% and 1% critical values from Table 1 are .5009 and 
.3651 respectively. All possible 108 hypotheses of rank 1 
of the form H0 : gi = gi hj= hj' , and ek = ek ' were tested using 
these critical points. All but 9 hypotheses were rejected 
at 1% level. The hypotheses that were not rejected can 
be combined as H0 : g1 = g3 = g4, h2= h3= h4 and e1 = e2 . 
Using the methods discussed earlier 8, 12, it is easy to see 
that the sub-area identified by this combined hypothesis 
is nothing but the one without the single observation 
corresponding to (g2, h1, e3). This is actually the value 
corresponding to Period 2, Density 1, and Clone 3. From 
Table 2, it appears that it is the highest value (3.86). 
This suggests that if one analyzes the data in Table 2 
without this observation, then the problem of three-way 
interaction does not arise, and one can interpret main 
effects and two factor interactions in the usual way. A 
detailed analysis of this data along with interpretations 
will be discussed elsewhere.

CONCLUSION

In this paper we have obtained exact critical points to 
go with the likelihood ratio test8 to identify a sub-area 
free of three-way interaction. These critical points were 
obtained using Monte Carlo methods with the help of a 
few MATLAB® programmes. The beta approximation 
worked well only for the smaller cases 3×3×3, 3×3×4, 
3×3×5, 3×3×6, and 3×4×4. the two examples with 
real data illustrate the methods. In the first example 
the conclusions obtained were the same as those made 
by wickremasinghe and Johnson (2002) where a 
convenient approximation of the test statistic has been 
used for computing critical points. It appears that the 
approximation8 worked well for the 3×3×4 data set. 
However, this may not be true in general. The second 
example demonstrated that the method can be used as a 
viable alternative in the analysis of crop data in certain 
situations. This paper did not focus on estimating σ2 in 
the presence of three-way interaction, as this has been 
previously discussed 4,8. Work is underway involving 
cases beyond 3×4×4.

Acknowledgment

This work is supported by the research grant  RG/2005/
FR/01 from the National Science Foundation of Sri 
Lanka. The authors wish to thank the Rubber Research 
Institute of Sri Lanka for permission to use their data 
for example (2), and also the referees for their valuable 
comments.

	 Table 2:   Girth increments (cm) over 4 consecutive periods for 	
		  3 Hevea clones tested  under 4 different densities

	 Clone	 Density	 Period
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		  D4	 2.36	 1.00	 2.17	 2.65

	 Source: 	Rubber Research Institute of Sri Lanka, Annual 
		  Reviews 2001-2005
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Appendix 

Programme function Tuck3F.m
%This function calculates the Core matrix and 
Parameter
%Estimates of the Tucker3 decomposition.
 %It returns Core matrices (Cv1, Cv2, Cv3) corresponding 
to  
%variable-1, variable-2 and variable-3 and variable 
parameter estimate  
%matrices (V1, V2, V3) when the residuals are fed to the 
function in a %vector form (Mat) with the levels of three 
variables (l, m, n).
 
function [Cv1,Cv2,Cv3,V1,V2,V3,iter]=Tuck3F(Mat,l,
m,n);
% l=fast moving  -- m=mid moving -- n=slow moving
A=Mat(:,1);
s=1; t=1; u=1;
Zg=ygg(A,l,m,n); % Calling ygg function => l*mn 
matrix
Zh=yhh(A,l,m,n); % Calling yhh function => m*nl 
matrix
Ze=yee(A,l,m,n); % Calling yee function => n*lm 
matrix
 
GZZ=(Zg)*(Zg)' ;
HZZ=(Zh)*(Zh)' ;
EZZ=(Ze)*(Ze)' ;

[G,dG]=eig(GZZ);    % Calculating Go eigenvector
for i=1:s 
    Go(:,i)=G(:,l-i+1);
end;
 [H,dH]=eig(HZZ);    %Calculating Ho eigenvector
for i=1:t 
    Ho(:,i)=H(:,m-i+1);
end;
 [E,dE]=eig(EZZ);    %Calculating Eo eigenvector
for i=1:u 
    Eo(:,i)=E(:,n-i+1);
end;
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
% The Test and the Parameter Estimates
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%

G=Go; H=Ho; E=Eo;
P=Zg*kron((E*E' ),(H*H' ))*Zg';
ssf=trace(G' *P*G);
crit=1;
k=0;
while (crit>0.0001)
    gbp=inv(sqrtm(G'*P*P*G));
    Gn=P*G*gbp;
    Q=Zh*kron((Gn*Gn'),(E*E'))*Zh';
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    hbp=inv(sqrtm(H'*Q*Q*H));
    Hn=Q*H*hbp;
    R=Ze*kron((Hn*Hn'),(Gn*Gn'))*Ze';
    ebp=inv(sqrtm(E'*R*R*E));
    En=R*E*ebp;   
    
    Pn=Zg*kron((En*En'),(Hn*Hn'))*Zg';
    
    ssfn=trace(Gn'*Pn*Gn);
    crit=abs(ssfn-ssf);
    G=Gn; 
    H=Hn; 
    E=En;
    P=Pn;
    ssf=ssfn;
    k=k+1;
	 end
 
	 V1=E;
	 V2=H;
	 V3=G;
 
	 %%%%%%%%%%%%%%%%%%%%%%%%%	
	 %%%%%%%%%%%%%%%%%%
	 % Final core matrices
	 %%%%%%%%%%%%%%%%%%%%%%%%%	
	 %%%%%%%%%%%%%%%%%%

	 Cg=G'*Zg*kron(E,H);
	 Ch=H'*Zh*kron(G,E);
	 Ce=E'*Ze*kron(H,G);

Cv3=Cg;
Cv1=Ch;
Cv2=Ce;
iter=k;

Programme function  Simul.m

%This function returns lambda vector of length ‘cases’ 
and corresponding %average C square value for a given 
delta. 
function [lambvec,avgCsqr]=Simul(l,m,n,delta,cases);
Z=Zgen(l-1,m-1,n-1,delta,cases); %% calling function 
‘Zgen’
Zstar=Z(:,1:(l-2)*(m-2)*(n-2));
 
totCsqr=0;
for i=1:cases
    Zvec=Z(i,:)'; 
    Zstarvec=Zstar(i,:)';
	 C=Tuck3F(Zvec,l-1,m-1,n-1);
	 Cstar=Tuck3F(Zstarvec,l-2,m-2,n-2);
	 lambda=(Zvec'*Zvec-C*C)/(Zvec'*Zvec-Cstar* Cstar);
	 Csqr=C*C;
    veclambd(i,1)=lambda;
    totCsqr=totCsqr+Csqr;
end;
 
lambvec=veclambd;
avgcsqr=totCsqr/cases;


