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Abstract: Ordinal categorical responses occur commonly in 
real world situations and many authors discuss the advantages 
of  this type of  response. Generalized logit models are  popular  
for analyzing  ordinal categorical responses. Of these models, 
the proportional odds model is the simplest to interpret. 
However, Lipsitz et al. illustrate that the goodness of fit statistics 
provided by standard statistical packages for this model may 
not be reliable in justifying the fit of the model. There is no 
freely available software for computing and analyzing residuals 
or expected counts for these models.

In their paper, Lipsitz et al. propose several goodness of fit 
statistics and residual analysis that are suitable for ordinal 
response regression models. However, the new methods 
are applied to a small artificial set of data. In this paper, the 
methods of Lipsitz et al. are examined, programmes developed 
in SAS and S-plus softwares and the methods applied to a large 
scale real-life data set on  HIV/AIDS/STD. A proportional odds 
model was fitted to this data and goodness of fit and residual 
analysis were carried out using the methods of Lipsitz et al.

The methods examined  suggest that the goodness of the fitted 
model is satisfactory.  According to the methodology, the 
expected counts, residuals and approximated (standardized) 
residuals were calculated and the overall goodness of fit of our 
model and the reliability of the chi-square approximation of the 
goodness of fit statistics were confirmed.

Keywords: AIDS study, goodness of fit, ordinal categorical 
data, proportional odds model, residual analysis 

INTRODUCTION

Standard methods of goodness of fit statistics such 
as likelihood ratio deviance and Pearson chi-square 
statistics, which compare the fit of the model with the 
saturated model, are available for most of the ordinal 
regression models for categorical responses. These 

measures can be directly obtained from most of the 
established statistical packages. However under the 
null hypothesis of a well fitted model, the distribution 
of the Goodness of fit statistics are even approximately 
chi-square distributed only if most expected counts 
formed by the cross classification of the response levels 
and all covariates are greater than 5. If many of these 
expected counts (more than 20%) are less than 5, then 
the usual Likelihood ratio deviance or Pearson chi-square 
statistics may not be appropriate for testing the goodness 
of fit of the model1. 

 For a continuation ratio model2, which is a kind of 
model that can be fitted to an ordinal categorical response 
with more than two categories, the goodness of fit 
statistics and residual analysis available for binary logistic 
regression such as the Hosmer-Lemeshow statistic3 can 
be applied since the model actually is a combination of 
two or more independent binary logistic models. 

 The proportional odds model4, is an alternative 
for modeling an ordinal response with more than two 
categories. It differs from the continuation ratio model as 
the proportional odds model has the additional feature of 
proportionality of odds. This feature while simplifying 
interpretation leads to the combination of binary logit 
models which are not independent to each other. This 
results in complications in obtaining residuals from 
available statistical packages. 

 Lipsitz et al. 5 suggest a novel approach for testing the 
goodness of fit of the proportional odds models and 
for computing its residuals and expected counts. This 
alternative approach is basically an extension of the 
method proposed by Hosmer and Lemeshow3 in 
testing goodness of fit of logistic models for ordinal 
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binary responses. This method is based on the notion 
of partitioning the subjects into groups or regions. The 
goodness of fit statistic is calculated as a quadratic 
form in the observed minus expected responses in 
these regions or partitions. This concept of partitioning 
the covariate space into regions was actually initiated 
by Tsiatis 6, but he was unable to provide a particular 
method for how the partitioning should be done. Later, 
Hosmer and Lemeshow3 proposed the partitioning 
of subjects into regions on the basis of the percentiles 
of the predicted probabilities from the fitted ordinary 
(binary) logistic regression model. However, Hosmer 
and Lemeshow did not extend their methodology to suit 
ordinal categorical responses with more than 2 categories 
(polytomous). Lipsitz et al.5 extended the method of 
Hosmer and Lemeshow for models with polytomous 
categorical responses which are of ordinal scale, in a 
way that the covariate space can be partitioned into a 
suitable number of regions on the basis of the percentiles 
of the predicted mean scores (a formulation of predicted 
probabilities) of the fitted model. They have also showed 
that the residuals (observed minus expected counts) can 
be computed for the cross classification of the response 
levels and these regions. 

 Lipsitz et al.5 have illustrated their novel 
methodologies of goodness of fit and residual analysis for 
ordinal categorical responses (polytomous) by applying 
the methods to a small data set of 25 observations and 4 
covariates. Other than that, an application or a practice of 
these novel methods could not be found in the literature 
of analyzing ordinal categorical data. However, in 
practice usually data sets are large with many covariates, 
sometime resulting in a large percentage of cells with 
expectations less than 5. Thus, it is essential to test this 
method on a real life data set. 

 This paper is written with the objective of 
exemplifying the methodologies of Lipsitz et al. 5 using 
a large data set. This large data set is from the HIV/
AIDS/STD Control Programme7 in Sri Lanka which 
is a baseline survey to assess the knowledge of HIV/
AIDS of plantation workers in the up-country estates of 
Sri Lanka. The response variable–‘Knowledge of HIV/
AIDS’ – has a natural ordering with 3 levels, 1-Good, 
2-Fair and 3-Poor. A proportional odds model was 
fitted to this ordinal categorical response along with the 
explanatory variables which represent the demographical 
characteristics and sexual behaviors of the respondents, 
and goodness of fit and residual analysis were carried out 
using the method of Lipsitz et al. 5. 

 Further, as Lipsitz et al.5 have not provided any 
software programmes for the analysis, this paper sets out 

to develop software programmes in SAS, and S-Plus as a 
secondary objective.  

 Under the methods and materials, the underlying 
theories and methodologies of the novel methods of 
goodness of fit tests and residual analysis proposed by 
Lipsitz et al.5 are briefly explained. An example, which is 
a complete illustration of the methods proposed, is given 
in the results. All the results and conclusions drawn within 
the entire structure of this paper are comprehensively 
presented under the discussion and conclusion. Finally, 
the Annex provides some important SAS and S-plus 
codes that were developed for the statistical analysis of 
this study.   

METHODS AND MATERIALS

Proportional odds model4: Models for categorical 
variables can easily be extended from logistic models 
which handle only two outcomes1,2 to cope with 
polytomous response variables.

 Suppose there is a R-category ordinal response 
variable with 2 explanatory variables A and B having I 
and J categories respectively. 

Then the proportional odds model is given by,

log
1

ijr A B
r i j

ijr

Q
Q

  
 

     
 ;

 i  = 1,....,I   j = 1,....., j   r = 1,....,(R-1)    ............ (1)
 
This model assumes that the effect of the explanatory 
variables A and B on the odds of response below category 
r (i.e. L.H.S. model) is the same for all r. 

where,

Pijr =  Pr [response r for an observation with explanatory  
 variables (i, j)]
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The log odds of response below category r for a person 
with levels (i,j) for A and B respectively is given by 
equation (1). The log odds of response below category r 
for a person with levels (i',j') for A and B respectively is

 log
1

i j r A B
r i j

i j r

Q
Q                      

 ...........(2)

The log odds ratio of response below category r for a 
person with levels ( ),i j  to a person with levels ( ),i j′ ′
for A and B respectively is
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This shows that the log of the odds ratio (i.e. the L.H.S.) 
is constant over all values of  r =1,…,(R-1). This property 
is called the proportional odds and thus this model is 
called the proportional odds model.

Testing proportionality of odds – score test 8: The score 
test is used to test the validity of the proportional odds 
assumption where it tests the null hypothesis “H0: the 
effect of the explanatory variables A and B on the odds 
of response below category r is the same for all r”.
 
Suppose the parameter vector (  ) of the proportional 
odds model (1) is,
 

  1 2 R 1 1 2 R 1
', ,..., , , ,,... ,   

where    A B
r ir jr
' ,  

Then, the multivariate analogue of the quasi-score 
function9  for model (1) is,

  

n
1t

t t t
t 1

'
eU V (Y - e )  

where, 

t = 1,2,….,n (number of individuals in the sample), Yt  is 
the ordinal response (with R levels) for the t th individual, 
which is a (R-1)x1 vector such that 

t t1 t 2 t( R 1 ) Y Y ,Y ,...,Y −
′ =   , 

where Ytr = 1 when the response of the t th individual is r, 
and 0 otherwise,

te is the mean of tY { i.e. ( )t t t1 t 2 t( R 1 )E Y e e ,e ,...,e −
′ = =   }

and, tV  is referred to as the working covariance matrix of 
tY  vector, which contains (R-1) multinomial variables.

U  is asymptotically multivariate normally distributed, 
and hence a score-like statistic ( S ) to test the null 
hypothesis of proportional odds model (that is, H0 : 

1 2 R 1...   ) can be derived as follows, 

  0 0 0
1' ˆ ˆ ˆS U ( )W ( )U( )  

where 0
ˆ   notation indicates that U  and W are evaluated 

under the null hypothesis, that is, at r
ˆ   and rˆ   

for 1,..., (R-1)r = .

The asymptotic distribution of S  is chi-square with 
(R-2)P degrees of freedom where P is the number of 
parameters of the explanatory variables in the model. 
If the p-value corresponding to this test statistic is 
greater than 0.05 then the fitted model satisfies the 
proportional odds assumption. If it is less than 0.05, then 
the fitted model does not satisfy the proportional odds 
assumption. 

Ordinary methods in testing Goodness of fit1,2: For 
ordinal regression models with categorical predictors, the 
usual Likelihood ratio deviance and Pearson chi-square 
statistics which measure the fit of the given model versus 
the saturated model can be used. If the P-value given by 
the test is greater than 0.05, then the model fits the data at 
5% significance level.

 However, as mentioned in the introduction, for 
the chi-square distribution to be a good approximation 
to the distribution of the Goodness of fit test statistics, 
most expected counts (formed by the cross classification 
of the response levels and all covariates) should be 
greater than 5. If many of those expected counts are 
less than 5, then the score test statistic used for testing 
the proportional odds assumption is suggested as an 
appropriate test statistic for testing the Goodness of fit of 
the proportional odds models4.

Alternative approach in testing Goodness of fit 5: When 
most expected counts are not greater than 5, there are 
some alternative approaches other than the score test 
statistic that can be used to assess the Goodness of fit. The 
Hosmer-Lemeshow test statistic3 is one of the alternative 
approaches for testing the fit of ordinal logistic regression 
models with binary responses. As an extension of the 
case of binary, an alternative approach on testing ordinal 
polytomous response variables have been proposed by 
Lipsitz et al 5.

 To form the goodness of fit statistic used in this 
alternative approach, firstly a score sr is assigned to 
response category r. The assigned scores may in some 
instances be the actual numerical response or the midpoint 
of the interval when the response is a crude grouping of 
an underlying continuous variable. When the response 
has no underlying numerical scale, such as a response 
with 3 levels – poor, moderate, good – often an integer 
score is used such as, 1=poor, 2=moderate, 3=good.

Then a fitted score or a predicted mean score can be 
defined as,
  

1

ˆ ˆ
r

t l tl
l
s p  

 
; t = 1,2,…..,n           ................. (4)
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where n is the number of subjects and 1 2ˆ ˆ ˆ, ,...., t t trp p p  
are the predicted probabilities for the tth subject for the 
r response levels.

 Then to form the Goodness of fit statistic, the 
subjects should be partitioned or grouped into G regions 
based on the percentiles of the predicted mean scores ˆ t  . As a general rule, the value of G should be decided 
such that 6 ≤ G < n/5r. In practice, any G that satisfies 
the inequality can be used; for the Hosmer-Lemeshow 
statistic3 for binary responses, G = 10 has become 
popular. The G regions can be partitioned such that the 
first group contains subjects with smallest predicted 
mean scores and the last group contains subjects with 
largest predicted mean scores. 

 Given the partition of the data, the goodness of fit 
statistic is formulated by defining G–1 group indicators, 
    
                1  ; if  ˆ t    is in region g        Itg        0  ; if otherwise

where g = 1, 2, …,G – 1.

Suppose the fitted proportional odds model is,   
                                 
log ( ) Xtr r t tit Q              ................. (5)

where tX  is the design matrix and t   is the vector of 
parameters (coefficients) for the tth subject. 

Then to assess the Goodness of fit of model (5) the 
following alternative model can be constructed. 

1

1
log ( ) X

G

tr r t t tg g
g

it Q I  

   
               ................. (6)

where g   is the coefficient corresponding to the indicator 
variable Ig.

 If model (5) is correctly specified, 
1 2 1....... 0G   in equation (6), regardless 

of how the regions are chosen. (Regardless of what scores 
are used). To assess the goodness of fit of model (5), the 
Likelihood ratio, Wald or the Score test statistic can be 
used in testing 0 1 2 1H : ....... 0G  . If model 
(5) has been correctly specified, each of these statistics 
has an approximate chi-square distribution with G-1 
degrees of freedom when the sample size (n) is large.

Expected counts and residuals 5: It has already been 
mentioned in this paper that the Goodness of fit test 
statistics follows the assumed chi-square distribution 
only if most of the expected counts are greater than 5 
(at least 80%). This indicates the necessity of studying 
the behaviour of expected counts in order to assess the 

appropriateness of Goodness of fit statistics of a fitted 
model. The residuals at the same time should be studied 
carefully so that if any inadequacy is found, it is easy to 
locate where the error is present. 

 The conventional method of analyzing the residuals 
of ordinal categorical data is computing residuals for 
each level of response in each region specified in the 
previous section.

•  The residual for the rth level of response in gth region is,
 

  O Egr gr−

where O and Egr gr  are observed and expected counts for 
the rth level in gth region. The estimated expected counts 
(number of subjects) with response r in region g is given 
by, 

   1

ˆE
n

gr tg tr
t

I p
=

= ∑

where  ˆ trp  is the predicted probability for the tth subject 
with the rth response level.

•  The  approximation  to  the  estimated  variance  of  
 residual for the rth level of response in gth region is,

  ˆ (O E ) (1 )gr gr g gr grVar n p p− ≈ −

Where gn is the number of subjects in region g and grp
is the mean predicted probability of rth level of response 
in gth region. 

  

i.e. 1

ˆ E
E

n

tg tr
grt

gr gr
g g

I p
p

n n
== = =
∑

 

• The approximated (standardized) residual for the rth  

 level in gth region is,

O E

E (1 E )
gr gr

gr
g gr gr

R
n

−
=

−       
....................... (7)

The expression (7) for computing approximated residuals 
is occupied only when the predicted probabilities ˆ trp

 are 
fairly similar in each group and hence

 tr grp p≈ . Under 
 the null hypothesis, when gn is large, grR  is approximately 
normal with mean 0 and variance slightly less than 1. 
That is E (1 E )g gr grn −

 
tends to over estimate the variance 

of O Egr gr− . Thus, the expression (7) can be adjusted as 
follows to formulate residuals which are more closely 
approximates the standard normal distribution under the 
null hypothesis. 

{
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where
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1 1ˆ

G R
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, which can be considered as an 

estimated common standard deviation of GxR number of 
grR ’s. As a rough rule of thumb, if more than 5% of the 
grR

 
s (or *

grR s) is not within the band -2 to +2, then special 
attention should be paid on the profile of the covariates, 
response and predicted response for each of the subject 
within those regions.

RESULTS

 The HIV/AIDS/STD related baseline survey among 
plantation workers in Sri Lanka-20057 is one of the 
recent surveys conducted by the HIV/AIDS/STD Control 
Programme. In this study, the collected data of the said 
survey was taken into consideration as an example 
based on a large sample (with 594 plantation workers 
responding to the questions based on their knowledge 
of HIV/AIDS and STDs, social and demographical 
background and sexual behaviours), to illustrate how the 
new methods that were comprehensively presented in 
this paper can be applied to a large scale problem.

 The study of this data was mainly to determine the 
factors that have significant influence on the knowledge of 
HIV/AIDS of plantation workers. In accomplishing this 
requirement, ordinal categorical response -  knowledge 
of HIV/AIDS - which consists of three levels – ‘poor’, 
‘fair’ and ‘good’ – and important explanatory variables 
(filtered from a large set of variables, by using univariate 
analysis) – gender (sex), age group (age), education 
level (edu), ethnic group (ethn), frequency of condom 
use (frqc), level of knowledge of STDs (kstd), level of 
exposure to mass media (comm) and level of sexual 
practices (prac) of the respondent – are incorporated into 
the modeling procedure.

 According to the main aspect of this study, a 
proportional odds model for our response, which is 
a polytomous categorical variable in ordinal nature, 
is fitted in order to carry out the Goodness of fit and 
residual analysis. The forward selection procedure1 
is used in the SAS statistical software to carry out the 
model selection. 

 Finally, the Goodness of fit and residuals of the 
selected model is evaluated by incorporating the 
predicted values of the model using several programmes 
written in both SAS and S-plus softwares (Annex). The 

software programmes were written to incorporate the 
methodologies described in this section which were 
actually proposed by Lipsitz et al.5.

The proportional odds model selected by the forward 
selection procedure1 is,

                         ; r =1,2

log ( )

  ... (9)

agesex edu ethn
r i jrijklmnpq k l
frqc prackstd comm
m n p q

it Q

  

where  i   = 1  (male), 2 (female)    
  j  = 1  (18 to 29), 2 (30 to 39), 3 (40 to 49)    
  k  = 1  (no education), 2 (primary), 3 (secondary  
    or higher)  
  l  = 1  (tamil), 2 (other)  
           m = 1  (no), 2 (low), 3 (moderate), 4 (high)  
  n  = 1  (poor), 2 (fair), 3 (good) 
  p = 1  (low), 2 (medium), 3 (high) 
  q  = 1  (low), 2 (medium), 3 (high)

The variables in the selected model have been defined 
earlier in this section.

Testing the proportionality of odds

The model (9) should satisfy the assumption of 
proportional odds to be fully accepted as a ‘proportional 
odds’ model. If this model fails the assumption, then a 
continuation ratio model instead of a proportional odds 
model should be fitted.

 The score test statistic for proportional odds 
assumption is the option in achieving the objective 
mentioned above. The test is designed to test the 
hypothesis,

 H0 : The proportional odds assumption is valid 
 vs. 
 H1 : The proportional odds assumption is not valid

The results of the score test given by the “SAS” proc 
logistic procedure is given in Table 1.

Since the p-value of the score test is 0. 127 ( >> 0.05),  
H0 cannot be rejected at 5% significant level. Thus, the 
model (9) satisfies the proportional odds assumption and 
hence it is not necessary to go for a continuation ratio 
model.

Testing the Goodness of fit

The usual Likelihood  ratio deviance and  Pearson chi-
square statistics which measure the fit of the given model 
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versus the saturated model were studied before moving to 
alternative techniques for assessing the Goodness of fit. 
The Hypothesis is;

 H0 : The model fits well to the data  
 vs.
 H1 : The model does not fit well to the data

The package - MINITAB provided the Pearson and 
Deviance test results for model (9). These are given in 
Table 2.

The p-values of the two tests are greater than 0.05 
indicating that the model (9) satisfies the Goodness of fit 
at 5% significant level.

 However, as it is mentioned in the previous sections, 
for the chi-square distribution to be a good approximation 
to the distribution of the Goodness of fit test statistics, 
most expected counts (formed by the cross classification 
of the response levels and all covariates) should be 
greater than 5. From the expected counts given by model 
(9), about 99.7% percent was less than 5 (out of the 
11,664 total cells formed by the cross classification of the 
response levels and all covariates, 11,633 cells contains 
expected counts less than 5). Thus, the score test statistic 
for the proportional odds assumption is suggested in 
place of Pearson and Deviance statistics for testing the 
Goodness of fit of the model. According to the score test 

results given in the previous section, it can be concluded 
that the model (9) fits well to the data.
 
 The alternative approach 5 that can be used to asses 
the Goodness of fit is also adopted in parallel to the above 
mentioned Pearson and Deviance tests and is briefly 
described in the following section.  

 According to the method, the first step is to partition 
the 594 subjects (sample of this study) into 10 regions 
according to the predicted mean score such that each 
group consists of approximately 59 subjects. The number 
of regions 10 is not fixed, but is the most popular one 
which is proposed by Hosmer and Lemeshow3.
 
The predicted mean score in this case is,

  1 2 3ˆ ˆ ˆ ˆ2 3t t t tp p p  

where 1 2 3ˆ ˆ ˆ,  and t t tp p p  are the predicted probabilities 
for the three response levels estimated by the model (9) 
for each subject, and t = 1,2,…..,594.

 The 10 regions are such that the first group contains 
subjects with smallest predicted mean scores and the 
last group contains subjects with largest predicted mean 
scores. 

 Given the partition of the data, the goodness of fit 
statistic is formulated by defining 9 group indicators,   

 Table 1: Results of the Score test for Model (9)

 Goodness of fit test Chi-square value Degrees of freedom p value

 Score 21.3316 15 0.1266

 Table 3: Results of testing significance of the Alternative Model (10) against Model (9) 
 
 Test Models Test statistic Difference in statistic Difference in d.f. p value
 
 Likelihood ratio (9) 114.7653   
  (10) 105.1835 9.5818 9 0.385388 
 Wald (9) 106.6943   
  (10) 95.9209 10.7734 9 0.291562 
 Score (9) 96.0341   
  (10) 89.9757 6.0584 9 0.734059

Table 2: Results of Pearson and Likelihood ratio deviance tests for Model (9) 
  (Goodness of fit tests)

 Goodness of fit test Chi-square value Degrees of freedom p value
 
 Pearson 538.615 509 0.176
 Deviance 474.313 509 0.863
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 Table 4: Results of Residual Analysis for Model (9)

   Region  Residuals for the response levels    
    1 2 3 
 1 Observed 12 37 10
   Expected 15.285 36.004 7.711
   Residual -3.285 0.996 2.289
   Approximated residual -0.976 0.266 0.884 
 2 Observed  6 35 18
   Expected 8.915 37.136 12.949
   Residual -2.915 -2.136 5.051
   Approximated residual -1.060 -0.576 1.589 
 3 Observed  8 38 14
   Expected 7.086 36.694 16.219
   Residual 0.914 1.306 -2.219
   Approximated residual 0.365 0.346 -0.645 
 4 Observed  10 35 14
   Expected 5.585 34.451 18.965
   Residual 4.415 0.549 -4.965
   Approximated residual 1.964 0.145 -1.384 
 5 Observed  2 31 27
   Expected 4.394 + 32.483 23.124
   Residual -2.394 -1.483 3.876
   Approximated residual -1.186 -0.384 1.028 
 6 Observed  4 30 25
   Expected 3.648 + 30.042 25.310
   Residual 0.352 -0.042 -0.310
   Approximated residual 0.190 -0.011 -0.081 
 7 Observed  4 27 28
   Expected 2.686 + 26.232 30.082
   Residual 1.314 0.768 -2.082
   Approximated residual 0.820 0.201 -0.542  
  8 Observed  4 21 35
   Expected 2.173 + 23.664 34.163
   Residual 1.827 -2.664 0.837
   Approximated residual 1.262 -0.704 0.218 
 9 Observed  2 22 35
   Expected 1.563 + 19.318 38.119
   Residual 0.437 2.682 -3.119
   Approximated residual 0.354 0.744 -0.849   
 10 Observed  2 10 48
   Expected 0.811 +  11.955 47.234
   Residual 1.189 -1.955 0.766
   Approximated residual 1.328 -0.632 0.242
 
   + Expected count less than 5  

indicated that the fitted proportional odds model is 
satisfactory. 

 Finally, based on the results of this Goodness of fit 
tests and residual analysis evaluated in this example, 
it can be concluded that the fitted proportional odds 

   1  ; if  ˆ t   is in region g          Itg 
          0  ; if otherwise

where g = 1, 2, …,9.

Then to assess the goodness of fit of model (9) the 
following alternative model is constructed.

9
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If model (9) is correctly specified, then 
0 1 2 9H : ....... 0   is not rejected.

The model (10) was fitted using “SAS” proc logistic 
procedure and the testing of 0H  is carried out using the 
likelihood ratio, Wald and the score test statistic on 
models (9) and (10). 

By looking at the p-values of the three test results 
illustrated in Table 3, it can be concluded that model 
(9) is preferable to the alternative model (10). The 
hypothesis 0 1 2 9H : ....... 0   is not rejected at 
5% significant level and hence, it can be concluded that 
model (9) fits well.

Expected counts and residuals

Based on the methods explained under the methods and 
materials, the expected counts and residuals of the fitted 
model that were calculated and analyzed are presented 
below. The observed counts, estimated expected counts 
and the residuals (including the approximated residuals) 
for the 10 regions are displayed in Table 4. 

 It is seen in Table 4 that almost all the expected cell 
counts are significantly greater than 1 and there are six 
expected cell counts that are lower than 5 (out of 30) 
indicating that there is 20% of expected cell counts 
which are less than 5. Thus, using the principles that all 
estimated expected cell counts should be greater than 
1, and at least 80% should be greater than 5, it can be 
concluded that our chi-square approximations used in the 
Goodness of fit tests are not misleading. The Goodness of 
fit tests based on the methods of Lipsitz et al 5 practiced 
in this paper can be accepted and it can be concluded that 
our model fits well to the data. 

 To study residuals more clearly, these were plotted 
as shown in Figure 1. It is clearly demonstrated in Figure 
1 that all the residuals are within the band of -2 and +2. 
At the same time, the plots did not show any systematic 
pattern or any outliers. Therefore, the residuals also 

{
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model is adequate and hence further interpretation of the 
model was carried out. Table 5 illustrates the odds ratios 
computed for the fitted model.

 The odds ratio analysis of the fitted model shows that 
males are more knowledgeable than females whereas 
younger age groups show higher knowledge compared to 
the elders. Simultaneously, the ethnic group –Tamils have 
a poor knowledge campared to other ethnic groups. The 
plantation workers with higher sexual practices showed 

Note:  φ corresponding to the odds ratio and ˆ   to its maximum likelihood estimate. A 5% level of significance is used in testing 
 H0  : φ = 1 versus H1  : φ ≠ 1.

Table 5: Odds Ratios computed for Model (9)

Effect Description Point estimate 95% Wald H0  : φ = 1 
  ˆ   confidence interval H1  : φ ≠ 1 
   Lower Upper
 
SEX male vs female 1.76 1.23 2.50 reject H0

AGE 18-29 vs 40-49 1.65 1.01 2.68 reject H0
 30-39 vs 40-49 0.95 0.58 1.55 do not reject H0

EDU no edu vs  secondary or higher 0.50 0.28 0.89 reject H0
 primary vs secondary or higher 0.69 0.46 1.03 do not reject H0

ETHN tamil vs other 0.56 0.38 0.82 reject H0

FRQC no vs high 2.02 0.91 4.50 do not reject H0
 low vs high 1.03 0.39 2.68 do not reject H0
 moderate vs high 2.61 1.93 7.38 reject H0

KSTD poor vs good 0.10 0.03 0.32 reject H0
 fair vs good 0.28 0.09 0.84 reject H0

COMM low vs high 0.21 0.07 0.64 reject H0
 medium vs high 0.94 0.63 1.40 do not reject H0

PRAC low vs high 3.15 0.98 10.09 do not reject H0
 medium vs high 4.23 1.29 13.87 reject H0

no higher knowledge about HIV/AIDS which actually 
exposes the vulnerability of the plantation workers. 
Education and exposure to mass media show positive 
influence in increasing the knowledge of HIV/AIDS.

DISCUSSION AND CONCLUSION

Reliable techniques in testing Goodness of fit are essential 
in testing the Goodness of any type of model. The lack 
of having reliable Goodness of fit tests and residual 
analysis techniques for categorical models with ordinal 
categorical predictors (especially for proportional odds 
models) is discussed throughout this paper. Identifying 
this problem, Lipsitz et al.5 have suggested several new 
methods which are more reliable in testing Goodness 
of fit, and also techniques in analyzing residuals of 
proportional odds models. 

 This paper was written with the objective of  discussing 
the new methods proposed by Lipsitz et al.5 in the light 
of  a large scale example illustrating the  application of 
those proposed methodologies. This example is based 
on a survey and data was collected from 594 plantation 
workers in the upcountry estates of Sri Lanka to collect 
information of their level of knowledge on HIV/
AIDS along with their social and sexual behaviours. A 
secondary objective was to develop statistical software 
programmes for this new methodology.

Figure 1: Plot of Standardized Residuals of the Model (10)
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According to the main aspect of this study, firstly, a 
proportional odds model was fitted to the collected data 
taking the ordinal categorical variable – knowledge of 
HIV/AIDS – which is of 3 categories (1-Good, 2-Fair 
and 3-Poor) as the response. The model selection was 
done by the usual forward selection method and at the 
end of the selection procedure, an appropriate main 
effects model was chosen as the best.

 The next step was to test the Goodness of fit of the 
model and simultaneously carry out the residual analysis 
on the fitted model. First of all, the assumption of 
proportional odds was tested using the score test statistic 
which is provided by the SAS proc logistic procedure, 
and concluded that the assumption was not violated and 
hence the model fitted well. 

 Prior to examining new methods, the classical 
Goodness of fit measures - Likelihood ratio deviance 
and Pearson chi-square statistics – were measured for 
the fitted model and concluded that the model fitted 
well. But, this conclusion was made under the caution 
that the conclusion is accepted only if the chi-square 
approximation for these test statistics is valid. 

 Then, the new methods of Goodness of fit statistics 
which are actually more reliable were applied to the fitted 
model. As it was proposed 5, the score test for proportional 
odds model is one alternative test that can replace the 
Likelihood ratio deviance and Pearson chi-square 
statistics. As the score test did not reject the proportional 
odds assumption, this is one indication that the model fits 
well to the data. According to the alternative approach 
suggested by Lipsitz et al.5, the Likelihood ratio, Wald 
and Score test statistics indicated that the Goodness of fit 
of the model is satisfactory. 

 Finally the residuals and expected counts were 
explored. In this study, the programmes were developed 
in SAS and S-plus softwares to compute the expected 
counts and residuals (also  approximated residuals) for 
the cross classification of the three response levels and 
the ten regions. Among the calculated thirty (3 response 
levels x 10 regions) expected counts, it was found that 
almost all the expected cell count were greater than 1 and 
only 20% of the expected cell counts were significantly 
lower than 5, implying that the test statistics can be 
reliably assumed to follow the chi-square distribution, in 
deciding the Goodness of fit of the model.

The calculated approximate residuals which 
approximately follow the Standard Normal distribution 
[N(0,1)] were plotted in order to observe these clearly. 
Since the distribution of the approximated residuals is 
N(0,1), the 95% confidence band of these residuals is 
approximately -2 to +2. From the plot, it was seen that all 
the residuals fell within this band and hence supported 
the conclusion that the overall Goodness of fit of the 
chosen model is satisfactory. 

 The selected model indicated that the knowledge on 
HIV/AIDS among females, elderly people, Tamils and 
those with high sexual practices in the plantation sector 
were poor, and that these groups should be targeted for 
interventions. The study identified exposure to mass media 
and technical education as successful interventions.

 Finally, with the support of this example, it was 
possible to discuss comprehensively, the novel methods 
proposed by Lipsitz et al.5 in model validation which 
consists of testing Goodness of fit and residual analysis. 
Mode of illustration and interpretation of these novel 
methods were also clearly stated in this paper. 
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/*Fitting the alternative model [Model-(M*)]*/
proc logistic data=good;
 class SEX AGE EDU EMPL ETHN MARR PRAC   
FRQC KSTD COMM K I1-I9;
 model K=SEX AGE EDU ETHN FRQC KSTD   
 COMM PRAC I1-I9;
run;  

/*defining a single indicator variable that separates the subjects 
into 10 regions*/
if i<=g then I=1;
else if i<=2*g then I=2;
else if i<=3*g then I=3;
else if i<=4*g then I=4;
else if i<=5*g then I=5;
else if i<=6*g then I=6;
else if i<=7*g then I=7;
else if i<=8*g then I=8;
else if i<=9*g then I=9;
else if i<=10*g then I=10;

proc sort data=good; 
    by I K; 

run;

/*printing the response level (K), predicted probabilities, 
indicator that define 10 regions (I) and predicted mean score 
(m)*/proc print data = good; 
       
 var K ip_1 ip_2 ip_3 I m;/*to go for EXCEL*/
    
run;
 
S-PLUS CODES:

The above printed output were imported to the S-plus 
programme given below, 
#Read the saved SAS output saved as a text file 

data<-read.table(“C:\\paperHIV\\diagnostics\\main3pred.txt”, 
header=T)
attach(data)

i[595]_11
r_1
c_1
x_1
y_1
exp_0
obs_0
grpn_0

Annex 

SAS  CODES:

SAS codes used in fitting the model and the diagnostics 
analysis  

/* Fitting the best proportional odds model [Model-(M)] 
selected from the Forward selection procedure */

proc logistic data=rowdata;
 
class SEX AGE EDU EMPL ETHN MARR PRAC FRQC 
KSTD COMM K;
model K=SEX AGE EDU ETHN FRQC KSTD COMM PRAC 
/scale=none;

output out= pred p=phat lower=lcl upper=ucl 
             predprob=(individual crossvalidate)
 resdev=r2 H=h xbeta=lp;
run;  

/* Formulating predicted mean scores and Indicator variables 
to separate the subjects into 10 regions */
 
data goodnes;
/*import data*/
set rowdata;
/*import the predicted probabilities of the fitted model*/
set pred; 
/*defining the 9 indicator variables*/
I1=0; I2=0; I3=0; I4=0; I5=0; I6=0; I7=0; I8=0; I9=0; 

g=594/10;

/*calculation of predicted mean score (m) from predicted 
probabilities*/
m=(1*ip_1)+(2*ip_2)+(3*ip_3);

proc sort data=goodnes; 
    by m; 
run; 

data good;
set goodnes;
i=_n_;
/*Grouping the 594 subjects into 10 regions by using the 9 
indicator variables*/
if i<=g then I1=1;
else if i<=2*g then I2=1;
else if i<=3*g then I3=1;
else if i<=4*g then I4=1;
else if i<=5*g then I5=1;
else if i<=6*g then I6=1;
else if i<=7*g then I7=1;
else if i<=8*g then I8=1;
else if i<=9*g then I9=1;
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while(r<11){
 p1_0
 p2_0
 p3_0
 gn1_0
 gn2_0
 gn3_0
 while[i(x)==r]{
  p1_p1+ip1(x)
  p2_p2+ip2(x)
  p3_p3+ip3(x)
  if [K(x)==1] gn1_gn1+1 
         else if [K(x)==2] gn2_gn2+1 
              else if [K(x)==3] gn3_gn3+1 
  x_x+1
 } 
 exp(c)_p1
 obs(c)_gn1
 grpn(c)_gn1+gn2+gn3
 c_c+1
 exp(c)_p2
 obs(c)_gn2
 grpn(c)_gn1+gn2+gn3
 c_c+1
 exp(c)_p3
 obs(c)_gn3
 grpn(c)_gn1+gn2+gn3
 c_c+1
r_r+1
}

res_0
ebar_0
vari_0
apres_0 
j_1
while(j<31){

 res(j)_obs(j)-exp(j)
 ebar(j)_exp(j)/grpn(j)
 vari(j)_{grpn(j)*ebar(j)*[1-ebar(j)]}
 apres(j)_res(j)/sqrt[vari(j)]
 j_j+1 
}

# Print the ‘Observed counts’, ‘Expected counts’, ‘residuals’ 
and ‘approximated residuals’
obs 
exp 
res
apres

#Plotting the approximated residuals
g_c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30)
 
xyplot(apres~g, xlab=”10 (groups) * 3 (response levels)=30 
groups”, ylab=”approximated residual”)


