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ABSTRACT 
 
Random numbers are used in a wide variety of applications. True random number generators 
are slow and expensive for many applications while pseudo random number generators (RNG) 
suffice for most applications. Although a majority of random number generators have been 
implemented in software level, increasing demand exists for hardware implementation due to 
the advent of faster and high density Field Programmable Gate Arrays (FPGA). FPGAs make it 
possible to implement complex systems, such as numerical calculations, genetic programs, 
simulation algorithms etc., at hardware level. This paper discusses in detail the hardware 
implementation of several RNGs and their characteristics. Somewhat complex Cellular 
Automata based RNGs show slightly improved performance compared to the simplest Linear 
Feedback Shift Register RNG. 
 
 
1. INTRODUCTION 
 
Random numbers are widely used in various applications such as Monte Carlo 
simulations, cryptography, simulations of wireless communication systems, electronic 
circuit testing, genetic programming, data encryption, games etc. Usually, random 
numbers are generated using software algorithms. Although the sequence of numbers 
they produce seems random, they are not truly random. It is difficult to program a series 
of logical steps that produce numbers that do not follow some definite sequence. These 
random numbers are called Pseudo random numbers.  
 
True random numbers can be generated from a physical process, such as measuring 
thermal noise or noise power level in a radio-frequency receiver, photoelectric effect or 
other quantum phenomena. These processes are, in theory, completely unpredictable 
[1]. True random number generators can be implemented by combining both analog and 
digital electronics. These generators generally tend to be expensive as well as slow. 
 
High density and high speed programmable logic devices, such as Field Programmable 
Gate Arrays, have made it possible to implement complex systems completely 
embedded in hardware. For instance, some of the genetic algorithms and cryptography 
algorithms which had been originally implemented in software have now been 
implemented in hardware.   
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Most pseudo random number generating algorithms involve complex mathematical 
operations which are not suitable to be implemented in hardware. However, there are 
less complex methods that can be implemented in hardware. In this work we have 
studied several techniques that are used in generating random numbers and implement 
them using VHDL hardware description language. 
 
First, the implementation of most simple and common random number generator, 
Linear Feedback Shift Register (LFSR) is discussed [2]. This generator tends to fail 
basic requirement of a RNG due to high correlation in the sequence [3]. The correlation 
problem that can be reduced by modifying the LFSR random number generator is 
discussed next. Then a cellular automata based random number generator is discussed. 
This is followed by a discussion which combines a 4-bit Cellular Automata generator 
and a 4-bit LFSR generator to construct 8-bit RNG. Finally, the utilization of resources, 
execution times, and a simple Monte Carlo test, which estimates the accuracy of the 
hardware generated random number sequences is presented. 
 
  
2. HARDWARE IMPLEMENTATION OF RNG 
 
The target hardware for this work was XC4005XL Field Programmable Gate Array 
(FPGA) on the XS40 prototype board running at 50 MHz. The basic building block of 
the FPGA is Configurable Logic Block (CLB). It contains two, four-input function 
generators (F and G) and one three-input function generator (H). These function 
generators are capable of implementing any arbitrarily defined Boolean function of four 
inputs and three inputs [4]. They are implemented as memory look up tables. The total 
number of user configurable logic gates available in this device is 5000. 
 
2.1 8-bit LFSR RNG 
 
The most common way to implement a random number generator is LFSR. Codes 
generated by the LFSR are actually pseudo random sequences because the sequence 
repeats itself after a certain number of cycles. It is known as the period of the generator. 
LFSR is based on the recurrence equation, 

mnnnn xxxx −−− ⊕⊕⊕= ...21    ……………. (1) 

The operator ⊕  is the exclusive OR (XOR) operator. The equation shows that nth bit 
can be generated utilizing m previous values with XOR operators [2]. The value of m 
determines the period of the generator. The achievable maximum period is 2m-1. For the 
8-bit LFSR, the recurrence equation is, 

8432 −−−− ⊕⊕⊕= nnnnn xxxxx   ……………. (2) 
Since new value xn depends on previous m values, it is necessary to store previous m 
values to find the new value. This can be done with m single bit shift registers 
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comprised with flip flops. According to the equation (2), XOR feedback tap positions 
are taken at 0th ,4th, 5th and 6th flip-flops. The maximum period of the generator is 28-1 
(255). In each clock pulse, generated new bit is inserted to the shift register while the 
oldest bit shifts out. Output of the 8 flip-flops form the 8-bit random number. 
 
A group of flip-flops connected in series are used with XOR gates to construct the 
LFSR random number generator (see figure 1).  
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 Figure 1: 8-bit LFSR RNG 
 
 
The recurrence equation depends on the number of bits. Table 1 shows recurrence 
equations for bits 2 to 8. 
 

Table 1: Taps for Maximal-Cycle LFSRs with 2 to 8 bits 
 

No. of bits Tap positions Maximum Period 
2 [1,0] 3 
3 [2,0] 7 
4 [3,0] 15 
5 [3,0] 31 
6 [5,0] 63 
7 [6,0] 127 
8 [6,5,4,0] 255 

 
Hardware Implementation of the 8-bit LFSR was straightforward. The LFSR contained 
8 D-type flip-flops and 3-two-input XOR gates. The behavior of the circuit was 
described using the VHDL and the XC4005XL was configured using Webpack software 
available from Xilinx. It consumed one FG Function generator out of 392 available in 
the XC4005XL and 8 CLB flip-flops out of 392.  
 
To test the speed, another subsystem was created which comprised a counter (0 to 999). 
In each clock pulse the counter incremented by one as a new random number was 
generated. The system gave a pulse when the counter reaches to 999. The time duration 
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between two pulses equal to the generation of 1000 random numbers. The average time 
taken to generate a random number was about 21.8 ns.  
 
A sample of random numbers generated by LFSR is shown in figure 2. The obvious 
weakness of the LFSR is the correlation in the sequence. At any time step t there is 50% 
probability that the value at time t+1 can be predicted. For an n-bit LFSR, if the present 
value is v, then the next value will be  or  [3]. This is shown in figure 3. 
In LFSR generator, a new random value contains (m-1) bits from the old value and only 
one bit of new information appears in the new value. This could be the reason for high 
correlation.  
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Figure 2: Sample of Random numbers 
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However, the random number sequence is highly uniform (see figure 4).  Thus, this 
method is still used in many applications with large registers. As the register size 
increases, the period becomes extremely large. For instance, if 64 bit register is taken, 
the period is 18,446,744,073,709,551,615. 
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As the seed, a non-zero value should be given to the register before starting the process. 
If all zero value appears in the register, XOR operations continue to produce zeros and 
output becomes always zero. 

Figure 4: Distribution Random Numbers
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2.2 Leap-forward LFSR RNG 
 
The correlation effect of the LFSR method can be reduced with a slight modification. 
Instead of reading random numbers at each clock pulse, it is possible to shift all the old 
bits so that the new number will have only new bits to appear in the register. This can be 
easily done with a counter of modulo m for m-bit LFSR. The major drawback of this 
approach is that it reduces the speed. When this technique was applied, uniformity was 
similar to LFSR (see figure 6), but the correlation had been reduced significantly as 
shown in figure 5. Since the new random number is read after m cycles of m-bit LFSR, 
it is called Leap-Forward LFSR. 
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Figure 6: Distribution of random numbers
Random Value

V
al

ue
 a

t t
im

e 
(t+

1)
 

Figure 5: Correlation
Value at time t

 
 
 
 
 
 
 
 
 
 
To construct n-bit random number generator it requires n number of flip-flops and 
several XOR gates. The recurrence equations show how the taps are formed using 
taking the outputs of middle stages. The nth bit generated sequence repeats after 2k-1. 
Thus, the 8-bit random number sequence repeats after 255. This is called the cycle 
length. When the number of bits is increased the cycle length also increases 
exponentially. 
 
To implement this generator in the FPGA, the LFSR RNG was extended with an 
internal 8-bit counter (0-7). The function of the counter was to keep the track of shifting 
the content of the shift register. With clock pulses the counter incremented by 1 in 
parallel to the function of the LFSR.  When the counter reached to the maximum value 
7, the shift register contents were loaded to the output lines. 21 FG function generators, 
1 H function generator and 20 CLB flip-flops were utilized by the system. The average 
time taken to generate a random number was 162.4 ns which is approximately 8 times 
slower than the LFSR generator. 
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2.3 Cellular Automata RNG 
 
Cellular Automata (CA) has been used in many scientific calculations and simulations. 
CA is based on a set of local rules which are defined as local relationships between it-
self and the neighbouring cells. Conceptually, simple CA rules are used to produce 
complex behaviors. Resent studies have shown that CA can produce patterns whose 
features cannot readily be predicted, and in fact often seem completely random [5]. 
 
CA random number generator is based on linear finite machine each consisting of 1-D 
array of cells, each cell is allowed to communicate only with the immediate neighbors 
based on a rule.  The connecting rule can be shown in a simple algorithm as follows [6]. 
 

I1[1] = O2[2] 
I2[1] = O2[N] 
For ( i =2, i<N, i++) 
{ 

I1[i]=O2[i+1] 
I2[i]=O2[i-1] 

} 
 
Here I1 and I2 are the inputs and O1 and O2 are the outputs of the random number 
generating cell. A group of cells are connected according to the above algorithm is 
shown in figure 7. 
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Figure 7: Cell Architecture of CA Random Number Generator 

 
 
 
 
 
 
 
 
 
 
To create the 8-bit random number, 8 cells were connected according to the above rule. 
Output random numbers were read from the O2 output of 8 cells. The required precision 
of the random number can be obtained by adding or removing cells. 
 
Random number generating cell basically contains a RAM, XOR gates and flip-flops. 
The RAM holds 32 bits. The output O1 and the 4-bit counter are concatenated so that 
feedback bit (O1) becomes the MSB to form the 5-bit address line to access the 32 RAM 
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cells. The new input bit I1 is stored in the current address and previous value of that 
address is XOR to generate new bits (see figure 8). 
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Figure 8: Random Number Generating Cell  clk 

 
To start the operation, a 32 bit pattern is stored in the RAM as the initial seed. Once 
started, the RAM is updated in each clock and random bits appear at the outputs. N-
number of random number generating cells can be combined to construct an N-bit 
random number generator which produces an N-8 bit random number in each clock 
pulse. 
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Figure 9: Sample of Random numbers  
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Constructing the random number generating cell was the major challenge. Initially each 
component was constructed individually as VHDL sub-circuits and later combined them 
to form a single unit as the random number generating cell. Then, 8 random number 
generating cells were combined to create the 8-bit RNG. This RNG did not fit to the 
XC4005XL FPGA since it required more resources. To compare the performance of this 
system with other generators, simulated results were taken. The 'ModelSim' software 
was used for the simulation. Figure 9 shows the variation of random numbers with time. 
The relationship between numbers shows no apparent correlation (see figure 10).  
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The histogram of the distribution of random numbers shows that the sequence is not as 
uniform as in the previous methods (see figure 11). 
 
The sequence generated by the 1-D CA does not seem to be repeating as in the LFSR 
methods. Since it is operated in parallel, it gives a new random number in each clock 
pulse. However, it consumes a large amount of hardware resources. Each random 
number generating cell contains single bit wide 32 registers, in addition, flip-flops for 
delay lines and XOR gates are used. When this cell is replicated to construct N-bit 
random number generator, the required resources are multiplied. This method is more 
suitable for modern configurable devices since they contain vast amount of resources.  
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 Figure 11: Distribution of Random numbers 
 
 
2.4 Combined RNG 
 
Since 1-D CA random number generator has high hardware resource requirements, it 
cannot be implemented in small configurable devices. Although it is possible to reduce 
the number of cells of the RNG, the resulting reduced precision can cause problems in a 
particular application. 
 
A possible solution to this problem is to combine 4-bit CA random number generator 
with 4-bit LFSR RNG to construct 8-bit RNG. 
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Figure 12: Combined Generator 
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To test the randomness, an 8-bit RNG was constructed combining a 4-bit CA RNG and 
4-bit LFSR RNG as shown in figure 12. Once this system is configured in the FPGA, it 
utilized 243 FG function generators out of 392, 26 H function generators out of 196 and 
150 CLB flip-flops out of 392. 4-bit CA generator performed correctly at 25 MHz. 
Therefore, 4-bit LFSR generator had also to be clocked at the same frequency. As in 
earlier cases, time taken to generate 1000 random numbers was measured and the 
average time was about 40.8 ns. 
 
The random number sequence generated by this RNG shows better results than 8-bit 
LFSR random number generator (see figure 13). As in the LFSR random number 
generator there is a distinct pattern, but for each value of xt there are several possible 
values for xt+1. Further, it produced a relatively uniform random number sequence (see 
figure 14). 
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Figure 13: Correlation 
Value at time t

 
 
 
 
 
 
 
 
 
 
 
3. PERFORMANCE COMPARISON 
 
3.1 Resource utilization 
 
Resource utilization for each of the implemented random number generator is given in 
table 2. It is clear that the LFSR random number generator utilizes minimum amount of 
hardware resources while the combined generator uses considerable amount of logic 
resources. Thus, the CA based random number generators may not be economical to 
implement in low density configurable devices.  
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Table 2: Resource utilization of each random number generator 
 

RNG FG Function  
Generators 

H Function  
Generators 

CLB Flip Flops 

LFSR 1/392 (0.3%) 0/196 (0.0%) 8/392 (2.0%) 

LFSR with 8-bit Counter 21/392 (5.4%) 1/196 (0.5%) 20/392 (5.1%) 

8-bit Cellular Automata 463/392 (118%) 48/196 (24%) 280/392 (71%) 

Combined  Generator 243/392 (62%) 26/196 (13%) 150/392 (38%) 

 
3.2 Execution speed 
 
Table 3 shows the average time taken to generate a random number by each generator. 
LFSR random number generator takes the minimum time to generate a random number 
while LFSR with a counter takes highest time per random number. 
 

Table 3: Time taken to generate a single random number 
 

 RNG 
(XC4005XL with 50 MHz clock) 

Time to generate one  
random number (ns) 

1 LFSR 21.8 
2 Leap-Forward LFSR RNG 162.4 
3 8-bit Cellular Automata 40.8 
4 Combined Generator 40.8 

 
3.3 Monte-Carlo test - accuracy 
 
In order to check the accuracy of the random numbers generated above, the well known 
Monte Carlo  method of calculating π was employed [7]. Using a simple C++ program 
into which the above generated random number sequences were fed,  π was estimated. 
For each set of sequence the value of π obtained is shown in table 4. The sample size 
was 5000 points. The estimation of π using the standard random number generator 
supplied with the C++ library is also shown for comparison. 
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Table 4: Estimated values of π for each random number generator 
 

 Random Number Generator Estimated value of  π 
1 LFSR 2.994 
2 Leap-Forward LFSR RNG 3.151 
3 Cellular Automata RNG 3.129 
4 Combinational Method 3.132 
5 Software generator (C++) 3.158 

 
According to the figures, it is clear that the random number sequence of Cellular 
Automata RNG gives close approximation to the actual value of π, while the value 
calculated with the LFSR generator deviates somewhat from the actual value.  
 
 
4. CONCLUSION 
 
This work shows that LFSR gives faster random number sequence with utilizing lower 
hardware resources, but the sequence of numbers are highly correlated. Although, Leap-
forward LFSR gives slightly improved random sequence than that of LFSR, with 
consuming extra hardware resources, it is slow. Cellular Automata RNG gives random 
sequence that seems impossible to discern a pattern. However, it consumes a large 
amount of hardware resources. This method would be ideal for higher density devices 
while combined generator would be suitable for lower density configurable devices. 
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