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Preliminary Results of Long-Term and Short-Term  
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Possibility of using statistical methods for long-term and short-term rainfall forecasting 
was investigated. Daily rainfall data from 8 meteorology stations namely, Colombo, 
Ratnapura, Kandy, Galle, Hambanthota, Batticoloa, Anuradhapura and Trincomalee 
were utilised in this study. A time series model was used for long-term forecasting and a 
Markov Chain model was used for short-term forecasting. The preliminary results show 
that the time series model with exponential smoothing fitted the data best and seasonal 
variations can be predicted with this model from weekly and monthly averages. The 
Markov chain model, applied by considering only two states, wet or dry, was successful 
to the level of 70% in predicting the status of a given day. 
 
 
1. INTRODUCTION 
 
Sri Lanka being an agricultural country and its main energy source is hydropower; the 
daily rainfall plays a dominant role in its economy. In some areas, rainfall is markedly 
seasonal in character, greatly limiting water availability for certain periods of the year. At 
other times, the same areas may receive excessive rainfall leading to a different set of 
problems. There is also considerable variation in rainfall from season to season and year 
to year. These temporal variations have a direct influence on water availability for 
agricultural, industrial and domestic requirements [1]. 
 
Rainfall forecasting is carried out at the Department of Meteorology for only short periods 
(generally for 24-hour periods). They use synoptic methods rather than models. Although 
accurate predictions of rainfall cannot be made due to high fluctuations in daily amounts 
and unpredictable nature of the weather parameters, reasonable level of predictions can be 
made on weekly and monthly variations by relating to past observations. Both long term 
as well as short term forecasting is important in designing water storage’s, drainage 
channels for flood mitigation, and estimate crop growth and so on. 
 
This study explores the possibility of rainfall forecasting using statistical techniques. Two 
different approaches were utilised, namely, the time series model for long-term forecasts 
and Markov chain model for short-term forecasts. In time series approach, exponential 
smoothing model was used to forecast for weeks and months ahead. Since persistence is a 
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possible feature of daily rainfall, Markov chain model was used to forecast for few days 
ahead.  
 
2. DATA 
 
The data used in this study were amount of daily rainfall measurements from 8 
meteorology stations (see Figure 1) maintained by the Department of Meteorology, 
namely, Colombo, Rathnapura, Kandy, Galle, Hambanthota, Batticaloa, Anuradhapura 
and Trincomalee for a period of 6 years (1992 to 1997). 
 

Figure 1: The 24 hour weather stations maintained by the Department of Meteorology. 
The selected stations for this work is marked as closed circles. 
 
 
3. METHODOLOGY 
 
3.1 Time series model 
 
Time series is a collection of observations made sequentially in time, which represent the 
behaviour of the system in the past. If the past data are indicative of what we can expect 
in the future, we can postulate an underlying mathematical model that is representative of 
the process. The model can then be used to generate forecasts. 
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Various times series models were examined including ARIMA (Auto-regressive 
integrating moving average model) and finally the exponential smoothing model was 
chosen as the most appropriate model for the present work [2]. The smoothing “bring out” 
the major patterns or trends in a time series, while de-emphasising minor fluctuations 
such as random noise. In this transformation, each point is computed as a weighted sum of 
all proceeding observations. 
 
For non seasonal time series with no systematic trend, TN+1 is taken as an estimate of 
weighted sum of past observations T1, T2, T3, …TN, where the weights lie on an 
exponential curve as given in Equation (1).  
 

est(TN+1) = C0TN + C1TN-1 +………                        (1) 
 
Here Ci = α(1-α)i , where i=0,1,2,…   and α is a constant. Equation (1) can be rewritten in 
the recurrence form for finite number of past observations as shown below. 
 

est(TN+1) = αTN   +  (1-α)est(TN)                            (2) 
est(TN+1)  = α[TN  - est(TN)]  + est(TN)                    (3) 
ST = α EN + ST-1                                                                                      (4)                            

 
Here ST is the transformed series at time T and ST-1 is the transformed series at time T-1. 
The error in prediction is EN = TN  - est(TN). 
 
Exponential smoothing can be generalised to deal with time series containing trend and 
seasonal variation, which can be additive or multiplicative depending on the series. The 
time series of rainfall data follows recurring seasonal variations with no trend. Thus, it is 
useful to smooth the seasonal components independently with an extra parameter δ. 
Seasonal components are additive in time series of rainfall data as shown in Equation (5). 
 

IT  =  IT-P + δ(1-α)ET                                               (5) 
 
Here IT represents the predicted seasonal component at time T and IT-P stands for the 
smoothed seasonal factor at time T minus the length of the season (P) (i.e. respective 
seasonal component in the last seasonal cycle). The parameter δ lies between 0 and 1. In 
general the one step ahead forecasts can be computed as shown in Equation (6) for 
additive seasonal model. 
 

Forecast T = ST + IT                                                (6) 
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The value of the smoothing parameter α and seasonal smoothing parameter δ were 
estimated from past data to produce the smallest sums of squares of the residuals. 
 
3.2 Markov chain model 
 
Daily rainfall data generally show persistence, since weather systems producing rain last 
for more than one day. One way of exploiting this persistence in forecasting is through 
Markov chain method. Markov chain has special property that the future probability 
behaviour of the process is uniquely determined by the present state of the system. 
 
Weather in a certain place could be one of two possible states, Dry or Wet. The 
definition of a “wet day” is a 24 hours period from 8.30 a.m. with a rainfall exceeding 
some threshold amount, normally, taken as  0.25 mm for Sri Lanka [2]. 
 
Under this technique, the transition from one state to another is taken as not 
predetermined,  but  rather  be  determined  in  terms  of  certain  probabilities, which 
depend  on  the history  of  the  system.  Also it was assumed that these transition 
probabilities depend only on its state at the immediately proceeding observation. This 
process is called a Markov process with two states.  
 
The states of the system are either “dry”  or “wet”  and  they are defined as “0” and  “1”  
respectively.  The transition probability Pij  (i, j = 0, 1) was  defined  as  the  probability  
that  the  system  in state  i  at  any  one  observation,  it  will  be  in state  j  at  the  next  
observation.  For example, if state  “0” correspond  to  a  dry  day  at  Colombo,  and  state  
“1”  correspond  to a  wet day,  then  P01 is  the  probability  that  the  weather  in  
Colombo changes  from  dry  to  wet  in  two  consecutive days. The transition 
probabilities, P00 P01 P10 P11  were  expressed  in  terms  P(D/D ),   P(R/D),   P (D/R),  
P(R/R)  respectively.    
 
The transition probabilities make a 2×2 matrix and can be written as P = {Pi,j}T. Initial  
probabilities  of  the Markov  process  can be defined as P(0).  Hence, P(n)  for n = 1,2,3 … 
represent the final state  vectors  of  a  Markov  process.  
 
Consider the probability Pi

(0) that the system is in state i initially and the probability of  
transitions leading to state  j is Pi,j. To calculate the probability of the system in state j,  we  
must sum over all transitions leading to state  j.  In matrix form,  we  can  express  the 
above  idea as  follows. 
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                        P (1)   =   P P (0) 
Similarly,        P (2)   =   P P (1)    = P2 P (0)     
In  general,      P (n)    =   Pn P (0)                                                               (7)                  
 
The matrix Pn therefore gives the required set of n–step transition probabilities { Pi j

(n) }. 
 
             P (n)  = Pn P (0)                            P0

 (n)       =         P00       P01         
n
         P0

 (0)
    

                                                               P1
 (n)                  P10     P11             P1

 (0)
 

 
Equation (7) shows how to calculate the absolute probabilities at any stage, (i.e. after n  
days) in  terms  of  the initial probability distribution  P (0) and  the transition matrix  P.  
 
 
4. RESULTS 
 
4.1 Time series model 
 
The daily rainfall data were first categorised into two sets; weekly and monthly averages 
from 1992 to 1996. Seasonal variations from weekly and monthly rainfall at each station 
were extracted via the seasonal decomposition method described in Section 3.1. The 
results are shown in Figure 2.  
 

 
Figure 2: (a) seasonal variations in rainfall extracted by weekly average (b) same using 
monthly average 
 
The comparison between the forecasted values for 1997 extracted from the past 
observations with the measured values is shown in Figure 3. It was found that the 
additive seasonal and no trend type model would be adequate when computing forecasts 
for monthly and weekly amount of rain. The reason may be the amount of rain is stable 
from year to year and change very slowly. At the same time, there can be seasonal 
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changes (rainy seasons) which again may change slowly from year to year. Due to the 
limited number of data available it was not possible to look for long-term or short-term 
trends of this type. 

 
Figure 3: The comparison between the forecasted values for 1997 (solid line) with the 
measured values (dotted line) (a) weekly data (b) Monthly data. 
 
4.2 Markov chain model 
 
The definition of a wet day was used in preparing the rainfall data as records of states of 
the system for the period from 1992 to 1996. To simplify the calculations, it was assumed 
that the transition probabilities are the same during a given month. The numbers of wet 
and dry days were counted for 5 years (1992-1996) for each month also with the two day 
relationships having dry-dry, dry-wet, wet-dry and wet-wet states. These numbers are 
shown in Table 1 for the Colombo station.  
 
Table 1: The number of wet and dry days for the 5-year period for the Colombo station. 
 

Month Dry Wet Dry-Dry Dry-Wet Wet-Dry Wet-Wet 
Jan 124 31 106 19 18 12 
Feb 118 24 102 15 15 9 
Mar 132 23 117 15 15 8 
Apr 82 68 51 29 31 39 
May 60 95 37 21 23 74 
Jun 64 86 43 24 21 62 
Jul 85 70 50 36 35 34 
Aug 93 62 72 19 21 43 
Sep 55 95 25 27 30 68 
Oct 42 113 21 23 21 90 
Nov 62 88 33 31 29 57 
Dec 110 45 84 26 26 19 
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These numbers were used in calculating the transition probabilities for each month. The 
initial probability was calculated by taking average of the 3 proceeding days. By 
combining all transitions from initial states leading to a given final state, possibility of 
rain in any given day can be calculated. 
 
In Figure 4 (a) we show the measured probability for rain during each month against the 
predicted probability by the model. A good linear correlation is seen. In Figure 4(b) we 
show the agreement between the actual rainy days and the model predicted rainy days 
for each month. A wide fluctuation in accuracy can be seen. In general Northeast 
monsoon period and Southwest monsoon months efficiency is high as expected. 

 
Figure 4: (a) Measured probability vs. predicted probability (b) agreement between the 
measured and predicted rainy days 
 
 
5. CONCLUSIONS 
 
The time series model for weekly and monthly levels can be used to predict the 
behaviour of a week or month, whether one can expect rain or not and to some extent 
even the amount of rainfall. Monthly predictions are better than weekly predictions 
when compared with actual values and show a high correlation. 
 
Forecasts from Markov chain model can also be used to predict a given day to be rainy 
or not. Average efficiency observed in the present analysis is limited to 70%. The 
comparison between observed and predicted values shows (daily comparisons are not 
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shown in this paper) the suitability of this model for short term forecasting from 1-7 
days. 
 
The size of the rainfall data used in the present work was limited to 6 years, and hence 
variations such as El–Nino Southern oscillation events, sun spot variations was not 
investigated. 
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