Please use this identifier to cite or link to this item: http://archive.cmb.ac.lk:8080/xmlui/handle/70130/7475
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNirmala, M.S.-
dc.date.accessioned2024-12-12T06:06:50Z-
dc.date.available2024-12-12T06:06:50Z-
dc.date.issued2024-
dc.identifier.citationThesis - Master of Computer Scienceen_US
dc.identifier.urihttp://archive.cmb.ac.lk:8080/xmlui/handle/70130/7475-
dc.description.abstractThis thesis proposes a novel design for a pest management system that increases agricultural productivity by integrating Internet of Things (IoT) technologies and Machine Learning (ML) ...en_US
dc.language.isoen_USen_US
dc.subjectIoT (Internet of Things)en_US
dc.subjectMachine Learningen_US
dc.subjectPest Managementen_US
dc.subjectGreenhousesen_US
dc.subjectPrecision Agricultureen_US
dc.subjectSmart Farmingen_US
dc.subjectSensor Networksen_US
dc.subjectData-Driven Decision Makingen_US
dc.subjectCrop Protectionen_US
dc.subjectReal-Time Monitoringen_US
dc.subjectEnvironmental Sensorsen_US
dc.subjectPredictive Analyticsen_US
dc.subjectAutomated Pest Detectionen_US
dc.subjectSustainable Agricultureen_US
dc.subjectSmart Greenhouse Systemsen_US
dc.subjectIntegrated Pest Management (IPM)en_US
dc.subjectClimate Control Systemsen_US
dc.subjectEnergy-Efficient Pest Controlen_US
dc.subjectAgricultural IoT Devicesen_US
dc.subjectComputer Vision for Pest Detectionen_US
dc.titleIntegrating IoT and Machine Learning for Efficient Pest Management in Greenhousesen_US
dc.typeThesisen_US
Appears in Collections:Masters Theses - University of Colombo School of Computing

Files in This Item:
File Description SizeFormat 
UCSC - Master Theses.pdf1.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.