Please use this identifier to cite or link to this item: http://archive.cmb.ac.lk:8080/xmlui/handle/70130/7462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDissanayake, D.M.-
dc.contributor.authorNavarathna, R.-
dc.contributor.authorViswakula, S.-
dc.date.accessioned2024-12-09T05:25:47Z-
dc.date.available2024-12-09T05:25:47Z-
dc.date.issued2024-
dc.identifier.citationDissanayake, D.M., Navarathna, R., and Viswakula, S. (2024). Violation-based Feature Selection for Isolation Forest. Proceedings: University of Colombo Annual Research Symposium 2024, p.298.en_US
dc.identifier.urihttp://archive.cmb.ac.lk:8080/xmlui/handle/70130/7462-
dc.description.abstractAnomaly detection is crucial in sectors like finance and healthcare to identify deviations from normal behavior. The Isolation Forest (ISF) algorithm, introduced by Liu et al. (2008), is effective but has limitations, such as bias towards correlated variables and suboptimal results with irrelevant features. This study introduces the Violation Features Based Isolation Forest (VFIF) algorithm, ...en_US
dc.language.isoenen_US
dc.publisherUniversity of Colomboen_US
dc.subjectIsolation Foresten_US
dc.subjectAnomaly Detectionen_US
dc.subjectRule Violationen_US
dc.titleViolation-based Feature Selection for Isolation Foresten_US
dc.typeArticleen_US
Appears in Collections:Department of Statistics

Files in This Item:
File Description SizeFormat 
Stat1.pdf338.49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.