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Abstract

The discrete logarithm problem has remained challenging to tackle,

resulting in its wide use in cryptography. The only proven way to

solve the problem in polynomial time is through Shor’s algorithm,

which runs on quantum computers, but present-day quantum com-

puters are subjected to quantum errors when implementing Shor’s

algorithm. However, quantum annealers such as the D-Wave ma-

chine have come a long way. Further, another problem similar to the

discrete logarithm problem, the prime factoring problem, has shown

much progress on quantum annealers. In this context, it is encour-

aging to see the tractability of the discrete logarithm problem on

quantum annealers. Further, the problem is scarcely attempted as an

optimization.

In this work, we have represented a conversion of the discrete loga-

rithm problem over the multiplicative group integer modulo and the

elliptic curve discrete logarithm problem to an optimization problem,

then to a binary quadratic form accepted by quantum annealers. Fur-

ther, we tested our formulation for small scale problems successfully

and discussed the complexities suggesting areas of improvement.
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Chapter 1

Introduction

Data transfer is the cornerstone of modern-day telecommunications. To ensure

the privacy of the transfers, the area of mathematics and computer science named

cryptography is used. This process can be summarized into two parts: encryption

or locking the data and the process of decryption or unlocking the data to access.

The encryption and decryption method needs a key to be exchanged between the

receiver and sender, and practically meeting up to share keys is almost impossible.

That is where public-key cryptography systems came into existence. Here, no

physical key exchange happens, and both the receiver and the sender come up

with a shared key separately. The shared key is based on a mathematical problem

that is easy to compute and difficult to reverse, called one-way functions. This is

where the discrete logarithm problem(DLP) comes into use.

The discrete logarithm problem for a group G with elements α and β = αn is

finding n given α and β. Here αn indicate conducting the group operator n times.

Let us look into a key exchange protocol using a public key cryptography system

based on the DLP to understand the cryptography application better. Whitfield

Diffie and Martin Hellman introduced the Diffie-Hellman key exchange protocol

[1]. Alice and Bob set up their private and public keys based on a group G with
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element α. First, Alice and Bob randomly choose their private keys a, b ∈ N

respectively. Next, Alice sends αa to Bob, and Bob sends αb to Alice; these are

the public keys. Finally, both calculate αab by applying their respective private

keys. Note that for a hacker trying to infiltrate the information, the hacker should

compute αab; that is, the hacker needs to find a given αa or b given αb, which

is the discrete logarithm problem. Fortunately, the hard nature of the problem

makes the data inaccessible to the hacker.

The most obvious method is to find the solution is brute force using different

values until we find the solution. Still, it will be extremely difficult with groups

with a very large number of elements. There are various algorithms developed to

tackle the problem [2][3][4], but none can take the problem efficiently. Therefore

we look into a more non-conventional approach. In this regard, we look into

quantum computing, a recent advancement in computer science [5; 6; 7; 8; 9].

Considering the different frameworks in quntum computing, it is quantum an-

nealing [10; 11] that is of our interest. These resources use an optimization process

to find the global minimum. Whether the exact heuristics used in annealers are

not clear, they have shown large improvements in the past decade[12] [13]and

have solved mathematical computationally difficult problems [14][15]. The prime

factoring problem(PFP) or factoring product of two large primes is also hard as

the DLP. The two problems are closely related [16] and PFP has shown progress

on quantum annealers [17][18][19]. Hence, we were motivated to see an imple-

mentation of the DLP on quantum annealers.

The quantum annealers accept problems in a specific format known as the

quadratic unconstrained binary optimization problem(QUBO). The main objec-

tive is converting the DLP to a QUBO. We archive this feat in two phases. In

the first phase, we transform the problems into pseudo-Boolean optimization

problems(PBO). Then, in the next phase, we convert the problems into QUBO.
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Finally, we convert a few small scale problems to QUBO problems. Then imple-

ment the problems in advantage performance update 4.1, an annealer provided

by D-Wave and afterwards implement in hybrid solver for general BQM, which

produce better results.

We discuss the preliminaries required for the formulation in chapter 1. In

chapter 2, we present current related literature. Then we restate our problems

as quadratic unconstrained binary optimization problems(QUBO) in chapter 3.

In chapter 5 we present the implementation of the QUBO on annealing and

experiment. Finally, in chapter 6, we briefly discuss the theoretical bounds of our

formulation and provide our concluding remarks.
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Chapter 2

Preliminaries

Summary

We focus on two desecrate logarithm problems(DLP). The first problem is the

DLP over a multiplicative group of integer modulo which is; solve for x an integer,

for a given prime p, generator α and β ∈ Z∗
p, where αx = β (mod p). Next we

look in to Elliptic curve discrete logarithm problem. This problem is based on

finite groups defined on the elliptic curve with an addition operator. The elliptic

curve discrete logarithm problem is; for an elliptic curve y2 = x3+ax+b (mod p),

solve for n given P and R, points on the elliptic curve such that nP = R. Note

that R should be a point generated by P. The order of the group generated by P

can be found from baby step giant step algorithm.

2.1 Groups and the the DLP over a multiplica-

tive group of integer modulo

Consider A a nonempty set with a binary operator ∗ defined from A × A to A.

For α, β ∈ A, α ∗β denotes the results after applying the operator. The operator
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2.1 Groups and the the DLP over a multiplicative group of integer
modulo

follows the associative law if (p ∗ q) ∗ r = p ∗ (q ∗ r), for all p, q, r ∈ A. If for i ∈ A

follows p ∗ i = i ∗ p = p for all p, then i is an identity element. Further, for p ∈ A

if there exist p′ ∈ A such that p ∗ p′ = p′ ∗ p = i then p′ is the inverse of p, given

i exist. A set G with a binary operator, having an identity element, follows the

associative law, and has an inverse element for all elements, then G is a group.

In addition to the above properties, if the group follows commutative property

p ∗ q = q ∗ p, it is called an abelian group. Further, for H subset of G and H

follows the group properties, then H is a subgroup of G.

Consider a group G with identity element i and p ∈ G with p′ the inverse.

Then for n ∈ Z:

an =



p ∗ p ∗ p ∗ · · · ∗ p︸ ︷︷ ︸
n-times

n > 0

i n = 0

p′ ∗ p′ ∗ p′ ∗ · · · ∗ p′︸ ︷︷ ︸
(-n)-times

n < 0

(2.1)

A group(G) is cyclic if there is a fixed α for all β ∈ G such that αn = β n ∈ Z.

Such elements are called the generators of the group. Further for γ ∈ G the

subgroup generated by γ is defined as {γn|n ∈ Z}. An element of this group is

known as a element generated by γ. Multiplicative group of integer modulo p

(Z∗
p) where p is a prime is a cyclic abedian group. This is the base of the DLP

over integer modulo p.

2.1.1 The DLP

The discrete logarithm problem is defined as follows: Solve for x an integer, for a

given prime p, Generator α and β ∈ Z∗
p, where αx = β (mod p). The calculation

for given x to find β is straightforward, but no known classical algorithm can

solve the DLP in polynomial time, and the problem is considered hard.
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2.2 Elliptic curve over integer modulo p

2.1.2 Diffie-Hellman key exchange application

Consider Diffie-Hellman key exchange based on the group integer modulo 17

with generator 3. As the private key, Alice chooses 15, and Bob chooses 13.

Alice generates 315 (mod 17) = 6 and shares 6 with Bob, and Bob generates

313 (mod 17) = 12 and shares 12 with Alice. Finally, Alice computes 1215

(mod 17) = 10 using his private key while Bob computes 613 (mod 17) = 10

using his private key. Both came up with the common key 10.

2.2 Elliptic curve over integer modulo p

We define an elliptic curve over integer modulo p (Fp) as,

E(Fp) : {(x, y) ∈ F2
p|y2 ≡ x3 + ax+ b (mod p) , 4a3 + 27b2 ̸≡ 0 (mod 0)} ∪ O

(2.2)

Where p is a prime number greater than three and a , b ∈ Fp. O denote the point

at the ∞. E(Fp) is represented as y2 = x3 + ax + b (mod p). Let P (xp, yp) and

Q(xq, yq) be elements of E(Fp). Then the addition P+Q is defined as in the table

2.1.

Table 2.1: Point addition on elliptic curve y2 = x3 + ax+ b (mod (p prime))

Condition Gradient(m) Coordinate of P+Q

xp ̸= xq
yp−yq
xp−xq

(mod p)
x = (m2 − xp − xQ) (mod p)

y = (−m(x− xp)− yp) (mod p)

xp = xq
3x2

p+a

2yp
(mod p)

x = (m2 − 2xp) (mod p)
y = (−m(x− xp)− yp) (mod p)

Another operator is the scalar multiplier. For a natural number n, the scalar

multiplier nP is

nP = P + P + P + · · ·+ P︸ ︷︷ ︸
n-times

(2.3)
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2.2 Elliptic curve over integer modulo p

To calculate nP , we need to do the addition operator n − 1 times. If n has

k Boolean digits, this way of calculation is O(2k). However, an algorithm exists

that can solve nP in polynomial time O(k) called double and add.

Here n is converted to binary, and the algorithm is defined starting from the

most significant bit. The most significant bit is always omitted. Then starting

from P , for every bit with value 0, we double the previous result, and if the value

1, we double and add P to the previous result. Finally, we obtain nP in O(log n),

which is better than O(n).

Example 2.2.1. Consider 78P . Here n = 78 and the binary representation is

(1001110)2. Then by following the table 2.2 we can calculate the result for 78P .

Table 2.2: Double and add algorithm

Bit Operation Result
1 omitted P
0 double 2P
0 double 4P
1 double and add 9P
1 double and add 19P
1 double and add 39P
0 double 78P

2.2.1 The ECDLP

For a given natural number n and a point P on the elliptic curve, we can calculate

nP = R in polynomial time using the double and add algorithm; here R is a

point on the elliptic. However, there is no known polynomial-time algorithm to

calculate n given P and R. This problem is known as the elliptic curve discrete

logarithm problem(ECDLP), which is considered hard. Note that R should be a

point generated by P.
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2.2 Elliptic curve over integer modulo p

2.2.2 Subgroups

Elliptic curves(E(Fp)) are groups under point addition, and cyclic subgroups are

created using scalar multiplication on elliptic curves.

Example 2.2.2. Consider the elliptic curve y2 = x3 + x + 2 (mod 5) and the

point P = (1, 3).

Then,

1P = (1, 3)

2P = (4, 0)

3P = (1, 2)

4P = O

5P = (1, 3)

6P = (4, 0)

7P = (1, 2)

8P = O
...

Here we can see the cyclic subgroup with four distinct elements generated by point

P = (1, 3).

The number of points on the subgroup is called the order of the subgroup,

and it is the smallest positive integer n such that nP = O. Clearly, the order is

four for the example 2.2.2. However, for large scale problems listing the elements

to find the order will be challenging. Hence, the important question is, what is

the order of the subgroup generated by a point P on an elliptic curve? To answer

this question, we follow the baby step giant step algorithm 2.2.1.

Algorithm 2.2.1. Given P ∈ E(Fp) to compute the order of the subgroup gen-

erated by P .

1. Choose an integer m > P
1
4 .
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2.2 Elliptic curve over integer modulo p

2. Compute and save jP for all j ∈ {0, 1, 2, 3......,m} (baby step).

3. Compute (p+ 1)P and save as Q.

4. Compute the points Q+ k(2m)P for k ∈ {−m,−m+ 1, ......,m} until

Q+ k(2m)P = ±jP for some j (giant step).

5. Let’s say the above relation holds at k = k0 and j = j0. Then choose

M = p+ 1 + 2mk0 ± j0, such that MP = O.

6. Factor M. Say q1, q2, ....., qr be distinct prime factors of M. If M
qi
P = O

replace M with M
qi

and repeat the step until M
qi
P ̸= O, for all qi. Then M is

the order of the subgroup.

2.2.3 Diffie-Hellman key exchange application

Consider the elliptic curve y2 = x3 + x + 1 (mod 5) and point P = (0, 1) as the

generator. The order of the subgroup generated by P is known to be 9. Alice

chooses 2 as his private key and computes Qa = 2p = (4, 2). Bob chooses 4 as

his private key and computes Qb = 4p = (3, 4). Alice shares Qa with Bob, and

Bob computes 4Qa = (0, 4) while Bob shares Qb with Alice, and Alice computes

2Qb = (0, 4). Both come up with the common key (0,4).
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Chapter 3

State of the Art

Conversion of the DLP to a quadratic pseudo-Boolean function is challenging as

the DLP, and the Quadratic pseudo Boolean function has no direct relationship.

Moreover, even presenting as an optimization problem is challenging. Hence,

only a few attempts are available as an optimization approach in the literature.

Consider the DLP αx = β (mod p); p is a prime, where α is the generator of

Z∗
pand β ∈ Z∗

p. Laksari et al.[20] restated the problem as an optimization as in

the following.

g(x) = αx − β (mod p) (3.1)

The optimization process was carried out with heuristics named particle swarm

optimization. Later by Mistra et al.[21], a better performing heuristic of the

firefly algorithm was used on an optimization representation of the DLP. The

optimization formulation is the following.

g(x) = (β − αx) (mod p) (3.2)

These approaches show the potential of DLP over integer modulo (p prime) being

tackled by an optimization. However, there are no optimization attempts on

10



ECDLP found in the literature, but heuristic attacks can be found applicable

to both DLPs. Including Kijma et al. [22] collision random walk approach,

Barbulescu et al.[23] and Joux et al. [24] approaches resulting quasi-polynomial

heuristics. Furthermore, for ECDLP in 2012, Montgomery et al. [25] made a

heuristic implementation of the DLP on PlayStation 3 game consoles resulting

in approximately 30% speedups over more traditional methods. These heuristics

are not as powerful as in quantum annealers.

As another attempt, we can find quantum computer implementations of the

DLP in the literature. After the discovery of the Shor’s algorithm [26], an al-

gorithm that can handle the DLP over integer modulo on quantum computers

physical applications of different scales were carried out [27][28][29]. Accordingly,

it was shown that the DLP is solvable efficiently in polynomial time. Further-

more, this algorithm was extended to handle the ECDLP as well[30]. Whether

the algorithm is ground braking, current-day quantum computers cannot han-

dle the algorithm. However, quantum annealers have come a long way, and no

implementation of DLP is found in the literature.
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Chapter 4

Quadratic formulation

Summary

The QUBO formation for a given DLP is twofold. The initial phase is to convert

the problem into pseudo-Boolean optimization problem(PBO). Next is quadratic

reformulation. First, the PBO is converted to a polynomial through the min-

term normal form. Afterwards, the formulation is converted to a quadratic un-

constrained binary optimization problem(QUBO) using process called quadrati-

zation. This formation is accepted by the quantum annealers.

4.1 Pseudo-Boolean optimization formulation of

DLP over a multiplicative modular group

Recall the DLP over a multiplicative modular group Z∗
p .

αx = β (mod p) (4.1)

12



4.1 Pseudo-Boolean optimization formulation of DLP over a
multiplicative modular group

Solve for x, where p is a prime number. α is a generator of Z∗
p and β ∈ Z∗

p .

It is not hard to see that we can restate the problem with k a whole number as

αx = kp+β. We convert this to an optimization problem( minimization problem)

as follows.

g(x, k) = (αx − β − kp)2 (4.2)

Now g(x, k) ≥ 0 and at minimum g(x, k) = 0 . Let’s say g(x0, k0) = 0 then,

αx0−β−k0p = 0 and αx0 = β (mod p). Hence we find the solution by minimizing

4.2.

Next, we convert the problem into pseudo-Boolean optimization(PBO) prob-

lem. For which we need to represent x and k as Boolean variables. Now

1 ≤ x ≤ p − 1 and k ≤ αp−1

p
. Then the respective Boolean representations

are as follows.

x = x1 + 2x2 + · · ·+ 2nxn+1, (4.3)

k = k1 + 2k2 + · · ·+ 2mkm+1 (4.4)

Here n = ⌊log2 {p− 1}⌋, m = ⌊log2{αp−1

p
}⌋ and xi,kj are Boolean variables.

Finally we represent function 4.2 in pseudo-Boolean form.

g(x, k) = (αx1+2x2+···+2nxn+1 − β − (k1 + 2k2 + · · ·+ 2mkm+1)p)
2 (4.5)

4.1.1 Example

Consider the problem 2x = 2 (mod 3). We restate the problem as g(x, k) =

(2x − 2 − 3k)2. Clearly as x ≤ 2 and k ≤ 22

3
we require two binary variables for

x and one for k. Say x1, x2 and k1 respectively. Accordingly the corresponding

PBO function is follows.

g(x1,x2,k1) = (22x2+x1 − 2− 3k1)
2 (4.6)

13



4.2 Polynomial transformation

4.2 Polynomial transformation

This section discusses how we convert the PBO to polynomial pseudo-Boolean

optimization. The polynomial pseudo-Boolean function is multi-linear as for any

binary variable xi, x
n
i = xi. Initially, we define the characteristic equation as the

following.

χa(x) =
∏
ai=1

xi

∏
aj=0

(1− xj), (4.7)

Notice that χa(x) = 1 only when x = α and χa(x) = 0 otherwise. Then the

polynomial transformation or the min-term normal form [31] is

f(x) =
∑

f(a)χa(x). (4.8)

4.2.1 Example

Consider the PBO obtained in the previous section (equation4.6). Here three

Boolean variables are present. The following table 4.1 shows the characteristic

equation and its coefficients.

Table 4.1: Min–terms for Equation 4.6

α x1 x2 k1 χα(x1,x2,k1) g(x1, x2, k1)
000 0 0 0 (1− x1)(1− x2)(1− k1) 1
001 0 0 1 (1− x1)(1− x2)(k1) 16
010 0 1 0 (1− x1)(x2)(1− k1) 0
011 0 1 1 (1− x1)(x2)(k1) 9
100 1 0 0 (x1)(1− x2)(1− k1) 4
101 1 0 1 (x1)(1− x2)(k1) 1
110 1 1 0 (x1)(x2)(1− k1) 36
111 1 1 1 (x1)(x2)(k1) 9

14



4.3 Quadratic pseudo-Boolean formulation

Then using equation 4.8, we obtain the following.

g(x1, x2, k1) =1(1− x1)(1− x2)(1− k1)

+ 16(1− x1)(1− x2)(k1)

+ 0(1− x1)(x2)(1− k1)

+ 9(1− x1)(x2)(k1)

+ 4(x1)(1− x2)(1− k1)

+ 1(x1)(1− x2)(k1)

+ 36(x1)(x2)(1− k1)

+ 9(x1)(x2)(k1)

(4.9)

After simplification we get a polynomial pseudo-Boolean function.

g(x,k) = 1− x1 + 3x2 + 15k1 + 33x1x2 − 18x2k1 − 6x1k1 − 18x1x2k1. (4.10)

4.3 Quadratic pseudo-Boolean formulation

Once we obtain a polynomial pseudo-Boolean function, we must reduce the order

to two to obtain a quadratic Boolean unconstrained problem(QUBO). The de-

gree reduction process is known as quadratization. There are several techniques

developed to handle quadratization. We utilized three main quadratization tech-

niques in QUBO formation: Rosenberg’s quadratization, Freedman and Drineas

quadratization and Ishikawa’s quadratization.

4.3.1 Rosenberg’s quadratization

Rosenberg’s quadratization [32] technique is a general technique applicable to

every pseudo-Boolean function, given that it is in multi-linear(polynomial) form.
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4.3 Quadratic pseudo-Boolean formulation

The method is based on an iterative procedure. Initially, we choose two Boolean

variables from a chosen higher-order monomial(term), say xi and xj. Then replace

all occurrences of xixj with yi,j an auxiliary Boolean variable. To ensure yi,j =

xixj when minimized, we add a penalty term M(xixj − 2xiyij − 2xjyij + 3yij)

where M is a sufficiently large positive penalty factor. Which is illustrated by

the table 4.2.

Table 4.2: Verification of the quadratization

xi xj yij xixj xiyij xjyij xixj −
2xiyij −
2xjyij +
3yij

0 0 0 0 0 0 0
0 0 1 0 0 0 3
0 1 0 0 0 0 0
0 1 1 0 0 1 1
1 0 0 0 0 0 0
1 0 1 0 1 0 1
1 1 0 1 0 0 1
1 1 1 1 1 1 0

Finally, we repeat the above steps till we obtain a quadratic formulation.

4.3.1.1 Example

Consider the polynomial pseudo-Boolean function 4.10 we obtained.

g(x1,x2,k1) = 1−x1+3x2+15k1+33x1x2−18x2k1−6x1k1−18x1x2k1. (4.11)

There is only one monomial with an order higher than two. From which, we

replace x1x2 with y.
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4.3 Quadratic pseudo-Boolean formulation

g(x1, x2, k1, y) = 1− x1 + 3x2 + 15k1 + 33x1x2 − 6k1x1 − 18k1x2 − 18k1y (4.12)

Afterwards, we add in the penalty term with penalty factor M.

g(x1, x2, k1, y) = 1−x1+3x2+15k1+33x1x2−6k1x1−18k1x2−18k1y+M(x1x2−2x1y−2x2y+3y)

(4.13)

Let’s set M=101.

g(x1, x2, k1, y) = 1− x1 + 3x2 + 15k1 + 303y + 134x1x2 − 6k1x1 − 18k1x2

− 202x1y − 202x2y − 18k1y (4.14)

4.3.1.2 Complexity analysis

Rosenberg’s quadratization technique adds large positive coefficients to the pseudo-

Boolean function and is considered to have a negative impact on the computa-

tional performance [33]. Further, when we apply the Rosenberg’s method to a

monomial, each iteration results in the degree to reduce by one, adding an aux-

iliary variable. Therefore we require n − 2 auxiliary variable for each monomial

with degree n.

This has less meaning when in applications because the Rosenberg’s method is

not a term-wise quadratization technique. For a given pseudo-Boolean function,

we require O(2n) auxiliary variables.

Proof. Consider a pseudo-Boolean function with n Boolean variables and having

all possible combinations as monomials. Notice that when we take all possible

combinations of two variables in Rosenberg’s method, we reduce degree three and

four monomials to two. Also, after we reduce the order of all monomials with
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4.3 Quadratic pseudo-Boolean formulation

initial degree r ∈ 3, 4, .... to two, all degree r+1 monomials reduce to degree three

and require only one auxiliary variable to reduce the degree to two. Therefore

we require a maximum of
(
n
r

)
additional auxiliary variables for all monomials of

degree r. We follow these facts in table 4.3

Table 4.3: Order of the Rosenberg’s method

Degree of the monomials Max number of auxiliary variables

less than 4:
(
n
2

)
degree 5:

(
n
5

)
...

...

degree n-1:
(

n
n−1

)
order n:

(
n
n

)
Then the maximum number of auxiliary variables required is

(
n
2

)
+
∑n

r=5

(
n
r

)
≤

2n, hence the Rosenberg’s quadratization is O(2n)

4.3.2 Freedman and Drineas quadratization

Freedman and Drineas quadratization[34] is a term-wise quadratization technique

applicable to negative monomials with a degree greater than two. For a negative

monomial −
∏n

i=1 xi following is the representation of the quadratization. Where

xi, i ∈ {1, 2....n} are Boolean variables, and y is a auxiliary Boolean variable.

−
n∏

i=1

xi = min
y∈{0,1}

(n− 1)y −
n∑

i=1

xiy (4.15)
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4.3 Quadratic pseudo-Boolean formulation

4.3.2.1 Example

Consider the polynomial pseudo-Boolean function 4.10 we obtained.

g(x1,x2,k1) = 1−x1+3x2+15k1+33x1x2−18x2k1−6x1k1−18x1x2k1. (4.16)

There is only one monomial(−18x1x2k1) with a degree greater than two, which

is negative. Therefore we apply the quadratization to this monomial only.

−18k1x1x2 → 18{2y − (x1y + x2y + k1y)} (4.17)

By substituting in 4.16, we obtain the QUBO as the following.

g(x1, x2, k1, y) = 1−x1+3x2+15k1+36y+33x1x2−6k1x1−18k1x2−18x1y−18x2y−18k1y

(4.18)

4.3.2.2 Complexity analysis

For a given monomial with higher order( Grater than 2) we only require one

auxiliary variable. However, we require O(2n) auxiliary variables for pseudo-

Boolean function with n binary variables.

Proof. Consider a pseudo-Boolean function containing n variables having all pos-

sible combinations as monomials. For r ∈ N there are
(
n
r

)
monomials with degree

r. Therefore the number of monomials with a degree greater than two is
∑n

r=3

(
n
r

)
.

As for a monomial, we require one auxiliary variable, then the number of auxiliary

variables required is
∑n

r=3

(
n
r

)
or O(2n).
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4.3 Quadratic pseudo-Boolean formulation

4.3.3 Ishikawa’s quadratization

Ishikawa’s quadratization [35] is also a term-wise quadratization technique, ap-

plicable to positive monomials with a degree greater than two. For a positive

monomial
∏n

i=1 xi following is the representation of the quadratization. Where

xi, i ∈ {1, 2....n} are binary variables.

n∏
i=1

xi = min
y∈{0,1}m

m∑
i=1

yi(ci,n(−|x|+ 2i)− 1) +
|x|(|x| − 1)

2
(4.19)

where,

|x| =
n∑

i=1

xi and m = ⌊n− 1

2
⌋

ci,n =

1, if n is odd and i = m

2, otherwise

4.3.3.1 Example

Consider the PBO

f(x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 + x1− 2x2 + x3 (4.20)

There is only one monomial(9x1x2x3) with a degree greater than 2, which is

positive. Therefore we apply the quadratization to this monomial only. Now,

|x| = x1 + x2 + x3

m = ⌊3− 1

2
⌋ = 1

c1,3 = 1

(4.21)
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4.3 Quadratic pseudo-Boolean formulation

Then by substituting in 4.19,

9x1x2x3 → 9{y + x1x2 + x1x3 + x2x3 − x1y − x2y − x3y} (4.22)

then the QUBO for 4.20 is the following.

f(x1, x2, x3, y) = x1−2x2+x3+9y+17x1x2+9x1x3+3x2x3−9x1y−9x2y−9x3y

(4.23)

4.3.4 Complexity analysis

For a given monomial of degree n grater than two we require ⌊n−1
2
⌋ auxiliary

variables. Further, we require O(n2n) auxiliary variables for pseudo-Boolean

function with n binary variables.

Proof. Consider a pseudo-Boolean function containing n variables having all pos-

sible combinations as monomials. For r ∈ N there are
(
n
r

)
monomials with degree

r. Therefore the number of monomials with a degree greater than two is
∑n

r=3

(
n
r

)
.

Hence,

Number of auxiliary variables =
n∑

r=3

[⌊r − 1

2
⌋
(
n

r

)
]

≤
n∑

r=3

[⌊n− 1

2
⌋
(
n

r

)
]

≤ n

n∑
r=3

(
n

r

)
≤ n2n

Therefore, Ishikawa’s quadratization requires O(n2n) auxiliary variables.
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4.4 QUBO formulation for DLP over elliptic curves.

4.4 QUBO formulation for DLP over elliptic curves.

Recall the elliptic curve discrete logarithm problem (ECDLP).

nP = R (4.24)

Solve for n, where E : y2 = x3 + ax + b (mod p), p a prime number grater than

3 and P,R ∈ E, R ̸= O(point at infinity) The approach we use here is similar to

the methodology in section 4.1. First, we need to convert the problem into an

optimization problem. We achieve this using norm properties. Consider,

g(n) =

∥nP −R∥2E, nP ̸= O

M, nP = O

(4.25)

M is a positive constant and ∥∥E represents the Euclidean norm. From norm

properties, we know that g(n) ≥ 0 and g(n) = 0 if and only if nP = R. Therefore

by minimizing 4.25, we obtain the solution. Next, we need to convert the problem

into a PBO. For which we need a Boolean representation of n. To represent n

as Boolean variables, we need to know the bounds of n or the subgroup order

generated by P . We use the baby step giant step algorithm 2.2.1 to determine the

order of the subgroup. Let us say the order isN . Then the Boolean representation

is as follows.

n = 20x1 + 21x2 + · · ·+ 2mxm+1 (4.26)

Where m = ⌊log2(N − 1)⌋ and xi are Boolean variables for all i ∈ {1, 2, · · · ,m}.
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4.4 QUBO formulation for DLP over elliptic curves.

With that the PBO is the following.

g(x) =

∥{20x1 + 21x2 + · · ·+ 2mxm+1}P −R∥2E, n ̸= 0

M, n = 0, N

, x ∈ {0, 1}m

(4.27)

Finally we follow 4.1 and section to obtain a QUBO.

4.4.1 Example

Consider the problem nP = R over an elliptic curve E : x2 = y3+x+2 (mod 5),

where P = (3, 6) and Q = (80, 87). The order of the subgroup generated by P is

5. The optimization problem is the following.

g(n) =

∥nP −R∥2E, nP ̸= O

100, nP = O

(4.28)

Since n < 5 we require 3 Boolean variables to represent n. Accordingly we can

represent n as the following.

n = n1 + 2n2 + 4n3 (4.29)

Here n1, n2, n3 are Boolean variables. Further, the PBO is the following.

g(n1, n2, n3) =

∥(n1 + 2n2 + 4n3)P −R∥2E, n1 + 2n2 + 4n3 ̸= 0, 5

100, n1 + 2n2 + 4n3 = 0, 5

(4.30)

The following table 4.4 shows the characteristic equation and its coefficients.
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4.4 QUBO formulation for DLP over elliptic curves.

Table 4.4: Min–terms for Equation 4.30

α n1 n2 n3 χα(n1,n2,n3) g(n1, n2, n1)
000 0 0 0 (1− n1)(1− n2)(1− n3) 100
001 0 0 1 (1− n1)(1− n2)(n3) 5929
010 0 1 0 (1− n1)(n2)(1− n3) 5929
011 0 1 1 (1− n1)(n2)(n3) 12490
100 1 0 0 (n1)(1− n2)(1− n3) 12490
101 1 0 1 (n1)(1− n2)(n3) 100
110 1 1 0 (n1)(n2)(1− n3) 0
111 1 1 1 (n1)(n2)(n3) 5929

Then using equation 4.8, we obtain the following.

g(n1, n2, n3) =100(1− n1)(1− n2)(1− n3)

+ 5929(1− n1)(1− n2)(n3)

+ 5929(1− n1)(n2)(1− n3)

+ 12490(1− n1)(n2)(n3)

+ 12490(n1)(1− n2)(1− n3)

+ 100(n1)(1− n2)(n3)

+ 0(n1)(n2)(1− n3)

+ 5929(n1)(n2)(n3)

(4.31)

After simplification we obtain the multi-linear PBO.

g(n1, n2, n3) =100 + 12390n1 + 12390n2 + 5829n3

− 18319n1n2 − 18219n1n3 + 732n2n3 + 17587n1n2n3

(4.32)

Finally, replacing n1, n2 with y, the auxiliary variable in Rosenberg’s quadratiza-
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4.4 QUBO formulation for DLP over elliptic curves.

tion 4.3.1 to obtain a QUBO. Here we choose the penalty factor to be 17587.

g(n1, n2, n3, y) =100 + 12390n1 + 5829n2 + 5829n3 + 34442y + 17587n1n2

− 18219n1n3 − 35174n1y + 732n2n3 − 35174n2y + 17587n3y

(4.33)
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Chapter 5

Experimental Results

5.1 QUBO to anneling

Once the QUBO formulation is done, the problem is converted into a matrix and

directly input into the quantum annealing . The matrix form is defined as the

following.

Minimize xTQx

subject to x ∈ S

Where S is a set of Boolean variables and Q represent the coefficient matrix

derived from the QUBO. This matrix is known as Q-matrix [36]. The formulation

is better understood with example 5.1.1.

Example 5.1.1. Consider the QUBO 4.14,

g(x1, x2, k1, y) = 1−x1+3x2+15k1+303y+134x1x2−6k1x1−18k1x2−202x1y−202x2y−18k1y

(5.1)

The solution is not effected by the constant therefore we omit it. The QUBO

consists of a linear part −x1+3x2+15k1+303y and a quadratic part (monomials
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5.2 Results

of order 2) 134x1x2 − 6k1x1 − 18k1x2 − 202x1y− 202x2y− 18k1y. Notice that for

any Boolean variable x = x2, therefore the linear part can be restated as,

−x2
1 + 3x2

2 + 15k2
1 + 303y2 (5.2)

Then we can rewrite in the matrix form.

g(x1, x2, k1) =
(
x1 x2 k1

)

−1 134 −6 −202

0 3 −18 −202

0 0 15 −18

0 0 0 303

 .


x1

x2

k1

 (5.3)

Once the Q-matrix is constructed, we need to embed the problem into the

annealing hardware. Consider variables that take instances -1 and +1 called Ising

or spin variables. A Boolean variable (x) can be converted to a Ising variable

(s) through s = 1 − 2x. We obtain an Ising model by converting all Boolean

variables in the QUBO to Ising variables. These models can define an instance

in physical qubits in the annealing through a physical Hamiltonian. The physical

Hamiltonian is defined as the sum of the initial Hamiltonian and the problem

Hamiltonian. Initially, the annealing starts at the lowest energy level of the

initial Hamiltonian. Finally, the state corresponding to the lowest energy state

of the problem Hamiltonian is output as the solution.

5.2 Results

Initial tests were carried out with Advantage performance update 4.1, annealing

provided by D-Wave. The parameters were set to take 100 reads(solution outputs)

with 20µs for each read. Once the reads were completed, we received a sample
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5.2 Results

set of solutions from which the sample with the lowest energy was picked. For

the example QUBO 4.14 we obtained using Rosenberg’s method a sample set of

eight solutions. The corresponding energy of the problem Hamiltonian is shown

in figure 5.1. The solution corresponding to the lowest energy occurred 15 times

Figure 5.1: Energy of the problem Hamiltonian and number of reads of the sample
set (2x = 2 (mod 3))

out of 100, and the solution was accurate. Consider the problem 3x = 3 (mod 5).

Once the QUBO formation was done, we submitted the problem to the annealing.

The energies of the problem Hamiltonian are shown in the figure 5.2. Here, the

Figure 5.2: Energy of the problem Hamiltonian and number of reads of the sample
set (3x = 3 (mod 5))

accurate solution did not correspond to the least energy, but the solution was

among the sample set.
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5.2 Results

The hybrid solver for general BQM overcame this issue. D-wave provides this

annealing. The hybrid name suggests using classical computing resources(CPUs)

and Quantum resources(QPUs). As inputs, we only need to input a time limit

other than the QUBO. The minimum time limit we can set is 3 seconds. As

outputs, we receive a single solution.

While carrying out tests with this annealing, we observed that the coefficient

in the QUBO affects the time limit. To further test, we used different penalty

factors in Rosenberg’s method 4.3.1 and checked the minimum time we can obtain

the accurate solution consistently. Figure 5.3 shows how the time limits were set

with the change of the penalty factor(M) for equation 4.13. As we can see,

Figure 5.3: Effect of penalty factor in Rosenberg’s method on the time limit for
equation 4.13

there was no evident pattern, and this randomness continued to other problems.

However, setting the penalty factor minimum and keeping the number of variables

low allowed us to obtain accurate solutions with a time limit set at 3 sec for most

problems.
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Chapter 6

Discussion

Because the Q-matrix can be given directly to annealing through PyQUBO[37], a

library in Python programming language; we need not consider the complexities

of embedding the QUBO on to the annealer. Annealers provide a promising

solution to hard problems [17][38]. In fact, we also obtained solutions to small

scale problems running on open-source annealers provided by D-Wave. However,

there are difficulties in formulating the QUBO and is discussed in this section.

Furthermore, a special class of set functions called submodular can be solved in

polynomial time. Moreover, in this chapter, we check whether our formulation is

submodular.

6.1 Check for submodularity

A set function is a mapping from a set to a real value. For a set function f defined

on a set A, the discrete derivative for S ⊂ A with respect to e ∈ A{e /∈ S} is the

following

∆f (e|S) = f(S ∪ e)− f(S) (6.1)

The discrete derivative definition for submodularity is the following.

Definition 6.1.1. A set function f on set A is submodular,
if for all e ∈ A

∆f (e|X) = f(X ∪ e)− f(X) (6.2)
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6.2 Pre-computation challengers

is non-increasing in X

In recent years, efficient algorithms were developed to solve submodular functions[39][40].

Let us look into an example to check whether our formulation is submodular.

Example 6.1.1. Consider 2x = 3 (mod 5),using the methodology we discussed
in section 4.1 let f be the PBO that represent (2x − 3− k5)2 with x, k in Boolean
form, x1 + 2x2 + 4x3 and k = k1 + 2k2.

f(x1, x2, x3, k1, k2) = (2x1+2x2+4x3 − 3− (k1 + 2k2)5)
2 (6.3)

Let g(S), the set function representation of equation 6.3, where S is the set of
Boolean variables corresponding to value 1. Now 23 − 3 − (1)5 = 0, therefore
f(1, 1, 0, 1, 0) = 0 and g({x1, x2, k1}) = 0.
Notice that as g({x1, x2, k1}) = 0 and g(S) ≥ 0; ∆g(k1|{x1, x2}) < 0

∆g(k1|{x1, x2}) = g({x1, x2, k1})− g({x1, x2}) < 0 (6.4)

Further, ∆g(x3|{x1, x2, k1}) > 0

∆g(x3|{x1, x2, k1}) = g({x1, x2, k1, x3})− g({x1, x2, k1}) > 0 (6.5)

That is
∆g(k1|{x1, x2}) < ∆g(x3|{x1, x2, k1}) (6.6)

This violate the condition in definition6.1.1, therefore the formulation is not sub-
modular.

A similar set to {x1, x2, k1} were the solution to the PBO exist in every formu-

lation. When we consider the discrete derivative through that set as in example

6.1.1, the condition for submodularity violates; therefore, the formulation will

never be submodular.

6.2 Pre-computation challengers

Our formulation is twofold as there are two phases, DLP to PBO and then to

QUBO. Perhaps the biggest challenge is to optimize the operations in these two

phases. Many Boolean variables are required for DLP with a large order cyclic
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6.3 Conclusion

group. However, the increase in required variables is on a log scale. Furthermore,

we add in an additional variable(k) in optimization formulation of the DLP over

a multiplicative modular group 4.1, resulting in more Boolean variables.

Then in the QUBO formulation phase, we resort to min-term normal form,

which we compute through classical computers. The complexity of the construct-

ing min-term normal form is O(2n), but our formulation is not the only formu-

lation suffering in pre-computation. The minor embedding problem [41] is a

popular example.

Afterwards, we used quadratization techniques to obtain a QUBO. The ques-

tion to ask is; what is the best quadratization? For the quadratization techniques

we discussed in chapter 3 Rosenberg’s method and Freedman and Drineas method

generate auxiliary variables in O(2n) while Ishikawa’s method generates O(n2n).

If all higher-order monomials(> 2) have negative coefficients, then Freedman and

Drineas method is better as there is no penalty factor compared to Rosenberg’s

method. However, when it comes to pseudo-Boolean functions with higher degree

monomials having both negative and positive coefficients, the best quadratization

is difficult to determine and will depend on the PBO itself.

6.3 Conclusion

We successfully formulated QUBO that is accepted by the annealing. Further,

we obtained accurate solutions for small scale problems. DLP based cryptosys-

tems can be concerned about this, but our formulation cost is high. Neverthe-

less, the initial formulation of the prime factoring problem also suffered in pre-

computation, which was later modified to produce promising experimental results.

We present our work as an initial step since there has never been a QUBO for-

mation for the DLP and only a few previous optimization approaches. Further,

the most costly step is the second phase of our formulation, where we resort to
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6.3 Conclusion

polynomial transformation. It will be interesting to explore other methodologies

to work around this stage.

Some results in this thesis were published in [42].
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Appendix A

Python code used in
experimentation with hybrid
solver

1 import numpy as np

2 from pyqubo import Binary

3 from dwave.system import LeapHybridSampler

4 import sympy as sym

5 from sympy import *

6 a=int(input("Enter the Alpha Value "))

7 b=int(input("Enter Beta value "))

8 p=int(input("Enter Prime value "))

9 xmax=int (2**(np.floor(np.log2(p-1))+1))

10 xvar=int(np.floor(np.log2(p-1))+1)

11 kmax=int (2**(np.floor(np.log2(a**(p-1)/p))+1))

12 kvar=int(np.floor(np.log2(a**(p-1)/p))+1)

13 ListX=list(range(0,xmax))

14 ListK=list(range(0,kmax))

15 ListFx =[]

16 for x in ListX:

17 for k in ListK:

18 ListFx.append ((a**x-b-k*p)**2)

19

20 stringX=""

21 ListVX =[]

22 for j in range(xvar):

23 stringX=stringX+"x"+str(j+1)+" "

24 stringK=""

25 ListVK =[]

26 for j in range(kvar):

27 stringK=stringK+"k"+str(j+1)+" "

28 ListVX=stringX.split(" ")
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29 ListVK=stringK.split(" ")

30 ListVX.pop()

31 ListVK.pop()

32 x=[]

33 for i in range(xvar):

34 x.append(sym.Symbol(ListVX[i]))

35 k=[]

36 for i in range(kvar):

37 k.append(sym.Symbol(ListVK[i]))

38 mintermList =[]

39 for Xi in range(xmax):

40 binaryx =[0]* xvar

41 res = [int(i) for i in bin(Xi)[2:]]

42 res.reverse ()

43 for i in range(len(res)):

44 binaryx[i]=res[i]

45 minx=""

46 for i in range(xvar):

47 if binaryx[i]==1:

48 minx=minx+f"(x[{i}])*"

49 else:

50 minx=minx+f"(1-x[{i}])*"

51 for Ki in range(kmax):

52 binaryk =[0]* kvar

53 res = [int(i) for i in bin(Ki)[2:]]

54 res.reverse ()

55 for i in range(len(res)):

56 binaryk[i]=res[i]

57 mink=""

58 for i in range(kvar):

59 if i<kvar -1:

60 if binaryk[i]==1:

61 mink=mink+f"(k[{i}])*"

62 else:

63 mink=mink+f"(1-k[{i}])*"

64 else:

65 if binaryk[i]==1:

66 mink=mink+f"(k[{i}])"

67 else:

68 mink=mink+f"(1-k[{i}])"

69 mintermList.append(eval(minx+mink))

70

71 MinTermN =0

72 for i in range(len(ListFx)):

73 MinTermN=MinTermN+expand(ListFx[i]* mintermList[i])

74 print(MinTermN)

75 pnty=""

76 Itt=MinTermN.copy()

77 NotQUBO=True
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78 count =1

79 y=[]

80 M=int(input("Enter a sutable M value"))

81 while NotQUBO ==True:

82 xi=input("enter first variable type")

83 xiN=int(input("enter first variable number"))

84 xj=input("enter second variable type")

85 xjN=int(input("enter second variable number"))

86 y.append(sym.Symbol(f"y{count}"))

87 Itt=Itt.subs({eval(xi)[xiN -1]* eval(xj)[xjN -1]:y[count -1]})

88 pnty=pnty+f" +expand(M*({xi}[{xiN -1}]*{ xj}[{xjN -1}] -2*y[{

count -1}]*{ xi}[{xiN -1}] -2*y[{count -1}]*{ xj}[{xjN -1}]+3*y[{

count -1}]))"

89 print("")

90 print(pnty)

91 print("")

92 print(Itt)

93 IsQUBO=input("Is it quadratized {yes/no}")

94 count=count+1

95 if IsQUBO =="yes":

96 break

97 QUBO=Itt+eval(pnty)

98 print(QUBO)

99

100 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 ,k1,k2,k3,k4,k5,k6,k7,k8,k9,k10 ,y1,

y2 ,y3 ,y4 ,y5 ,y6 ,y7 ,y8 ,y9,y10 ,y11 ,y12 ,y13 ,y14 ,y15 ,y16 ,y17 ,y18 ,

y19 ,y20 ,y21 ,y22 ,y23 ,y24 ,y25 ,y26 = Binary("x1"),Binary("x2"),

Binary("x3"),Binary("x4"),Binary("x5"),Binary("x6"),Binary("x7

"),Binary("x8"),Binary("x9"),Binary("x10"),Binary("k1"),Binary

("k2"),Binary("k3"),Binary("k4"),Binary("k5"),Binary("k6"),

Binary("k7"),Binary("k8"),Binary("k9"),Binary("k10"),Binary("

y1"),Binary("y2"),Binary("y3"),Binary("y4"),Binary("y5"),

Binary("y6"),Binary("y7"),Binary("y8"),Binary("y9"),Binary("

y10"),Binary("y11"),Binary("y12"),Binary("y13"),Binary("y14"),

Binary("y15"),Binary("y16"),Binary("y17"),Binary("y18"),Binary

("y19"),Binary("y20"),Binary("y21"),Binary("y22"),Binary("y23"

),Binary("y24"),Binary("y25"),Binary("y26")

101 G =eval(str(QUBO))

102 model=G.compile ()

103 bqm = model.to_bqm(index_label=True)

104 sampler=LeapHybridSampler(token="Replace with API Token")

105 sampleset = sampler.sample(bqm ,time_limit =3)

106 decoded_samples = model.decode_sampleset(sampleset)

107 best_sample = min(decoded_samples , key=lambda x: x.energy)

108 print(best_sample.sample)
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Appendix B

Python cord to use Advantage
system 4.1

1 #Replace embedding to annealer cord with this cord to use

Advantage_system4 .1

2 import dimod

3 import neal

4 from dwave.system.samplers import DWaveSampler

5 from dwave.system.composites import FixedEmbeddingComposite

6 from minorminer.busclique import find_clique_embedding

7 import dwave_networkx as dnx

8 from pyqubo import Binary , Constraint , Placeholder ,Array ,

LogEncInteger

9

10 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 ,k1,k2,k3,k4,k5,k6,k7,k8,k9,k10 ,y1,

y2 ,y3 ,y4 ,y5 ,y6 ,y7 ,y8 ,y9,y10 ,y11 ,y12 ,y13 ,y14 ,y15 ,y16 ,y17 ,y18 ,

y19 ,y20 = Binary("x1"),Binary("x2"),Binary("x3"),Binary("x4"),

Binary("x5"),Binary("x6"),Binary("x7"),Binary("x8"),Binary("x9

"),Binary("x10"),Binary("k1"),Binary("k2"),Binary("k3"),Binary

("k4"),Binary("k5"),Binary("k6"),Binary("x7"),Binary("x8"),

Binary("k9"),Binary("k10"),Binary("y1"),Binary("y2"),Binary("

y3"),Binary("y4"),Binary("y5"),Binary("y6"),Binary("y7"),

Binary("y8"),Binary("y9"),Binary("y10"),Binary("y11"),Binary("

y12"),Binary("y13"),Binary("y14"),Binary("y15"),Binary("y16"),

Binary("y17"),Binary("y18"),Binary("y19"),Binary("y20"),

11 G =eval(str(QUBO))

12 model=G.compile ()

13 dw_sampler = DWaveSampler(endpoint="https :// cloud.dwavesys.com/

sapi",token="Replace with API Token",solver="Advantage_system4

.1")

14 sampler_kwargs = {"num_reads": 100,"annealing_time": 20,"

num_spin_reversal_transforms": 4,"auto_scale":True ,"

chain_strength": 2.0,"chain_break_fraction": True }

15 graph_size =16
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16 sampler_size=len(model.variables)

17 p16_working_graph = dnx.pegasus_graph(graph_size ,node_list=

dw_sampler.nodelist ,edge_list=dw_sampler.edgelist)

18 embedding = find_clique_embedding(sampler_size ,p16_working_graph)

19 sampler = FixedEmbeddingComposite(dw_sampler , embedding)

20 bqm = model.to_bqm(index_label=True)

21 sampleset = sampler.sample(bqm ,** sampler_kwargs)

22 decoded_samples = model.decode_sampleset(sampleset)

23 best_sample = min(decoded_samples , key=lambda x: x.energy)

24 print(best_sample.sample)

44


	1 Introduction
	2 Preliminaries 
	2.1 Groups and the the DLP over a multiplicative group of integer modulo 
	2.1.1 The DLP
	2.1.2 Diffie-Hellman key exchange application

	2.2 Elliptic curve over integer modulo p
	2.2.1 The ECDLP
	2.2.2 Subgroups
	2.2.3 Diffie-Hellman key exchange application


	3 State of the Art
	4 Quadratic formulation
	4.1 Pseudo-Boolean optimization formulation of DLP over a multiplicative modular group
	4.1.1 Example

	4.2 Polynomial transformation
	4.2.1 Example

	4.3 Quadratic pseudo-Boolean formulation
	4.3.1 Rosenberg's quadratization
	4.3.1.1 Example
	4.3.1.2 Complexity analysis

	4.3.2 Freedman and Drineas quadratization
	4.3.2.1 Example
	4.3.2.2 Complexity analysis

	4.3.3 Ishikawa's quadratization
	4.3.3.1 Example

	4.3.4 Complexity analysis

	4.4 QUBO formulation for DLP over elliptic curves.
	4.4.1 Example


	5 Experimental Results 
	5.1 QUBO to anneling
	5.2 Results

	6 Discussion
	6.1 Check for submodularity
	6.2 Pre-computation challengers
	6.3 Conclusion 

	References
	A Python code used in experimentation with hybrid solver
	B Python cord to use Advantage system 4.1

