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ABSTRACT

Background: Breast cancer is one of the most common cancers among women globally and early
identification is known to increase patient outcomes. Therefore, the main aim of this study is to identify
the essential radiomic features as an image marker and compare the diagnostic feasibility of feature
parameters derived from radiomics analysis and conventional Magnetic Resonance Imaging (MRI) to
differentiate benign and malignant breast masses.

Methods and material: T1-weighted Dynamic Contrast-Enhanced (DCE) breast MR axial images
of 151 (benign (79) and malignant (72)) patients were chosen. Regions of interest were selected
using both manual and semi-automatic segmentation from each lesion. 382 radiomic features
computed on the selected regions. A random forest model was employed to detect the most
important features that differentiate benign and malignant breast masses. The ten most important
radiomics features were obtained from manual and semi-automatic segmentation based on the Gini
index to train a support vector machine. MATLAB and IBM SPSS Statistics Subscription software
used for statistical analysis.

Results: The accuracy (sensitivity) of the models built from the ten most significant features obtained
from manual and semi-automatic segmentation were 0.815 (0.84), 0.821 (0.87), respectively. The top 10
features obtained from manual delineation and semi-automatic segmentation showed a significant dif-
ference (P<0.05) between benign and malignant breast lesions.

Conclusion: This radiomics analysis based on DCE-BMRI revealed distinct radiomic features to
differentiate benign and malignant breast masses. Therefore, the radiomics analysis can be used as a
supporting tool in detecting breast MRI lesions.

KEYWORDS

dynamic contrast-enhanced breast MRI, manual delineation, radiomics, semi-automatic segmentation

Introduction

Breast cancer (BC) can be identified as one of the highly dominant cancers in women globally
and its prevention remains as a worldwide challenge [1]. BC has higher mortality rates and is
a prominent cause of cancer fatality in women [2]. Breast carcinoma originates from cells of
the mammary gland and displays a broad range of morphological characteristics, distinct
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histochemical contours, and distinctive histopathological
sub-categories. More than 95% of breast malignancies are
adenocarcinomas. Invasive ductal carcinoma (IDC) is the
main category of invasive breast carcinoma. IDC is
responsible for 55% of breast carcinoma occurrence after
detection [3].

Breast Magnetic Resonance Imaging (BMRI) is an
established supplementary tool to assess suspicious breast
masses. Dynamic contrast-enhanced MRI (DCE-MRI) has
revealed great investigative importance in identifying
multifocal, multicentric, or contralateral disorders not
identified on mammography or ultrasound (US), recogni-
tion of in situ ductal carcinoma, recognition of hidden
metastatic axillary swellings, and recognition of malignancy
in condensed tissues in the breast [4]. Furthermore, DCE-
MR images are the first series of images reviewed by
radiologists during image interpretation. The radiologist
identifies clinically significant lesion based on the pattern of
contrast enhancement. Therefore, DCE-MRI is one of the
most clinically significant MRI sequences contrary to other
noninvasive approaches [5].

Variability in BMRI techniques, definitions of morpho-
logical findings, assessment, and categorization of conven-
tional characteristics of MR breast masses have led to the
development of a lexicon on BMRI. This lexicon, the Breast
Imaging Reporting and Data System (BI-RADS) MRI
of the American College of Radiology [6] contains the vo-
cabulary to define the lesion infrastructure and features.
Zhou et al. [7] stated that BI-RADS shows subjectivity, less
reproducibility, and demonstrates wide intra- and inter-
reader disagreement, particularly among less-experienced
readers. But conventional BI-RADS signifiers are the gold
standard schema for conventional BMR lesion categoriza-
tion when a biopsy or histopathological reports are not
available [8]. Therefore, this research will be helpful to find a
superior method to improve the accuracy by eliminating
subjectivity, documenting the conventional BMRI features,
reducing false-positive detection errors, and supporting
the findings that have already been diagnosed using the
conventional BMRI features based on the BI-RADS lexicon.

Recently, the use of BMRI has emerged an excellent
opportunity to establish new approaches to non-invasive
benign and malignant tumor diagnosis using radiomics.
Radiomics is an explicit method for extracting a wide range
of quantifiable characteristics from digital images that are
not discernible to human eyes [8]. Radiomic features offer
information on patterns of the range of grayscale and re-
lationships between pixels [9]. Therefore, this research will
be helpful to evaluate the importance of radiomics features
to diagnose lesion pathologies that provide essential details
beyond the human eye.

Quantitative radiomic features are usually classified as
characteristics based on shape, first-order statistics features,
and second-order statistics features. The shape characteris-
tics are centered on the two-dimensional and three-dimen-
sional images reconstructed to determine the geometrical
features [10]. The dispersion of specific voxel quantities
without spatial correlations is denoted by characteristics of

first-order statistics. The characteristics of second-order
statistics comprise the textural features obtained by
computing the statistical inter-relationships between neigh-
boring voxels or pixels [10]. The highly prominent texture
models employed in MRI texture analysis demonstrated to
be the gray-level co-occurrence matrix (GLCM) [11] and
grey-level run-length matrix (GLRLM) [12]. The GLCM is a
square matrix with the aspect of the number of gray in-
tensities in the region of interest (ROI). GLCM is a fre-
quency organization or how frequently a sequence of pixel
intensity ideals occurs in an image [13]. The gray-level run is
a series of co-linear image points with a similar gray in-
tensity [12]. Radiomics has also been used and assessed in
different modalities such as US [14], Computed Tomogra-
phy (CT) [15], Nuclear Medicine [16], MRI [17], and plain
radiography.

Lesion segmentation by identification of the ROI in the
medical images retrieved is an important phase of the
radiomics analysis (18). The entire lesion can be delineated
by manual, semi-automated, or automated procedures.
According to Loizou et al. [18], the gold standard is now
called the physical description of ROIs and is the chosen
alternative over automatic processes in many applications
[19, 20, 21]. However, such a technique creates intra and
interobserver inconsistency and repeatability failures in
addition to its inefficient existence since many tumors have
doubtful and confusing borders [22]. The expansion and
verification of new semi-automatic differentiation algo-
rithms is an accessible area of experiment with fascinating
and advanced outcomes. Semi-automatic approaches facil-
itate specialists to categorize cases that are easy to segment
and to deal with difficult lesions. Models based on active
contour are extremely valuable functions for semi-auto-
mated lesion segmentation [23]. Semi-automatic segmen-
tation of 2D DCE-BMR images of this study was performed
using active contour segmentation without edges based on
the Chan-Vese technique [24]. Therefore, it is essential to
determine the most accurate method for lesion segmenta-
tion for feature extraction. This research investigated the
accuracy of manual and semi-automatic lesion segmenta-
tion methods to differentiate benign and malignant breast
masses.

Certain radiomic features that have been extracted from
the manual delineation and semi-automatic segmentation
may not be precisely appropriate for further evaluation and
may not be essential. Therefore, it is essential to determine
the most important radiomic features before the construc-
tion of the machine learning (ML) models. One of the
techniques that can be used to identify the most prominent
radiomic features is the random forest (RF) technique. RF
utilizes the mean Decrease Gini Index to discover the
importance of a specific characteristic to the prediction
model. Higher mean decrease Gini features indicate the
most influential predictors for the classifier [25]. RF [26]
has superior predictive execution than the principal
component analysis [27, 28]. The most prominent radiomic
features chosen by the RF from both manual delineation and
semi-automatic segmentation were applied to train a linear
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support vector classifier in the current study. Support vector
machine (SVM) is a supervised machine learning method
that has exhibited elevated execution in unraveling catego-
rization obstacles in numerous biomedical disciplines [29].
A linear SVM was applied in the current study for the
radiomic feature classification.

This research investigated the relationship between the
automated features, and conventional MRI features apparent
on breast DCE-MR images. It assessed the inter-operator
variability between operators and evaluated the usefulness of
building machine learning (ML) models for mass phenotype
recognition and classification of benign and malignant
breast masses. The main aim of our research is to identify
the essential radiomic features as an image bio marker so
that it is possible compare the diagnostic feasibility of feature
parameters derived from radiomics analysis and conven-
tional MRI to differentiate benign and malignant breast
masses.

Methods

T1-weighted (T1W) DCE axial breast MR images of 151
(benign (79) and malignant (72)) patients assessed accord-
ing to the 5th edition of the American College of Radiology
Breast Imaging Reporting and Data System (ACR BI-RADS)
MR lexicon selected from the population. Breast masses of
female patients (age>40 years) that were radiologically
categorized according to the 5th edition of BIRADS lexicon
included for this study. Poor image quality, non-mass-like
enhancement, and background parenchymal enhancements
excluded from this study. Informed consent of the patients
was waived off as the study involved only a retrospective
review of existing BMRIs with known diagnoses. This study
was approved by the institutional ethical clearance com-
mittee.

MRI studies were performed using a 3T Ingenia (Philips
Medical Systems, Best, The Netherlands), using a dedicated
bilateral SENSE 16 channel phase array breast coil with
patient, in the prone position. The MRI examinations con-
sisted of a 3D fat suppressed DCE sequence (pMEdy-
n_eTHRIVE). Breath-holding techniques were not used.
DCE axial images with 1.6mm slice thickness were obtained.
Field of View (FOV) was determined according to the size of
the patient. The reconstruction matrix was adjusted at the
time of FOV adjustment in order to ensure voxel size was
constant. For dynamic contrast enhancement, a 0.1mmol kg�1

bolus of Magnevist (gadopentetate dimeglumine) was injected
according to the bodyweight of the patient (average 5mL) with
a flow rate of 2.5–3.0mL s�1, followed by a 20-mL saline flush.
No other MR sequences (functional or morphological) have
been included in the analysis.

To avoid inter-reader variability, the MR images of the
DCE series were evaluated by two independent radiologists
with over 10 years and 5 years of experience in BMR image
interpretation using the DICOM_viewer, an in-house soft-
ware developed on MATLAB [30]. The axial slice, which
showed the optimal representation of the tumor area of the

DCE image series, was chosen. The radiologists were blinded
to the history of the patients.

The selected image from the series was transferred to the
MaZda [31] workspace. To avoid inter-reader variability, the
same two radiologists independently performed a 2D
manual delineation of breast tumor on the DCE-BMR image
in MaZda software by defining an irregular ROI to include
only the visible tumor and excluding equivocal normal
breast tissue and visible necrotic areas possible. The edge
voxels were excluded to avoid the partial volume effect
(Fig. 1(a)).

The semi-automatic segmentation of 2D DCE-BMR
images was performed using active contour segmentation
without edges based on the Chan-Vese technique to extract
tumors from the DCE-BMR images. An in-house software
developed on MATLAB was used for the implementation of
semi-automatic segmentation by active contour segmenta-
tion without edges based on the Chan-Vese technique. Prior
to the segmentation, a rectangular ROI was drawn inde-
pendently by the same two radiologists on the selected slice,
aiming to contain the whole lesion with some normal tissue
(Fig. 1(b)).

Thereafter, based on this rectangular region, the tumor
area with some normal tissue in the slice was cropped for
better visualization of the tumor. The active contour algo-
rithm was then applied to segment the tumor using 2000
iterations. The image of the semi-automatically extracted
tumor was reshaped to the size of the original cropped image
(Fig. 2).

Seventy-three (73) shape features explained by Materka
(2002) [32] were obtained. Nine (9) first-order statistic
features focused on histogram-based properties (mean,
variance, skewness, kurtosis, 1st, 10th, 50th, 90th, and 99th
percentiles), 11 GLCM features (angular second moment,
contrast, correlation, entropy, sum entropy, sum of squares,
sum average, sum variance, inverse difference moment,
difference entropy, difference variance) obtained in 4 di-
rections (vertical, horizontal, 458, and 1358) and five inter-
pixel distances (offsets; n 5 1–5) respectively, and four (4)
different GLRLM (short-run emphasis, long-run emphasis,
grey level nonuniformity, run-length nonuniformity, and the
fraction of image in runs) for four pixel-run directions
(vertical, horizontal, at 458 and 1358) [32] were calculated in
defined 2D ROIs obtained from both segmentation methods
using MaZda software. A total of 382 radiomic features were
extracted separately from both segmentation methods.

In order to determine the most important radiomic
features before the reconstruction of the ML models, the RF
classification technique was applied to obtain the 10 most
suitable radiomic features that can distinguish the benign
and malignant breast masses centered on the mean decrease
Gini index. RF classification was performed using Random-
Forest package (function RandomForest ()) available in R
software (R Foundation for Statistical Computing, Vienna,
Austria). RF classification was employed for radiomic fea-
tures derived from both manual delineation and semi-
automatic segmentation. RF (Number of trees: 300, no. of
variables: 10, no of iterations: 100) was applied to find out
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Fig. 1. Diagram of study workflow of Radiomics based classification model constructing phases to discriminate benign and malignant breast
masses in DCE-BMR images (a – 2D manual delineation of the tumor using MaZda software, b – semi-automatic segmentation by creating a
rectangular ROI, c – feature classification based on highest mean decrease Gini index of RF classifier for the features obtained from manual
segmentation, d – feature classification based on highest mean decrease Gini index of RF classifier for the features obtained from semi-
automatic segmentation, d-Receiver operating characteristic (ROC) curve for the top 10 Radiomics features obtained from manual
delineation, e – ROC curve for the top 10 Radiomics features from semi-automatic segmentation)
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the most suitable radiomic features to differentiate benign
against malignant breast masses. The most prominent 10
radiomic features that were chosen by the RF from both
segmentation methods were then applied to train a linear
SVM. Selected features detached from the linear SVM and
investigated its accuracy with fivefold cross-validation. SV
classification was performed using MATLAB.

The most prominent 10 radiomic features obtained from
benign and malignant breast masses were tested to evaluate
the statistical significance. The independent samples t-test
compared the means of the benign and malignant groups
to determine statistical evidence that the associated popu-
lation means are significantly different. The Mann-Whitney
U test was used to compare differences between benign
and malignant groups when the data was not normal. Since
the sample size was greater than 50, the Shapiro-Wilk test
was used to determine the normality of the feature pa-
rameters. The Intraclass Correlation Coefficient (ICC) was
chosen as the reproducibility metric to assess the concor-
dance of analyses done by the two radiologists. The Abso-
lute-agreement and a two-way mixed-effect model used
assess the ICC for this study. These statistical analyses
were performed using a statistical package for the social
sciences (SPSS) 25.0 software with P<0.05 indicating a level
of significance.

Results

ICC values of Average Measures obtained from 382 radio-
mic features based on manual delineation and semi-auto-
matic segmentation performed by the two operators were
greater than 90%. It showed an excellent agreement between
the two radiologists for both segmentation methods.
Therefore, the mean values of the 382 radiomic features
obtained from the manual and semi-automatic segmentation
applied for RF classification.

Based on the highest mean decrease Gini index of the RF
classifier, the top 10 features obtained from manual delinea-
tion were used to differentiate benign and malignant breast
masses. These elements included the prominent features from
the shape (GeoW9, GeoW15, GeoW2, GeoW5b, and GeoRc)
and first-order statistical features (Mean, Perc.10%, Perc.50%,
Perc.90%, and Perc.99). There were no second-order statis-
tics, detected as the most prominent features (Fig. 1(c)).

Ten important features obtained from semi-automatic
segmentation were assessed based on the highest mean
decrease Gini index of the RF classifier to differentiate benign
and malignant breast masses. These elements included the
prominent features from the shape (GeoW9, GeoW15,
GeoW2, GeoW5b, and GeoRc) and first-order statistical

Fig. 2. Segmentation of the tumor semi-automatically through active contour algorithm. (A – input image, B – initial mask, C – image
showing the number of iterations, D – the binary mask of the cropped image, E – segmented image after reshaping to the size of the original
cropped image, F – Output)
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features (Mean, Perc.10%, Perc.50%, Perc.90%, and Perc.99).
There were no second-order statistics, detected as the most
prominent features (Fig. 1(d)).

The mean values of all the top 10 radiomic features
obtained from manual delineation and semi-automatic
segmentation showed a significant difference (P<0.05) be-
tween benign and malignant breast lesions.

For the top 10 radiomic features obtained from manual
delineation, the SVM (manual model) reached an overall
accuracy of 81.5%. The total error rate for the classifier was
0.185. The sensitivity or the true positive rate was 0.84.
Specificity or true negative rate was 0.81. The area under
(AUC) the ROC curve received as 0.87 (Fig. 1(e)).

For the top 10 features obtained from semi-automatic
segmentation, the SVM (semi-automatic model) reached
overall accuracy of 82.1%. The total error rate for the clas-
sifier was 0.179. The sensitivity or the true positive rate was
0.87. Specificity or true negative rate was 0.85. The area
under (AUC) the ROC curve received as 0.86 (Fig. 1(f)).

To describe the sensitivity and specificity values, the
optimal cut-off for each model was determined based on
Youden’s index [33]. For manual and semi-automatic
models, Youden’s indexes were obtained as 62.5% and 67.1%,
respectively.

Discussion

In contrast to the canonical computer aided diagnosis in
other primary breast imaging modalities, the expansion of
automated radiomics analysis for breast DCE-MRI is in its
initial phase. Only limited studies have been practiced for
semi-automated and/or manual tumor segmentation and
feature extraction for tumors detected by breast DCE-MRI
to build radiomics ML classification models in a single
study. In this study, the linear SVM was capable of catego-
rizing benign and malignant breast masses in both manual
and semi-automatic models with an overall accuracy of
0.815 and 0.821, respectively and sensitivity of 0.84 and 0.87,
respectively. Therefore, the findings of the present study are
significant since this study discusses both the above methods
used for radiomics analysis.

These results of the present study can be correlated to the
studies conducted by Wedegartner et al. [34] and Huang et al.
[35]. Regarding the overall accuracies of the manual and semi-
automatic models, the accuracy of the manual model (0.815)
was slightly less than the semi-automatic model (0.821). The
reasons for this reduction of the accuracy of manual model
could be due to the fact that manual delineation is difficult,
tiresome and the definition of whole breast tissue containing a
vast quantity of separate data collections is less efficient [22].
The reasons for higher accuracy in the semi-automatic model
compared to the manual model can be due to semi-automatic
approaches facilitate specialists to categorize cases that are
easy to segment, able to deal with difficult lesions, and more
appropriate for medical practitioners owing to enhanced
comprehensibility in the separation procedure [36]. Further-
more, there was a very slight difference between the accuracies

of the two segmentation methods. This can be due to the
differences in duration of experience (5 and 10 years) of the
two radiologists in BMRI interpretation.

This study assessed the agreement between the two
radiologists for both segmentation methods. The inter-
operator variability was assessed using ICC estimation for
each feature obtained from manual delineation and semi-
automatic segmentation. ICC estimation was greater than
90% for the features obtained from manual delineation and
semi-automatic segmentation. Therefore, it showed excellent
agreement between the two radiologists who had 5 and
10 years of experience in interpreting BMRI. The reason
behind this excellent agreement between the two operators
in both segmentation methods can be due to their long
experience in interpreting BMRI. Huang et al. [35], also
mentioned that the performance of manual segmentation
depends on the experience of interpreting radiologists.

There were only a very few studies conducted to connect
computer-based automated feature extraction of tumors
to the conventional MRI features classified according to the
BI-RADS lexicon. Therefore, this study investigated the
relationship between the automated features and conven-
tional MRI features apparent on breast DCE-MR images. It
was assessed using both shape and first-order statistics fea-
tures. As explained by Materka (2002) [32], all the calculated
shape features of the current study were derived based on
the surface area, perimeters, various diameters and radix,
factors of inscribed circle, circumscribed circle, ellipsis,
rectangle, and different ratios of these factors and invariant
as elongation, compactness or roundness of the tumor. It is
also possible that the benign tumors spread further main-
taining their spherical forms than malignant tumors. This
outcome of our study is confirmed by a study conducted by
Liney et al. [37]. Therefore, all derived shape features were
sensitive to the shape and boundary of the tumor. Since all
the DCE-BMRI images of this research assessed according
to the 5th edition of ACR BI-RADS MR lexicon based on
the shape, boundary and phenotype of the masses, each
prominent shape feature can be correlated with distinct
signifiers characterized by conventional MRI features based
on BI-RADS lexicon to differentiate benign and malignant
breast masses.

The internal enhancement characteristics of the BI-
RADS lexicon can be contributed to the homogeneous and
heterogeneous histogram-based gray-level intensities and
the extent of histogram-based gray-level intensities [38] of
the extracted quantitative first-order statistic features to
differentiate benign and malignant breast masses. The cur-
rent study found that the malignant tumors had a greater
intensity and wider spread in the enhancement histogram
that is more heterogeneous related to the benign tumors. A
study conducted by Nie et al. [39] agrees with our finding
that the malignant tumors had a greater intensity and wider
spread in the enhancement histogram that is more hetero-
geneous compared to the benign tumors. It is one of the
explicit features signifying malignant tumors. Consequently,
the internal enhancement of the masses of the BI-RADS
lexicon can be correlated to the extracted quantitative first-
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order features to differentiate benign and malignant breast
masses in this study. Therefore, these results enhanced the
accuracy of features, reduced false-positive detection errors,
and supported the findings that have already been diagnosed
via the conventional BMRI features based on the BI-RADS
lexicon by applying the conventional BMRI features for the
radiomics analysis.

The lack of an independent assessment set for model
assessment, can be stated as a major limitation and a
possible resource of overfitting in the study. The insertion of
more subjects and investigators would permit an improved
overview of the outcomes and expansion of strong radiomics
evaluations. The active contour semi-automatic segmenta-
tion without edges based on the Chan-Vese technique was
not suitable for intensity in-homogeneity as its inherent
characteristic of relatively slowness particularly in handling
bulky pictures. A new complex segmentation model or
adding several models together can be applied to overcome
the intensity in-homogeneity. The findings of the ROC
assessment for all the five-folds were not obtained separately
in this study. Therefore, the irregularity in performance
metrics between the five folds was not evaluated.

Future studies, assisted by radiomics analyses with MR
imaging sequences that do not utilize gadolinium contrast
agents will be useful to minimize possibilities of the side
effects due to the usage of contrast agents.

Conclusion

Even though the location of the tumor and its border can
typically be decided, the histopathology of the tumor may be
challenging to distinguish only by conventional BMRI fea-
tures and therefore supplementary tools are essential for
precise identification. Furthermore, the classification out-
comes of the current study linked very well with the clinical
condition of the patients. The findings of the present study
suggested that the ML techniques centered on DCE-BMRI
radiomic features can be applied to distinguish benign breast
masses from malignant breast masses. We believe that the
created radiomics models would be a clinically supportive
tool in the future, with extensive clinical validations.
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