Automorphisms of Latin Squares

M. J. L. Mendis^{1*}

¹ Department of Mathematics, University of Colombo, Sri Lanka *jayama@maths.cmb.ac.lk

A Latin Square *L* of order *n* is an $n \times n$ array containing *n* symbols from $[n] = \{1, 2, ..., n\}$ such that each element of [n] appears once in each row and each column of *L*. Rows and columns of *L* are indexed by elements of [n].

An automorphism α of a Latin square is a permutation such that the triple (α, α, α) maps the Latin square *L* to itself by permuting its rows, columns and symbols by α . Let Aut(n) be the set of all automorphisms of Latin squares of order *n*. Whether a permutation α belongs to Aut(n) depends only on the cycle structure of α . Stones *et al.* [1] characterized $\alpha \in Aut(n)$ for which α has at most three non-trivial cycles (that is, cycles other than fixed points). A notable feature of this characterisation is that the length of the longest cycle of α is always divisible by the length of every other cycle of α . In this research we prove a related result for automorphisms with four non-trivial cycles.

Keywords: Latin Square, Automorphism, Cycle Structure, Permutation.

References

^{1.} Stones, D.S., Vojtěchovský, P. and Wanless, I.M., 2012. Cycle structure of autotopisms of quasigroups and Latin squares. *Journal of Combinatorial Designs*, *20*(5), pp.227-263.