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Simple Summary: In an era where the world faces new diseases and pathogens, another emerging
challenge is neglected pathogens becoming more notorious. Transcriptional regulators play a vital
role in the pathogenesis and survival of these pathogens. Hence, characterizing transcriptional
regulators, either in vitro or in silico, is of great importance. Here, we present the first structural
characterization of a GntR/HutC regulator in Mycobacterium tuberculosis via in silico methods. We
have suggested its possible role and potential as a drug target as well as identified possible drug
leads that can be used for further improvements.

Abstract: Mycobacterium tuberculosis is a well-known pathogen due to the emergence of drug resis-
tance associated with it, where transcriptional regulators play a key role in infection, colonization
and persistence. The genome of M. tuberculosis encodes many transcriptional regulators, and here we
report an in-depth in silico characterization of a GntR regulator: MoyR, a possible monooxygenase
regulator. Homology modelling provided a reliable structure for MoyR, showing homology with a
HutC regulator DasR from Streptomyces coelicolor. In silico physicochemical analysis revealed that
MoyR is a cytoplasmic protein with higher thermal stability and higher pI. Four highly probable bind-
ing pockets were determined in MoyR and the druggability was higher in the orthosteric binding site
consisting of three conserved critical residues: TYR179, ARG223 and GLU234. Two highly conserved
leucine residues were identified in the effector-binding region of MoyR and other HutC homologues,
suggesting that these two residues can be crucial for structure stability and oligomerization. Virtual
screening of drug leads resulted in four drug-like compounds with greater affinity to MoyR with
potential inhibitory effects for MoyR. Our findings support that this regulator protein can be valuable
as a therapeutic target that can be used for developing drug leads.

Keywords: GntR/HutC transcriptional regulators; homology modelling; structure validation; drug-
gability; virtual screening

1. Introduction

Tuberculosis (TB), a disease that has plagued humankind throughout history, is caused
mainly by the infection of Mycobacterium tuberculosis. It has been hypothesized that the
genus Mycobacterium originated 150 million years ago, and the modern M. tuberculosis
strain survived over 70,000 years, claiming millions of lives each year [1,2]. Even though
antitubercular chemotherapy is the backbone of TB treatment, deaths due to the emergence
of new strains of M. tuberculosis that are resistant to some or all antitubercular drugs
(multi-drug resistant TB, MDR-TB) currently form a major health problem. Even decades
after Koch’s findings, new genetic and molecular insights are still required to divulge the
mechanisms involved in the acquisition of drug resistance and the survival of bacteria
under stress in the environment. Adaptation to stress responses is primarily mediated
through the tight regulation of gene expression, where transcriptional regulators play a
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fundamental role in the bacterial cell. The genome of M. tuberculosis encodes more than one
hundred putative transcriptional regulators, out of which many need to be characterized.

GntR family of transcriptional regulators constitute one of the most abundant group
of proteins among helix-turn-helix regulators distributed throughout the bacterial world.
GntR family of proteins are typically two-domain proteins with a DNA binding N-terminal
domain (NTD) and a C-terminal effector binding/oligomerization domain (CTD). As char-
acteristic features, NTD has a conserved architecture of winged-helix-turn-helix whereas
CTD shows structural heterogeneity, within the family members [3]. Based on the charac-
teristic similarities between the effector binding domain, GntR family is subdivided into
six subfamilies: FadR, HutC, MocR, YtrA, AraA, PlmA and DevA [4–6].

The HutC subfamily of proteins comprises about 30% of all GntR regulators, the sec-
ond most abundant family after FadR [7]. The typical structure of HutC regulators consists
of an N-terminal HTH domain and a C-terminal ligand-binding/oligomerization domain,
which is about 170 amino acids in length [4]. A peculiar feature of the HutC regulators is
that they share a commonly conserved effector-binding (EBD) domain, which is the Ubic-
like chorismate lyase fold (UTRA) from E. coli., characterized by three short α-helixes and
six-stranded antiparallel β-sheets, which forms the core of the structure [8]. HutC/GntR
regulators respond to a variety of ligands such as, histidine (HutC) [9], long-chain fatty
acids (FarR) [10], trehalose 6-phosphate (TreR) [11], alkylphosphonate (PhnF) [12] and
N-Acetylglucosamine-6-phosphate (NagR and DasR) [13,14]. Due to the structural differ-
ences among the subfamilies and the variety of ligands they respond to, as well as a lack of
characterized HutC regulators, identifying the cognate ligands remains a significant barrier
to understanding the function of these regulators. Hence, identifying and characterizing
these proteins could provide new insight into their role in bacteria. To this end, we detail
in this study the in silico characterization of MoyR protein (Rv0792c) from M. tuberculosis,
annotated as a GntR, and propose possible hit compounds for further validation.

2. Materials and Methods
2.1. Selection of GntR/HutC Regulators, Multiple Sequence Alignment and Secondary
Structure Prediction

Apart from the characterized HutC regulators, other putative GntR/HutC regulators
were identified on UniProtKB (https://www.uniprot.org/, accessed on 10 June 2019)
and NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 14 June 2019) databases with
the aid of previously published data [15,16]. Retrieved sequences were aligned using
ClustalW in MEGA-X [17], and GUIDANCE2 server [18] was used to analyze the confidence
score of the alignment. This alignment was used to predict the consensus secondary
structure arrangement of the regulators including MoyR using the servers, ESPript3 [19]
and Jpred4 [20]. HTH domain and the UTRA domains were identified using Simple
Modular Architecture Research Tool (SMART) webserver and confidence levels for the
prediction were given by E-values. Secondary structure of MoyR was predicted with
PDBsum webserver, and the topology map of the monomer was drawn accordingly [21].

2.2. Identifying Conserved Residues in C-Terminal Domain of HutC Regulators

As previously mentioned, multiple sequence alignment of HutC regulators was used
to analyze the conserved residues in the HutC regulators using WebLogo tool [22].

2.3. 3D Structure Modelling and Structure Assessment of the MoyR Model

Homology modelling of MoyR was built using three servers: SWISS-MODEL, Phyre2

and I-TASSER [23–25]. The quality of the structure was validated using “Verify 3D”,
PROCHECK, ProQ, ERRAT and ProSA-web [26–28]. Physiochemical parameters of the
protein was studied using Expasy’s ProtParam server (www.web.expasy.org/protparam,
accessed on 10 June 2019) and the subcellular localization of the MoyR model was predicted
using servers Gpos-PLoc, PSORTb, CELLO v.2.5, LoCTree [29–32].

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/
www.web.expasy.org/protparam
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2.4. 3D Structure Modelling, Structure Assessment and Functional Domain Prediction of the
Adjacent Gene Encoding Proteins

Homology modelling of the adjacent genes, Rv0791c, Rv0790c, Rv0789c and Rv0793
encoding proteins were done as mentioned above. The structure assessment for all the
modelled structures were done in a similar manner as for the MoyR model. Additionally,
functional domains of the adjacent genes were identified using NCBI Conserved Domain
Database (CDD) and a blastP analysis was carried out using the UniProtKB as the targeted
database. Functional domains were identified using matches with more than 70% identity.

2.5. Identifying Effector Binding Site and Druggability of MoyR

In order to determine the possible ligand binding pockets, a structure-based and
geometry-based prediction was done using metaPocket 2.0 [33]. The metaPocket2.0 server
consists of predictors, LIGSITE, PASS, Q-SiteFinder, SURFNET, Fpocket, GHECOM, Con-
cavity and POCASA. The pockets sites identified by the different methods have different
ranking scoring functions. In order to make ranking scores comparable a Z-score calculated
for each site in different methods and pocket sites of each method were clustered according
to their spatial similarity and total Z-score values of a cluster. CavityPlus web server [34]
was also used to identify the cavities and the amino acids which the pockets are made of.
Binding pockets of DasR, NagR and MoyR were compared using Pocket Match server [35],
and amino acids involved in effector recognition were identified using sequence align-
ment. The conserved residues in the identified binding pocket of MoyR were determined
using ConSurf Server. [36]. Druggability of the pockets were identified using PockDrug
server [37].

2.6. Virtual Screening Study

The modelled structure of MoyR was used to screen the possible hit compounds, and
the virtual screening was performed using AutoDock in PyRx virtual screening tool [38].
As for the preliminary screening, a blind docking was carried out where the protein
molecule was set to a rigid file while the ligand was moved and rotated to find the best
binding modes. Maybridge and ChEMBL were used as chemical databases for screening
and approximately 53,000 compounds in total were used. The first 100 compounds with
the lowest binding affinity (kcal/mol) were extracted from the docking results. To elim-
inate false negative values, the ligand interactions were analyzed using Protein–Ligand
Interaction Profiler server (https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index,
accessed on 24 February 2020) and Discovery Studio Visualizer [39]. Drug-likeness and
pharmacokinetics properties of the resulted compounds were determined by SwissADME.

3. Results
3.1. Secondary Structure of MoyR

Multiple sequence alignment of the HutC regulators were carried out by ClustalW, and
the confidence level of the multiple sequence alignment was analyzed using GUIDANCE
server. The score for the alignment was 0.8434, and all the sequences scored higher
than 0.6, which indicates a reliable alignment for further analysis. In the selected HutC
regulators, the length of UTRA domain ranged between 128 to 142 amino acids and the
length of MoyR UTRA domain was 128 amino acids (106–246 aa) with an E-value of
1.02 × 10−15. The length of the DBD of HutC regulators was about 59 amino acids with
two highly conserved residues, namely proline and threonine, in the α-helixes (Figure 1).
Secondary structure prediction of HutC regulators according to consensus sequences gave
a higher number of β-strands towards the c-terminus, which is characteristic to HutC
regulators (Figure 1) and the secondary structure prediction of MoyR revealed the same
pattern (Figure 2A). The frequency analysis of the bases in the UTRA domain of the
selected HutC regulators by WebLogo showed two highly conserved leucine residues at
distant positions, in which the height of each base represents the relative frequency at
each position (Figure 2B). Two highly conserved leucine residues were found to be at the

https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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positions L131 and L210 in MoyR, corresponding to L121 and L202 in TraR protein of
Streptomyces phaeochromogenes (Figure 1). The L121 residue was identified as a structurally
important key residue in the oligomerization and repressor function of TraR [40]. These
two leucine residues are conserved in both DasR from Streptomyces coelicolor (L130, L208)
and NagR from Bacillus subtilis (L120, L198), which are MoyR homologues (Figure 1).
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3.2. Genomic Locus of MoyR

Many fundamental processes in bacteria, including carbon metabolism [41], amino
acid metabolism [9], morphogenesis [42], virulence [43,44], biofilm formation [45], antibiotic
resistance [46] and antibiotic production [42], are known to be controlled by GntR regulators.
GntR regulators are often located adjacent to the genes that they control, and this could
provide an insight into the effectors that these regulator proteins could bind to in the
process of regulation. The gene locus of moyR consists of many hypothetical proteins
(Figure 3). It has been shown that the Rv0789c, Rv0790c, Rv0791c and moyR are mostly
differentially expressed as an operon in the intracellular environment [47]. According to
the correlation catalog of M. tuberculosis H37Rv genome, the highest positive correlation
with moyR was given in Rv0790c and Rv0791c (http://tuberculosis.bu.edu/tbdb_sysbio/
CC/Rv0792c.html, accessed on 16 March 2019).

http://tuberculosis.bu.edu/tbdb_sysbio/CC/Rv0792c.html
http://tuberculosis.bu.edu/tbdb_sysbio/CC/Rv0792c.html
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3.3. Homology Modelling of MoyR

The crystal structure of ligand-free HTH type DasR from Streptomyces coelicolor (4ZS8)
was automatically selected as the template model in all three webservers that were used to
model MoyR protein. SWISS-MODEL provided a sequence identity of 30.64% with DasR
template and the GMQE value was 0.62 and QMEAN was −1.22. The confidence score
for estimating the quality of the predicted model given by C-score in I-TASSER was 0.05,
which can be considered as a good confidence score. The TM score and RMSD values were
used to measure the structural similarity of the model and the known standard (TM value
was 0.72 ± 0.11 and RMSD was 5.5 ± 3.5Å), which indicate a model of correct topology.
The backbone confirmation of each residue of the modelled structure was calculated
using PROCHECK by analyzing ϕ/ψ torsion angles [phi (ϕ) and psi (ψ)] determined by
Ramachandran plot.Over 99.8% of the residues were in either the favoured region or the
allowed region. Verify 3D further provides a percentage of 73.88 residues with a score of
over 0.2 for the MoyR model. The ProQ neural network used for protein quality production
in the MoyR model, which gives two scores LGscore and MaxSub. The LG score value
was 3.8 (>2.5 very good) and Maxsub was 0.456 (>0.5 very good). The arrangement of
different types of atoms with respect to one another in the protein model was assessed
by ERRAT, which is sensitive for identifying incorrectly folded regions in preliminary
protein models. The overall model quality was assessed by the ProSA-web server, the
Z-score value for modelled MoyR is −6.74. The MoyR model was built according to the
structural arrangement of DasR regulator. The model of MoyR is a homodimer each consist
of two main domains, HTH-DBD and UTRA domain, which is characterized by the six-
stranded antiparallel β-sheets in the core of the structure where the effector binding occurs
(Figure 4A). The topology of the MoyR monomer was predicted by the PDBsum server, and
the topology map was drawn accordingly (Figure 4B). NagR protein from Bacillus subtilis
also shared a high similarity with the modelled MoyR where both DasR and NagR can be
considered as structural homologues of MoyR. Few servers including Gpos-PLoc, PSORTb,
CELLO v.2.5 and LoCTree were used to predict the subcellular localization of MoyR, and
the cytoplasmic location was predicted with higher confidence values.
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3.4. Homology Modelling and Functional Annotation of MoyR Adjacent Gene Encoding Proteins

All the moyR adjacent gene encoding proteins were modelled, and the structure as-
sessment was carried out as mentioned. The reliability of modelled Rv0790c and Rv0789c
were very poor; therefore, these two protein models were excluded from further analysis.
Structure modelling of Rv0791c revealed a luciferase-like monooxygenase from Bacillus
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cereus with a sequence identity of 28.79% with a GMQE value of 0.62 and a QMEAN of
−2.87. Ramachandran plot analysis of Rv0791c revealed 98.8% of amino acid residues in the
favored region and allowed region. Verify 3D analysis results revealed that 88.08% of the
residues have a score of more than 0.2 (3D-1D score ≥ 0.2) and Pro-Q analysis yielded a LG
score of 5.5, which indicates that the Rv0791c model can be used as a reliable 3D structure
for further analysis. Bacterial luciferases are in the class of flavin monooxygenases that
catalyze the oxidation of long-chain aldehydes and releases energy in the form of visible
light. Even though the crystal structure of Rv0793 is available, the modelled structure was
used for docking purposes, which was highly similar to its crystal structure. The amino
acid sequences of Rv0789c, Rv0790c, Rv0791c and Rv0793 were used to identify the do-
mains using UniProtKB database. The sequence of Rv0789c did not result in any significant
match with a functional domain, whereas blast of Rv0790c resulted in seven hits with more
than 75% identity to transglutaminase enzyme from different organisms. The sequence of
Rv0791c resulted in a conserved functional domain encoding for an F420 dependent oxi-
doreductase in four hits with more than 75% identity. Two matches with over 70% identity
were identified for Rv0793 corresponding to antibiotic biosynthesis monooxygenases from
Mycobacterium species and 10 hits with more than 50% identity corresponding to antibiotic
biosynthesis binding domains mainly from Mycobacterium spp. and Streptomyces spp. were
also found. The Rv0793 gene encodes a putative monooxygenase which is structurally very
similar to Streptomyces coelicolor ActVA-Orf6 monooxygenase, which participates in the
tailoring of polyketide antibiotic synthesis [48].

3.5. Physiochemical Properties of MoyR

MoyR protein monomer consists of 269 amino acids with a molar weight of 28.95 kDa
and the theoretical pI is 8.54. A total of 28 negatively charged residues and 30 positively
charged residues were identified. The instability index value was 43.8, suggesting that
MoyR is unstable outside the cellular environment. The calculated aliphatic index is 101.82,
indicating that MoyR is thermally stable, and the GRAVY value (grand average value of
hydropathicity) is −0.050 reveals that MoyR is hydrophilic in nature.

3.6. Effector Binding Site of MoyR

MoyR binding pockets were determined using metaPocket 2.0 and CavityPlus web
server in which two probable pockets were identified in the region between DBD and EBD
(pockets 1 and 2) and two highly probable pockets in the EBD of chain A and B (pockets 3
and 4) (Figure 5A). Hence, pockets 3 and 4 can be considered as the active sites in which
ligand binding occurs. Therefore, pockets 1 and 2 can be considered as allosites to which
allosteric drugs can bind, whereas pockets 3 and 4 can be considered as orthosites to which
orthosteric drugs can bind. These two ligand-binding pockets (pockets 3 and 4) of MoyR
and identified NagR and DasR pockets were compared using PocketMatch server. High
similarity was obtained in pockets of DasR vs. NagR with a value of 0.8699. Values greater
than 0.8 indicate that the pockets are very similar. The value for DasR vs. MoyR pockets
was 0.5868 and that for NagR vs. MoyR was 0.6896, suggesting that MoyR shares a pocket
similarity to some extent with DasR and NagR. Pairwise sequence identity matrix was
generated by Clustal Omega server and overall sequence similarity ranged from 29.15
to 39.17 among the three proteins, indicating high sequence similarity among DasR and
NagR. According to the published data, both DasR and NagR respond to the same ligands,
glucoseamine-6-phosphate (GlcN-6-P) and N-acetylglucoseamine-6-phosphate (GlcNAc-6-
P); for which effector recognition is highly similar [14]. Out of the 16 identified binding site
residues in DasR and NagR crystal structure, 12 were similar. When compared with MoyR,
only five residues were similar, indicating a lower affinity of glucose moieties to MoyR.
To identify the residues that might be conserved in the predicted MoyR binding pocket, a
multiple sequence alignment of 150 HutC sequences was generated. Conserved residues
of MoyR pocket were identified with the aid of the Consurf analysis server. The identified
conserved residues of MoyR pocket are ALA 193, ARG 223, GLU 234, ARG 141, ALA 199,
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LEU 219, ILE 143 and VAL 221 in the antiparallel β strands and TYR 179 and THR 177 in
the α helix (Figure 5B). The identified conserved residues of ligand binding sites of MoyR,
DasR and NagR were compared, revealing three highly conserved residues involved in
effector binding in all three proteins (Table 1).
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Table 1. Identified conserved residues in binding pockets of MoyR, DasR and NagR involve in
effector binding. Highly conserved residues are in bold.

MoyR. DasR NagR

ARG 141 ARG 142 ARG 133
THR 177 SER 175 SER 165
TYR 179 TYR 177 TYR 167
VAL 221 LEU 219 ILE 209
ARG 223 ARG 212 ARG 211
GLU 234 GLU 232 GLU 222

3.7. Druggability of MoyR and Virtual Screening Analysis

Calculated ligandability and the druggability of the four predicted pockets of MoyR
using CavityPlus and PockDrug servers are given in Table 2. Higher druggability of all
the predicted four pockets suggests that both allosteric and orthosteric drugs can be used
to identify drug leads for MoyR. Overall drug probability of MoyR was calculated and
yielded a value of 0.99, suggesting that MoyR has high druggability. Hence, a virtual
screening platform was established to screen possible drug candidates for MoyR. The
ligands with values lower than −10.0 Kcal/mol were extracted from the virtual screening,
and protein–ligand interactions were analyzed. The best four candidate compounds with
the lowest binding energy are given in Table 3. The interactions were very similar with all
the high-affinity ligands, including conventional hydrogen bonds with highly conserved
residues TYR179, ARG223 and GLU234. Many of the predicted binding pocket residues
interacted with high affinity ligands via attractive charges, van der Waals bonds, alkyl,
Pi-cation and Pi-Pi stacked bonds. Considering the drug-likeness according to the Lipinski
rule of five, all the high-affinity compounds can be considered as druglike compounds.
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Table 2. Estimated druggability of the predicted binding pockets of MoyR using CavityPlus and
PockDrug servers. In ligandability Pred. Max pKd value greater than six suggests that all the cavities
are suitable as binding sites. Drug score is calculated on the basis of the binding structure alone by
using a desolvation-based free energy model.

CavityPlus Server PockDrug Server

Ligandability
Pred. Max pKd

Drug score Druggability

Cavity 1 9.31 3129 0.92

Cavity 2 11.34 2694 0.93

Cavity 3 11.35 1445 0.91

Cavity 4 10.24 1014 0.94

Table 3. Best four lead compounds with high affinity of binding with MoyR.

Compound. Molecular Formula Binding Energy
(kcal/mol)

Interacting Residues in Binding
Pockets 3 and 4

3-(4-fluorobenzyl)-4-methyl-2-oxo-2H-
chromen-7-yl

3-(trifluoromethyl)benzene-1-sulfonate
C27H23 F3 N4 O4 −11.1

VAL113, PRO111, ILE100, VAL 97,
VAL153, VAL236, HIS240,

THR177, THR101, PHE 238, ARG
223

N-[3-[3-[(phenylsulfonyl)amino]-5-
(trifluoromethyl)benzyl]-5-

(trifluoromethyl)phenyl]benzenesulfonamide
C27H20F6N2O4 S2 −11

ARG98, VAL221, VAL153,
ALA155, VAL113, ARG141
THR101, TYR179,ARG223,
PHE238, ILE139, GLU176,

ALA173

N’1-[3-(trifluoromethyl)benzoyl]-2-[2,6-
dimethyl-4-(3-methyl-4-oxo-3,4-

dihydrophthalazin-1-
yl)phenoxy]ethanohydrazide

C27H23F3N4 O4 −10.9

PRO111, VAL113, VAL236,
VAL153, ILE100, TYR179, ALA
173, HIS240, ARG223, GLU234,

PHE238, GLU92

CHEMBL3222137—name undefined C29H27NO8 −10.6

VAL 221, HIS 195, VAL 97, VAL
153, VAL236, ILE100, ALA173,

TYR179, THR101, GLN 112,
VAL113

4. Discussion

Transcriptional regulators play a crucial role in the survival of bacteria under various
stresses and GntR family of HTH-type transcriptional regulators are an important class of
proteins in the pathogenesis and survival of bacteria. Even though there are many GntR
regulators, in the HutC subfamily, only a few have been crystallized and characterized to
date. HutC family members are expected to bind a variety of different effector molecules.
Thus far, there is no detailed study that has been carried out on HutC regulators in M.
tuberculosis. Therefore, this study can be considered a preliminary piece of work, which
can provide insights on MoyR structure, its druggability and regulatory role. Amino acid
composition itself could provide important information on the structure of a protein as
well as its physiochemical parameters. Here, we have identified MoyR as a thermally
stable, cytoplasmic protein with a high isoelectric point (pI). Higher pIs contain more
electropositive residues on their surfaces and are thus more likely to bind DNA indicative
of DNA binding ability of MoyR.

Recent molecular biology studies of Streptomyces and Mycobacterium have revealed
prominent similarities in the developmental and morphological characteristics of the two
bacteria. One simple example is the similarities of the two crystal structures, Rv0793
from M. tuberculosis and ActVA-Orf6 from Streptomyces coelicolor. The protein Rv0793 is
predicted as a monooxygenase that participates in the biosynthesis of type II polyketide
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antibiotics [48]. The Streptomyces ActVA-Orf6 monooxygenase is involved in the biosyn-
thesis of actinorhodin produced by type II polyketide synthase (PKSs) [49]. The structural
analogue global regulator DasR entailed in signaling cascade from nutrient sensing to
development and acts as a switch for antibiotic production in Streptomyces [49]. Accord-
ing to the results of this study, functional domain annotation of the moyR-adjacent gene
encoding proteins are homologous to different monooxygenases. We have previously
reported the binding of MoyR to the intergenic region of Rv0793 and moyR [50]. Therefore,
this study provides evidence that MoyR has a higher probability of regulating a group
of monooxygenases that possibly involves a polyketide antibiotics synthesis or a type II
polyketide synthesis pathway in the bacteria. There are no previous reports on isolating
antibacterial compounds from M. tuberculosis to our knowledge. This finding can be di-
rected towards the probable synthesis of type II polyketides as secondary metabolites. Such
antibiotic production would be useful for the bacterium to compete against other bacteria
and conquer environmental stresses during survival within the host. We have carried out
a preliminary docking study using KEGG pathway intermediates and found that MoyR,
Rv0793 and Rv0791c have similar affinities to type II polyketide intermediates (data not
shown here). Both the regulators DasR and NagR share numerous effector binding features
and respond to the same glucose moieties where MoyR effector binding residues were
greatly differing from DasR and NagR, confirming that the affinity for sugar moieties is
very weak in MoyR. Hence, by considering the ligand-binding pattern with polyketide
intermediates, the genomic locus of moyR gene with possible monooxygenases and pre-
viously published data [48], it is highly likely that MoyR can play an important role in a
polyketide synthesis pathway in the bacteria.

Ligand binding pockets of MoyR were identified using few servers and the key
residues were determined according to the conservation of other HutC regulators and
structure superimposition with homologue DasR and NagR. As secondary structure pre-
diction and 3D profile further provide information on the spatial arrangement of the amino
acids in the protein, this can yield the most probable binding sites for natural ligands and
drugs. The conserved TYR 179, ARG 223 and GLU 234 residues in the binding pocket of
MoyR are identified as crucial for its function in effector recognition. Two highly conserved
leucine residues in the effector binding domain were identified in the sequence alignment
of MoyR with other HutC regulators that can be crucial for structure stability and oligomer-
ization of the protein. Binding of the drug-like compounds occurred in the orthosteric site
of the effector binding domain of MoyR, indicating that these drug candidates can possibly
compete for binding with natural ligands of the MoyR.

The accuracy of a protein model can be assessed by its 3D profile, regardless of
whether the model has been derived by X-ray crystallography, NMR spectroscopy or
computational methods. The structure assessment data of the 3D model of MoyR provide
information on its reliability as a primary screening study of possible ligands. Even though
in silico characterization would not provide a full picture of the regulatory role of MoyR
without supporting biochemical analysis, this study identifies the properties of MoyR and
its potential as a drug target. These findings can be extended to study the in vitro binding
of the possible natural ligands with MoyR protein and predict its possible role in the cell.
The strategies used in this study to annotate the function of MoyR transcriptional regulator
and its adjacent genes can be beneficial for designing experimental approaches to further
evaluate the function of the genes.

5. Conclusions

TB claims millions of lives each year, and the increased emergence of multi-drug-
resistant M. tuberculosis constitutes a serious global threat. As M. tuberculosis has developed
resistance to current TB drug regimes, the search for new antibacterial agents directed
towards novel targets is of paramount importance. Here, we have identified a GntR/HutC
regulator, MoyR involving in regulating a group of monooxygenases. Homology modeling
of MoyR and validation of the model suggested that MoyR model can be used as a reliable
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structure for preliminary screening of drug compounds. The high druggability of MoyR
indicates that this protein could be useful as a drug target, and we have identified the best
hit compounds for MoyR that warrant further validation using in vitro work.
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