# A new genus and a major temperate bamboo lineage of the Arundinarieae (Poaceae: Bambusoideae) from Sri Lanka based on a multi-locus plastid phylogeny 

LAKSHMI ATTIGALA ${ }^{1}$, JIMMY K. TRIPLETT ${ }^{2}$, HASHENDRA-SUVINI KATHRIARACHCHI ${ }^{3}$ \& LYNN G. CLARK ${ }^{4}$<br>${ }^{1}$ Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames IA 50011.email: lakshmi@iastate.edu<br>${ }^{2}$ Department of Biology, 144B Martin Hall, Jacksonville State University, 700 Pelham Rd. Jacksonville, AL 36265.email:jtriplett@jsu.edu<br>${ }^{3}$ Department of Plant Sciences, University of Colombo, PO Box 1490, Colombo 03, Sri Lanka.email: hashi@pts.cmb.ac.lk<br>${ }^{4}$ Department of Ecology Evolution and Organismal Biology, Iowa state University, Ames IA 50011. email: lgclark@iastate.edu


#### Abstract

Kuruna, a new temperate woody bamboo (Poaceae, Bambusoideae, Arundinarieae) genus from Sri Lanka, is recognized based on chloroplast sequence data from five markers (coding: $n d h F 3$ ' end; non-coding: $r p s 16-\operatorname{trn} Q, \operatorname{trn} C-r p o B, \operatorname{trn} D-\operatorname{trn} T$, $\operatorname{trn} T-\operatorname{trn} L)$. This genus represents the twelfth major lineage of temperate woody bamboos and is characterized by pachymorph culm bases with short necks, unicaespitose clumps, culm leaf girdles ca. 1 mm wide, usually abaxially hispid culm leaves with non-irritating hairs, persistent foliage leaf sheaths, complete branch sheathing and acute to biapiculate palea apices. Maximum Parsimony, Bayesian Inference and Maximum Likelihood analyses of a combined data set consistently strongly supported the monophyly of this Sri Lankan temperate woody bamboo clade. Although the Kishino-Hasegawa test is unable to reject the alternative hypothesis of monophyly of the Sri Lankan clade plus Bergbambos tessellata from South Africa, Kuruna and Bergbambos are distinguishable by a combination of morphological characters. A few additional cpDNA markers not previously used in phylogenetic analyses of Arundinarieae were tested to evaluate their utility in this taxonomically difficult tribe.


## Introduction

Bamboos are important components of forest and tropical high altitude grassland ecosystems worldwide (Soderstrom \& Calderón 1979, Judziewicz et al. 1999). The bamboos (Poaceae subfamily Bambusoideae) include approximately 1,450 species (Bamboo Phylogeny Group [BPG] 2012) classified into two tribes of woody bamboos (the tropical Bambuseae and the temperate Arundinarieae) and one tribe of herbaceous bamboos (the Olyreae). Significant animal biodiversity is associated with bamboo-dominated ecosystems (Judziewicz et al. 1999, Bystriakova et al. 2003, Mutschler \& Tan 2003 \& others cited in BPG 2012) and bamboos play important roles in forest dynamics (e.g., Li \& Xue 1997, Judziewicz et al. 1999). Despite the ecological and economic importance of bamboos, basic knowledge of the biology and genetics of woody bamboos is still lacking due in part to their unusual life cycle, with the vegetative phase ranging from a few to 120 years (McClure 1966). Furthermore, the generic classification of bamboos is in a fluctuating state, although the supra-generic classification of bamboo has been improved based on recent phylogenetic analyses (BPG 2012).

The indigenous flora of Sri Lanka has about 7,000 species of mosses, ferns and flowering plants (Abeywicrama 1986). Nearly one fourth of the angiosperms of Sri Lanka are endemic and highly concentrated in the humid southwestern quarter of the country, which includes moist low country and the montane zone (Gunatilleke \& Gunatilleke 1990). Bamboos occur naturally in all three major climatic zones (wet, dry and intermediate) in Sri Lanka and no native bamboo is found in extremely dry areas (Kariyawasam 1998). Bamboo, in general, is an economically and culturally important plant for Sri Lanka (De Zoysa \& Vivekanandan 1994, Gunatilleke et al. 1994) and a series of studies have been conducted mainly focusing on bamboo reproductive ecology (Ramanayake \& Yakandawala 1995, 1998, Ramanayake \& Weerawardene 2003), vegetative propagation (Ramanayake et al. 2006) and bamboo growth and development (Ramanayake et al. 2001). These studies were carried out before the widespread use of molecular sequence data to establish evolutionary relationships and confirm the generic classification of these species.

Nine species native to Sri Lanka have been documented in Bambuseae and Arundinarieae (Soderstrom \& Ellis 1988), eight of which are reported to be endemic (Dassanayake \& Fosberg 1994). Of the eight endemic bamboos, five species are classified within the temperate woody bamboo genus Arundinaria Michaux (1803: 73) and they are found in high elevation montane forests or grasslands in Sri Lanka. But these shrubby montane-type Arundinaria species are not well suited for utility purposes (Kariyawasam 1998). All the Sri Lankan Arundinaria species are wind pollinated perennials as far as is known, each with a very limited distributional range (Soderstrom \& Ellis 1988) and some are important components of high elevation grasslands in Sri Lanka.

Arundinarieae include ca. 550 species worldwide and are characterized by the presence of leptomorph, monopodial rhizomes (pachymorph in some species), basipetal vegetative branch development and tetraploidy (2n=48) (BPG 2012); molecular evidence strongly supports the monophyly of the temperate woody bamboos (BPG 2012, Kelchner et al. 2013). Among the temperate bamboos, Arundinaria is the oldest generic name and over 400 species have at one time or another been classified within it. In the traditional sense, at least since McClure (1973), the genus also includes East Asian, African and Madagascan species. Soderstrom \& Ellis (1988) treated Arundinaria in the broad sense and included the species from Sri Lanka, India and China. In addition, according to the Soderstrom \& Ellis (1988) study, all the Sri Lankan Arundinaria species exhibited similarities with the Chinese and Indian Arundinaria species that had been placed by some authors (Yi 1983) in another segregate genus, Fargesia Franchet (1893: 1067). Other authors have included these species and similar taxa from Africa and Madagascar in the genus Yushania P.-C. Keng (1957: 355) (Majumdar 1989).

To date, 11 major lineages are found in the temperate woody bamboo clade, mainly based on cpDNA sequence analyses, but the relationships among these clades are still not resolved (Triplett \& Clark 2010, Zeng et al. 2010, Yang et al. 2013). Based on recent phylogenetic studies, Arundinaria is now restricted to the three North American species: A. gigantea (Walter 1788: 81) Muhlenberg (1813:14) (type species), A. tecta (Walter 1788: 81) Muhlenberg (1813:14) and A. appalachiana Triplett, Weakley \& Clark (2006: 88) (Triplett \& Clark 2010). Thus, the generic classification of the Sri Lankan species must be updated in light of this recent work.

The primary objective of the current study was to conduct a molecular phylogenetic analysis of the native Sri Lankan Arundinaria species using chloroplast DNA sequencing, with a particular emphasis on testing the monophyly of this group and placing them in the correct genus or genera. A detailed morphological comparison of the native Sri Lankan Arundinaria species and putatively taxonomically related taxa within Arundinarieae was also conducted to identify distinguishing features for this group. In addition, several cpDNA markers not previously used in phylogenetic analyses of Arundinarieae were tested to evaluate their utility in resolving relationships among the major temperate bamboo clades.

## Materials and methods

Taxon sampling and outgroup selection:-All five known species and a potentially new Sri Lankan Arundinaria species were sampled for this study. In addition, representatives from ten of the 11 currently recognized temperate clades were selected based on previous studies (Triplett \& Clark 2010, Zeng et al. 2010) and their sequences downloaded from GenBank (http://www.ncbi.nlm.nih.gov/genbank/) (Appendix 1). Sequence data for Clade XI, which includes only Ampelocalamus calcareus C.-D. Chu \& C.-S. Chao (Chao \& Chu 1983: 204) (Yang et al. 2013), was not available when this study was conducted and therefore was not included. Several taxa were selected as outgroups based on prior studies (Triplett \& Clark 2010, Zeng et al. 2010): Brachyelytrum erectum (Schreber 1789: 97) Palisot de Beauvois (1812: 155) (Pooideae), Chusquea spectabilis L.G. Clark (Fisher et al. 2009: 681) (neotropical woody bamboos), Guadua angustifolia Kunth (1822: 253) (neotropical woody bamboos) and Bambusa vulgaris Schrader ex Wendland (Wendland 1808: 26) (paleotropical woody bamboos).

Chloroplast DNA Marker Selection:—Based on prior (Triplett \& Clark 2010) and preliminary studies, four
 reasonable numbers of parsimony-informative characters for temperate species were selected. An additional set of cpDNA markers, three from domain IV [D4] of chloroplast group II introns (petD, atpF, $n d h A$ ) and three other intergenic regions ( $p s b D-t r n T$, psbJ-petA and $y c f 6-p s b M$ ), based on previous studies (Shaw et al. 2005, Shaw et al. 2007, Watts et al. 2008) were selected to evaluate their potential utility in the temperate clade and in resolving the relationships of the Sri Lankan Arundinaria species.

TABLE 1. Chloroplast DNA primers used for amplification and sequencing. * indicates published primer sequences that were modified from Triplett \& Clark (2010); underlined text indicates modified nucleotide sites. SEQ indicates primers used for sequencing reactions, if different from the PCR primers. § indicates regions that showed very low genetic variation for the temperate clade.

\begin{tabular}{|c|c|c|c|}
\hline Region \& Primer sequences ( \(5^{\prime}-3\) ') \& PCR Parameters \& Reference \\
\hline \(n d h F(3 '\) end) \& 972F: GTCTCAATTGGGTTATATGATG
2110R: CCCCCTAYATATTTGATACCTTCTCC
SEQ: \(1318 \mathrm{~F}^{*}:\) GGATTAACTGCGTTTTATATGTTTCG
1603R: GCATAGTATTTCCCGTTTCATGAGG
5' end: 1F: GCACGTTGCTTTCTACCACA
929R: TTCTGTCTACTCGGCTTTCG \& \[
\begin{aligned}
\& 94^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 30 \mathrm{x}\left(94^{\circ} \mathrm{C}, 1 \mathrm{~min} 30 \mathrm{sec} ;\right. \\
\& \text { touchdown } 53-43^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 72^{\circ} \mathrm{C}, \\
\& 3 \mathrm{~min}) ; 72^{\circ} \mathrm{C} 10 \mathrm{~min} . \\
\& 95^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 35 \mathrm{x}\left(95^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 48^{\circ} \mathrm{C},\right. \\
\& 10 \mathrm{sec} ;+17^{\circ} \mathrm{C}, 0.3^{\circ} \mathrm{C} / \sec ; 65^{\circ} \mathrm{C},
\end{aligned}
\] \& Olmstead \& Sweere
(1994) \\
\hline rps16-trnQ(1) \& 3' end: 538F: CGACTCGAATACCAAAAGAGG \& \(5 \mathrm{~min}) ; 65^{\circ} \mathrm{C}, 5 \mathrm{~min}\). \& \\
\hline (for temperate bamboos) \& \begin{tabular}{l}
1574R: ATCCTTCCGTCCCAGATTTT \\
SEQ: (5') 16Q 650R:GTTCGTTGGATAGAATGGATTC \\
(3') 16Q in-for: GCCGAGTAGACAGAATATATG \\
(3') 16Q 1100R:GGCCAGATTAAAGAATAGGAAG
\end{tabular} \& Note: For some taxa, 628R was used to sequence the 5 ' amplicon [see rps16-trnQ (2) for primer sequence] \& Triplett \& Clark (2010) \\
\hline \begin{tabular}{l}
\[
r p s 16-\operatorname{trn} Q(2)
\] \\
(for all other taxa)
\end{tabular} \& \begin{tabular}{l}
1F: GCACGTTGCTTTCTACCACA 1574R: ATCCTTCCGTCCCAGATTTT \\
SEQ: 334F: CGAGATGGTCAATCCTGAAATG \\
628R: CTTTTGGTATTCKAGTCGAAG
\end{tabular} \& \[
\begin{aligned}
\& 95^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 35 \mathrm{x}\left(95^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 50^{\circ} \mathrm{C},\right. \\
\& 10 \mathrm{sec} ;+15^{\circ} \mathrm{C}, 0.3^{\circ} \mathrm{C} / \sec ; 65^{\circ} \mathrm{C} \\
\& 5 \mathrm{~min}) ; 65^{\circ} \mathrm{C}, 5 \mathrm{~min}
\end{aligned}
\] \& Triplett \& Clark (2010) \\
\hline trnC-rpoB \& \begin{tabular}{l}
rpoB*: ATTGTGGACATTCCCTCRTT \\
SEQ: jt400-for: CAGGTCCGAACAGCATTA \\
jt700-rev: CGTAGTAGTAGAATTGCTAG
\end{tabular} \& \[
\begin{aligned}
\& 94^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 35 \mathrm{x}\left(96^{\circ} \mathrm{C}, 1 \mathrm{~min}\right. \\
\& \text { touchdown } 56-46^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 72^{\circ} \mathrm{C}, \\
\& 3 \mathrm{~min}) ; 72^{\circ} \mathrm{C}, 5 \mathrm{~m} .
\end{aligned}
\] \& \begin{tabular}{l}
PCR: Yamane \& \\
Kawahara (2005); SEQ: \\
Triplett \& Clark, 2010
\end{tabular} \\
\hline trnD-trnT \& \begin{tabular}{l}
trnD-for: ACCAATTGAACTACAATCCC \\
trnT-rev: CCCTTTTAACTCAGTGGTA \\
SEQ: trnY-rev: CTCTTTGCTTTGGATCTAG \\
trnE-for: GCCTCCTTGAAAGAGAGATG
\end{tabular} \& \begin{tabular}{l}
\[
94^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 35 \mathrm{x}\left(94^{\circ} \mathrm{C}, 45 \mathrm{sec} ;\right.
\] \\
touchdown \(58-48.5^{\circ} \mathrm{C}, 1 \mathrm{~min}\);
\[
\left.72^{\circ} \mathrm{C}, 1 \mathrm{~min} 15 \mathrm{sec}\right) ; 72^{\circ} \mathrm{C}, 5 \mathrm{~min}
\]
\end{tabular} \& trnD-for: Demesure et al. (1995); trnT-rev, trnY-rev: Triplett \& Clark (2010); trnE-for: Doyle et al. (1992) \\
\hline trnT-trnL \& trnT-L F: CATTACAAATGCGATGCTCT trnT-L R: TCTACCGATTTCGCCATATC \& \[
\begin{aligned}
\& 95^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 35 \mathrm{x}\left(95^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 48^{\circ} \mathrm{C},\right. \\
\& 10 \mathrm{sec} ;+17^{\circ} \mathrm{C}, 0.3^{\circ} \mathrm{C} / \sec ; 65^{\circ} \mathrm{C} \\
\& 5 \mathrm{~min}) ; 65^{\circ} \mathrm{C}, 5 \mathrm{~min}
\end{aligned}
\] \& Taberlet et al. (1991) \\
\hline \({ }^{8}\) atpF intron D4 \& \begin{tabular}{l}
sak21F: AAAGGGAGTGTGTGYGAGTT \\
sak22R: CCCGAACCAAAYATGAATCTTTC
\end{tabular} \& \begin{tabular}{l}
\(80^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 35 \mathrm{x}\left(65^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 0.3^{\circ} \mathrm{C} / \mathrm{s}, 50\right.\) \\
\(\left.{ }^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 65^{\circ} \mathrm{C} 1.5 \mathrm{~min}\right) ; 65^{\circ} \mathrm{C}, 4 \mathrm{~min}\)
\end{tabular} \& Watts et al. (2008) \\
\hline \(s_{n d h}\) intron
D4 \& \begin{tabular}{l}
sak26F: CAATATCTCTACGTGYGATTCG \\
sak28R: AACTGTTRGATAATCATAGTCG \\
sak17F: GGATTATGGGAGTGTRYGACTTG
\end{tabular} \& \begin{tabular}{l}
\(80^{\circ} \mathrm{C}, 5 \mathrm{~m} ; 35 \mathrm{x}\left(65^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 0.3^{\circ} \mathrm{C} / \mathrm{s}, 50\right.\) \\
\(\left.{ }^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 65^{\circ} \mathrm{C} 1.5 \mathrm{~min}\right) ; 65^{\circ} \mathrm{C}, 4 \mathrm{~min}\).
\end{tabular} \& Watts et al. (2008) \\
\hline \begin{tabular}{l}
\({ }^{\text {spetD intron }}\) \\
D4
\end{tabular} \& \begin{tabular}{l}
sak18R: CTTTGTTATTGGGATAGGTGAA \\
SEQ: sak19F: GAGACRAYCCANAAAGCA \\
sak18R: CTTTGTTATTGGGATAGGTGAA
\end{tabular} \& \(80^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 35 \mathrm{x}\left(65^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 0.3^{\circ} \mathrm{C} / \mathrm{s}, 50\right.\) \(\left.{ }^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 65^{\circ} \mathrm{C}, 1.5 \mathrm{~min}\right) ; 65^{\circ} \mathrm{C}, 4 \mathrm{~min}\). \& Watts et al. (2008) \\
\hline SpsbD-trnT

${ }_{\text {PpsbJ-petA }}$ \& | psbD: CTC CGT ARC CAG TCA TCC ATA $\operatorname{trnT}(\mathrm{GGU})$-R: CCC TTT TAA CTC AGT GGT AG |
| :--- |
| psbJ: ATA GGT ACT GTA RCY GGT ATT |
| petA: AAC ART TYG ARA AGG TTC AAT T | \& $80^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 30 \mathrm{x}\left(95^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 50^{\circ} \mathrm{C}, 0.3^{\circ} \mathrm{C}\right.$ $\left.\mathrm{s}, 50^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 65^{\circ} \mathrm{C}, 4 \mathrm{~min}\right) ; 65^{\circ} \mathrm{C}, 5 \mathrm{~min}$ $80^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 30 \mathrm{x}\left(95^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 50^{\circ} \mathrm{C}, 1 \mathrm{~min}\right.$, ramp of $0.3^{\circ} \mathrm{C} / \mathrm{s}$ to $65^{\circ} \mathrm{C} ; 65^{\circ} \mathrm{C}, 4 \mathrm{~min}$ ); $65^{\circ} \mathrm{C}, 5 \mathrm{~min}$ \& Shaw et al. (2007)

Shaw et al. (2007) <br>

\hline sycf6-psbM \& | ycf6F: ATG GAT ATA GTA AGT CTY GCT TGG GC |
| :--- |
| psbMR; ATG GAA GTA AAT ATT CTY GCA TTT ATT GCT | \& \[

$$
\begin{aligned}
& 80^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 35 \mathrm{x}\left(94^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 50-55^{\circ} \mathrm{C}, 1\right. \\
& \left.\min , 72^{\circ} \mathrm{C}, 3.5 \mathrm{~min}\right) ; 72^{\circ} \mathrm{C}, 5 \mathrm{~min}
\end{aligned}
$$
\] \& Shaw et al. (2005) <br>

\hline
\end{tabular}

DNA Extraction, Sequencing, Alignment, and Character Coding:-Total genomic DNA extractions were performed from silica gel-dried specimens using the Iowa State University DNA Facility's Autogenprep 740 DNA extraction robot. Primers for polymerase chain reactions (PCR) and sequencing protocols of all the markers are listed in Table 1. All PCR and cycle-sequencing reactions were performed in an MJ Research PTC-200 thermal cycler. PCR was performed in $25 \mu \mathrm{~L}$ volumes. Amplification products were cleaned using polyethylene glycol (PEG) precipitation to remove unincorporated primers and dNTPs from the PCR products. Sequencing was performed on an ABI 3730xl

DNA Analyzer (Perkin-Elmer, Applied Biosystems Division, Norwalk, Connecticut) by the DNA Sequencing Facility at Iowa State University. Automated sequencing output was checked visually for correct automated base-calling. DNA sequences were aligned manually in $\mathrm{Se}-\mathrm{Al}$ (Rambaut 2001). Gaps introduced with the sequence alignment were later treated as binary, presence/absence characters (Giribert \& Wheeler 1999). Autapomorphic, parsimony uninformative indels were not scored, and they were excluded along with other gaps prior to analysis.

Phylogenetic Analyses:-All data were analyzed with Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI) methods. MP analyses were conducted using PAUP*4.0b10 (Swofford 2002), ML analyses were conducted using RaXML version 7.2.6 (Stamatakis 2006), and BI analyses were conducted using MrBayes 3.1 (Ronquist et al. 2005).

In MP analyses all characters were treated as unweighted and unordered. Heuristic tree searches were conducted with Tree Bisection and Reconnection (TBR) branch swapping. The initial trees for branch swapping were obtained by 1000 random stepwise taxa addition replicates. To assess the relative support for each node, bootstrap analysis was conducted from 1000 replicates with the heuristic search method and strict consensus trees were calculated. The Akaike information criterion (AIC) calculations, implemented in JmodelTest 0.1 (Guindon \& Gascuel 2003, Posada 2008), were used to select the appropriate model of sequence evolution for each DNA partition and for the combined data set excluding indels. ML analyses were conducted using RAXML, version 7.2.6 (Stamatakis 2006), invoking a rapid bootstrap ( 1000 replicates) analysis and search for the best-scoring Maximum Likelihood Tree with the general time-reversible model of DNA sequence evolution with gamma-distributed rate heterogeneity (the GTRGAMMA model); this was performed for each DNA partition and for the combined data set. BI was conducted with flat priors. The Markov chain Monte-Carlo algorithm was executed for four chains for 10 million generations per run, sampling every 1,000 generations, and a chain-heating temperature of 0.2 ; this entire procedure was conducted twice. Posterior Probabilities (PP) were analyzed after a burn-in of 10,000 trees and then the remaining samples were summarized and a majority-rule consensus trees were constructed. The BI analyses were conducted for each DNA partition and for the combined dataset. When assessing conflicts among the resultant phylogenies, the threshold value for the bootstrap criterion for both MP and ML was $70 \%$ and posterior probability measure for BI was 0.95 (Mason-Gamer \& Kellogg 1996, Wilcox et al. 2002). Values less than $70 \%$ MP Bootstrap/ML Bootstrap and less than 0.95 PP were considered as lacking support.

We tested whether the combined dataset provided sufficient evidence to reject particular hypotheses of relationships suggested by previous morphological studies (e.g., monophyly of the Sri Lankan Arundinaria and Arundinaria s.s. from North America, monophyly of Sri Lankan Arundinaria and other Indian and African temperate bamboo species). Constraint trees were generated in MacClade 4.08 (Maddison \& Maddison 2005) by forcing test groups to be monophyletic, but otherwise allowing taxa to "float," and MP analyses were performed in PAUP* using each constraint in turn. The Kishino-Hasegawa (K-H) test (Kishino \& Hasegawa 1989) as implemented in PAUP* was then used to test the significance of differences in tree statistics amongst different topologies in comparison with the MP topologies.

In addition, the number of nucleotide substitutions, indels, and inversions (hereafter referred to collectively as Potentially Informative Characters or PICs) (Shaw et al. 2007) between the ingroup species and between either ingroup species and the outgroup species were tallied for each cpDNA region to evaluate the potential use of these cpDNA regions in the temperate clade (Shaw et al. 2007). The average number of PICs found within each cpDNA region was then computed.

Morphological Comparison:-A total of 21 vegetative and reproductive characters were examined in the morphological comparison across Arundinaria s.s., Sri Lankan Arundinaria, the Thamnocalamus Munro (1868: 157) clade, Bergbambos and Oldeania of the African alpine bamboo clade to understand the differences and similarities among these taxa. Even though the phylogenetic analyses include both Oldeania alpina and Yushania ambositrensis (Camus 1913:78) Ohrnberger (1999: 14), the two known taxa of the African alpine bamboo clade, the morphological comparison includes only Oldeania alpina due to the lack of good material of Yushania ambositrensis. The Sri Lankan Arundinaria species were also compared morphologically with Yushania, Chimonobambusa Makino (1914: 153) and Indocalamus Nakai (1925: 148), since some of the Sri Lankan species were included in these genera by previous authors (Nakai 1925, Majumdar 1989). In addition, Fargesia was included in this comparison, because Soderstrom \& Ellis (1988) discussed morphological resemblances of these Sri Lankan species with the Chinese and Indian Arundinaria species that have been placed by some authors (Yi 1983) in Fargesia. As Chimonobambusa was easily distinguished from the other genera by the combination of leptomorph rhizomes, culms grooved above the basal branches, basal nodes with subequal multiple buds, more or less equal primary branches and pseudospikelets, this genus was not included in the comparison.

The choice of morphological characters for this comparison was based on Stapleton (2013), the characters in the Bamboo Biodiversity website (Bamboo Phylogeny Group 2005), some of which have been used for Bamboo Phylogeny Group morphological phylogenetic analyses, and direct examination of herbarium specimens (held at ISC, K, MO, PDA, US). For each genus, the entire genus was considered whenever possible. For Fargesia and Indocalamus, the type species of each genus has been included in molecular analyses along with other taxa from each but neither genus as currently delimited is demonstrably monophyletic (e.g., Yang et al. 2013). In addition, many species of Fargesia are unknown in flower (Li et al. 2006) and relatively little herbarium material is accessible for the majority of species in these two genera. We therefore used the type species for each genus as the most appropriate representatives.

## Results

Figure 1 shows the average PIC (Potentially Informative Character) values found within each of the 11 tested cpDNA regions. Out of the 11 regions, only $r p s 16-\operatorname{trn} Q, \operatorname{trn} C-r p o B, \operatorname{trn} D-\operatorname{trn} T, \operatorname{trn} T-\operatorname{trn} L$ and $n d h F 3$ ' gave enough variation in the temperate bamboo clade to provide resolution. The highest percentage average PIC value was $7.82 \%$ for rps 16 $\operatorname{trn} Q$ while the second highest was $5 \%$ for $\operatorname{trnT} T$ trnL, whereas the regions $n d h A, y c f 6-p s b M$, atpF, psbJ-petA had percentage average PIC values less than $1.00 \%$ and pet $D$ and $p s b D-\operatorname{trn} T$ showed no variation. In addition, $\operatorname{trn} D-\operatorname{trn} T$, $n d h F$ ( 3 ' end) and $\operatorname{trnC-rpoB~had~very~similar~percentage~average~PIC~values:~} 3.37 \%, 3.33 \%$ and $3.30 \%$ respectively. The combined, aligned data matrix for $r p s 16-\operatorname{trn} Q, \operatorname{trn} C-r p o B, \operatorname{trn} D-\operatorname{trn} T, \operatorname{trn} T-\operatorname{trn} L$ and $n d h F$ 3' end was $4,885 \mathrm{bp}$ long, with 49 indels. Only 223 characters (4.6\%) were parsimony informative (PIC). A total of 172 sequences were used for this study and the data matrix was composed of 164,997 data points excluding the data scored as missing, which was $6.71 \%(11,823)$ of the total data. Table 2 summarizes statistics for each of the 11 regions selected for the temperate species. Relatively low genetic variation was found among the sequences for the chloroplast markers used. Maximum Parsimony analysis of the combined five-region dataset resulted in 1019 shortest trees of 967 steps, with a consistency index (CI) of 0.6014 (uninformative characters excluded) and a retention index of 0.7352 .

Percentage average Potentially Informative Characters


FIGURE 1. Percentage Potentially Informative Character values for all 11 chloroplast regions. For the regions rps16-trnQ, $\operatorname{trnC} \mathbf{C}$ rpoB, trnD-trnT, trnT-trnL and ndhF 3' the PIC values include the outgroups. For the regions psbD-trnT, psbJ-petA and ycf6$p s b M$ the PIC values include only the ingroup species.

TABLE 2. Statistics and evolutionary models for each region and the combined analyses. Evolutionary models and phylogenetic analyses were conducted only for the first five regions $n d h F\left(3^{\prime} \operatorname{end}\right), \operatorname{rps} 16-\operatorname{trn} Q, \operatorname{trn} C-r p o B$, $\operatorname{trn} D-\operatorname{trn} T$ and $\operatorname{trn} T-\operatorname{trn} L$, which showed reasonable PIC values. Statistics for the first five regions are based on the five region, 36 taxon data matrix. * indicates the combined data set of five regions including all the indels. ${ }^{s}$ indicates the markers that showed very low genetic variation for the temperate clade and amplified for a subset of species ( $\sim 7$ species). $\mathrm{bp}=$ base pairs, $\mathrm{CI}=$ Consistency Index, excluding uninformative characters, MP = Maximum Parsimony, PIC = Parsimony Informative Characters, RI = Retention Index. Models are based on the Akaike information criterion (AIC) calculations implemented in JmodelTest 0.1.

| Partition | Length <br> (bp) | Indels | Total <br> char. | Char., <br> no gaps | PIC | MP trees | MP <br> length | CI | RI | Model |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n d h F(3$ ' end $)$ | 1,170 | 0 | 1,170 | 1,120 | 39 | 195 | 174 | 0.6324 | 0.6753 | TVM+G |
| rps16-trnQ | 1,740 | 14 | 1,754 | 1,140 | 136 | 193 | 235 | 0.6383 | 0.7862 | GTR+G |
| trnC-rpoB | 1,395 | 14 | 1,409 | 965 | 46 | 174 | 191 | 0.6533 | 0.8452 | TVM+I+G |
| trnD-trnT | 1,335 | 13 | 1,348 | 960 | 45 | 194 | 193 | 0.6883 | 0.7838 | TVM+G |
| trnT-trnL | 925 | 8 | 933 | 650 | 46 | 168 | 170 | 0.6118 | 0.7381 | GTR+I |
| 5-region, all data* | 6,565 | 49 | 6,614 | 4,835 | 223 | 1019 | 967 | 0.6014 | 0.7352 | TVM+G |
| $s_{\text {atpF } \text { intron D4 }}$ | 755 | 2 | 757 | --- | 3 | --- | --- | --- | --- | --- |
| $s_{n d h A ~ i n t r o n ~ D 4 ~}$ | 999 | 1 | 1,000 | --- | 6 | --- | --- | --- | --- | --- |
| $s_{p e t D ~}$ intron D4 | 765 | 0 | 765 | --- | 0 | --- | --- | --- | --- | --- |
| $s_{p s b D-t r n T}$ | 1,500 | 0 | 1,500 | --- | 0 | --- | --- | --- | --- | --- |
| $s_{p s b J-p e t A}$ | 1,020 | 0 | 1,020 | --- | 1 | --- | --- | --- | --- | --- |
| $s_{y c f 6-p s b M}$ | 870 | 0 | 870 | --- | 4 | --- | --- | --- | --- | --- |

As shown in Figure 2, MP, ML and BI analyses of the combined, 5-region dataset all recovered 11 major temperate bamboo lineages: Bergbambos (Clade I), African alpine bamboos (Clade II), Chimonocalamus J.R. Xue \& T. P. Yi (1979: 76) (Clade III), Shibataea Makino ex Nakai (Makino 1912: 236) clade (Clade IV), Phyllostachys Siebold \& Zuccarini (Muroi 1963: 13) clade (Clade V), Arundinaria clade (Clade VI), Thamnocalamus (Clade VII), Indocalamus wilsonii (Rendle 1914: 63) Chao \& Chu (1981: 43) (Clade VIII), Gaoligongshania D.-Z. Li, C.-J. Hsueh \& N.-H. Xia (1995: 598) (Clade IX), Indocalamus sinicus (Hance 1876: 336) Nakai (1925: 148) (Clade X) (Triplett \& Clark 2010, Zeng et al. 2010), and the Sri Lankan Arundinaria clade (Clade XII). In the current study, the monophyly of the temperate woody bamboo clade was highly supported, with $100 \%$ Maximum Parsimony Bootstrap, $100 \%$ Maximum Likelihood Bootstrap and 1.00 PP. The Sri Lankan Arundinaria clade received maximal support (Maximum Parsimony Bootstrap 100\%; Maximum Likelihood Bootstrap 100\%; PP 1.0). Relationships within the Sri Lankan Arundinaria clade were unresolved, as was the case for the other major lineages, except for the Arundinaria clade. Further, the African alpine bamboo (Clade II), Shibataea (Clade IV) and Arundinaria (Clade VI) clades each received moderate MP support, but strong support from the BI (all 1.00 PP ). Only the African alpine bamboos and the Arundinaria clades received strong support from the ML analysis ( $95 \%$ and $95 \%$ respectively) whereas the Shibataea clade received no MLBS support. In addition, five lineages were represented by a single species: Bergbambos tessellata (Nees von Esenbeck 1834: 482) Stapleton (2013: 99), Indocalamus wilsonii, Thamnocalamus spathiflorus (Trin.) Munro (1868: 34), Gaoligongshania megalothyrsa (Handel-Mazzetti 1936: 1271) D.Z. Li, J.R. Xue \& N.H. Xia (Li, Hsueh \& Xia 1995: 601) and Indocalamus sinicus. However, Chimonocalamus pallens J.R. Xue \& T.P. Yi (1979: 78) (the type species of Chimonocalamus) did not cluster with Chimonocalamus montanus J.R. Xue \& T.P. Yi (1979:80) and thus Chimonocalamus was resolved as polyphyletic.

Results of the K-H test are summarized in Table 3. Based on the K-H test, our data reject the monophyly of a group consisting of Sri Lankan Arundinaria, Arundinaria s.s. (Clade VI), Thamnocalamus (Clade VII), Bergbambos tessellata (Clade I), and the African alpine bamboos (Clade II), i.e., the hypothesis that the Sri Lankan Arundinaria species belong to Arundinaria in the broad sense. Data also reject the monophyly of Sri Lankan Arundinaria + Arundinaria s.s. and monophyly of Sri Lankan Arundinaria + the Thamnocalamus clade. Further, monophyly of the Sri Lankan Arundinaria + African alpine bamboos is rejected by the K-H test. Despite the lack of resolution among lineages, the K-H test could not reject the monophyly of the Sri Lankan Arundinaria species (Clade XII) plus the South African mountain bamboo Bergbambos tessellata.


FIGURE 2. Strict consensus of 1019 most parsimonious trees based on the five-region cpDNA dataset (rps16-trnQ, trnC-rpoB, $\operatorname{trnD-trnT,}$ trnT-trnL, ndhF 3'). Shaded region indicates the well supported Sri Lankan Arundinaria clade. Numbers indicate bootstrap values $\geq 70 \%$ from MP and ML analyses and posterior probabilities $\geq 0.95$ from the BI analyses, respectively. Note that Clade XI is not shown in the tree because it was unsampled.

Results of the morphological comparison are reported in Table 4. Some of the characters, such as culm leaf auricles and palea apex (Figure 3), were variable within the Sri Lankan Arundinaria clade. Culm leaf blade position was quite variable within the Sri Lankan Arundinaria, Arundinaria s.s., Thamnocalamus spathiflorus and Yushania clades, whereas other characters listed in Table 4 were much more consistent.


FIGURE 3. The three different types of palea apices. A1-biapiculate (sinus shallow) palea apex of Yushania niitakayamensis (Hayata) P.-C. Keng (1957: 357) and A2-biapiculate (sinus shallow) palea apex of Bergbambos tessellata; B1—long-divided tips (sinus deep) palea of Arundinaria gigantea and B2-long-divided tips (sinus deep) palea of Fargesia spathacea Franchet (1893: 1067); C1—acute, undivided palea apex of A. debilis and C2-acute, undivided palea apex of Oldeania alpina (K. Schum.) Stapleton (2013: 100).

TABLE 3. Hypotheses regarding clades and relationships among them. All hypotheses were tested under MP using the Kishino-Hasegawa test. The difference between the MP trees and those consistent with the constraint were reported. * indicates $\mathrm{p}<0.05$

| Hypothesis | Results of K-H Test |
| :--- | :--- |
| Sri Lankan Arundinaria, Arundinaria s.s, Thamnocalamus, Bergbambos, and African | Reject $\left(+7\right.$ steps, $\left.\mathrm{p}=0.000^{*}\right)$ |
| Alpine bamboos are monophyletic | Reject $\left(+8\right.$ steps, $\left.\mathrm{p}=0.000^{*}\right)$ |
| Sri Lankan Arundinaria and Arundinaria s.s are monophyletic | Reject $\left(+7\right.$ steps, $\left.\mathrm{p}=0.000^{*}\right)$ |
| Sri Lankan Arundinaria and Thamnocalamus are monophyletic | Cannot reject $(-2$ steps, $\mathrm{p}=0.078)$ |
| Sri Lankan Arundinaria and Bergbambos are monophyletic | Reject $\left(+1\right.$ step, $\left.\mathrm{p}=0.000^{*}\right)$ |
| Sri Lankan Arundinaria and African Alpine bamboos are monophyletic |  |

## Discussion

As predicted, the chloroplast genome appears to be conserved within the temperate clade, consistent with prior studies (Triplett et al. 2010, Zeng et al. 2010). Even though 11 relatively variable markers were tested in the current study, only five markers were selected for further phylogenetic analyses due to the lack of molecular variation within six of the markers as seen in a subset of seven species from across the temperate woody bamboo clade. These five markers, $n d h F$ (3' end), rps 16-trn $Q, \operatorname{trnC}$-rpoB, $\operatorname{trnD-trnT}$ and $\operatorname{trn} T-\operatorname{trn} L$, were successfully utilized in previous studies to understand the relationships among Arundinarieae (Triplett \& Clark 2010, Zeng et al. 2010, Yang et al. 2013).

The six markers that did not provide enough molecular variation for further use in this study had not been previously utilized in the temperate woody bamboo clade. Watts et al. (2008) successfully amplified and sequenced the markers petD, atpF and $n d h A$ from domain IV (D4) of chloroplast group II introns, on a sample of closely related species in Chusquea Kunth (1822: 151), a genus of Neotropical woody bamboos. Shaw et al. (2007) utilized psbD-trnT, $p s b J$-pet $A$ and $y c f 6-p s b M$ in a wide sample of flowering plants, both eudicots and monocots (including Poaceae) and revealed that these markers could be potential candidates to resolve genus and species-level molecular phylogenetic questions. However, none of these six markers showed enough variation in the temperate woody bamboo clade to resolve phylogenetic relationships due to their relatively low level of sequence divergence.

Lineages within the Arundinarieae:-The current study is the third analysis sampling almost all of the known temperate bamboo clades (Triplett \& Clark 2010, Zeng et al. 2010) and the first to include the Sri Lankan Arundinaria species. Even though the monophyly of the temperate clade is always highly supported, relationships within the clade have been difficult to resolve based on cpDNA markers alone or cpDNA plus one or two nuclear markers (Triplett \& Clark 2010, Zeng et al. 2010, Yang et al. 2013). Our results, based on five cpDNA markers, are consistent with these previous findings, but the molecular topology we obtained revealed a new, robustly supported major temperate bamboo lineage, designated as Clade XII, that includes all the Sri Lankan species previously recognized as Arundinaria by Soderstrom \& Ellis (1988).

We were unable to resolve relationships among the 11 lineages of temperate woody bamboos sampled here, consistent with other analyses (Triplett \& Clark 2010, Zeng et al. 2010, Yang et al. 2013). Several factors could account for the poor resolution among the lineages of temperate woody bamboos. An obvious explanation is a lack of phylogenetic signal, reflecting the relatively conserved nature of the plastid genome in these bamboos (Triplett \& Clark 2010). The long generation times (up to 120 years) characteristic of many temperate woody bamboos may also affect the rate of molecular evolution in this group (Janzen 1976, Gaut et al. 1997, Smith \& Donoghue 2008), although more study is needed to explore this in woody bamboos generally. Triplett et al. (2010) also suggested that reticulate evolution is much more significant in the temperate bamboos than previously predicted, but Triplett \& Clark (2010) noted that incomplete lineage sorting could be an additional factor. Further, some recent studies have proposed that relatively recent and rapid diversification within Arundinarieae could be another cause for poorly resolved phylogenetic patterns, especially at the generic level (Stapleton et al. 2009, Hodkinson et al. 2010, Stapleton 2013).

As noted previously, Clade XI (consisting of the single species Ampelocalamus calcareus) was not included in this analysis due to its recent discovery (Yang et al. 2013) and the lack of material for comparable sequencing.
TABLE 4. Comparative table of morphological characters for the "Arundinaria" groups. "?" indicates unknown material.

|  | Sri Lankan Kuruna clade [Clade XII] | Arundinaria s.s. [Clade VI] | Bergbambos tessellata [Clade I] | Thamnocalamus spathiflorus [Clade VII] | Yushania <br> [Clade V] | $\begin{aligned} & \text { Fargesia }(F \text {. } \\ & \text { spathacea-type }) \\ & {[\text { Clade } V]} \end{aligned}$ | Indocalamus (I. sinicus-type) [Clade X] | Oldeania alpina [Clade II] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vegetative Characters |  |  |  |  |  |  |  |  |
| Rhizomes | Pachymorph culm bases with short necks | Leptomorph rhizomes | Pachymorph culm bases with short necks (25-30 cm) | Pachymorph culm bases with short necks | Pachymorph culm bases often with long necks | Pachymorph culm bases with short necks | Leptomorph rhizomes | Pachymorph culm bases with long necks |
| Clump form | Unicaespitose | Unicaespitose or pluricaespitose | Unicaespitose | Unicaespitose | Pluricaespitose | Unicaespitose | Pluricaespitose | Culms solitary |
| Culm grooves | Absent | Present in $A$. gigantea | Absent | Absent | Absent | Absent | Absent | Present (sulcate) |
| Supranodal ridge diameter | Prominent, wider than nodes (A. debilis \& A. floribunda) or more or less the same diameter as the adjacent internodes (other 4 spp .) | More or less the same diameter as the adjacent internodes | More or less the same diameter as the adjacent internodes | More or less the same diameter as the adjacent internodes | More or less the same diameter as the adjacent internodes | More or less the same diameter as the adjacent internodes | More or less the same diameter as the adjacent internodes | Well developed, its diameter greater than the adjacent internodes |
| Culm leaf girdle | Present as a band at least 1 mm wide | Absent or poorly developed | Absent or poorly developed | Present as a band at least 1 mm wide | Present as a band at least 1 mm wide | Absent or poorly developed | Present and usually yellow brown | Present as a band at least 1 mm wide |
| Culm leaves abaxial surface | Mostly hispid | Mostly glabrous | Glabrous | Glabrous | Hispid with appressed brown hairs, becoming glabrous when mature | Hispid with dark brown irritating hairs or glabrous | Mostly glabrous | Hispid |
| Culm leaf auricle / fimbriae | Absent (except $A$. debilis with minute fimbriate auricles) | Usually with well-developed fimbriate auricles | Small fimbriate auricles present | Small fimbriate auricles present | Fimbriate auricles present | Absent | Auricles absent, summit fimbriate | Small fimbriate auricles present |
| Culm leaf blade position | Reflexed (except erect in $A$. densifolia) | Erect or becoming reflexed | Reflexed | Erect to slightly spreading | Erect to slightly spreading | Reflexed | Reflexed | Usually reflexed |

TABLE 4. (Continued)

|  | Sri Lankan Kuruna clade [Clade XII] | Arundinaria s.s. [Clade VI] | Bergbambos tessellata [Clade I] | Thamnocalamus <br> spathiflorus [Clade VII] | Yushania [Clade V] | Fargesia ( $F$. spathacea-type) [Clade V] | Indocalamus (I. sinicus-type) [Clade X] | Oldeania alpina [Clade II] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Foliage leaf sheath | Strongly keeled at least near the summit | Rounded on the back | Rounded on the back | Strongly keeled at least near the summit | Strongly keeled at least near the summit | Narrowly rounded to strongly keeled at least near the summit | Rounded on the back | Strongly keeled at least near the summit |
| Foliage leaf sheath persistence | Persistent | Persistent | Persistent | Deciduous | Persistent | Persistent | ? | Deciduous |
| Number of shortened internodes at the base of the branch complement | 2-9 | $0-1$ in $A$. <br> gigantea; 2several in A. tecta and $A$. applachiana | 4-5 | 2-3 | 3-5 | 2-9 | 2-5 | 2-3 |
| Node | Without roots | With ring of thorn like roots at the nodes |
| Branch sheathing | Complete | Complete | Reduced | Complete | Reduced | Reduced | ? | Reduced |
| Branch orientation | Initially erect, then spreading | Erect to spreading | Erect | Erect to slightly spreading | Erect to spreading | Erect | ? | Spreading |
| Secondary branch initiation area | 2 nd or 3rd compressed internode | 2nd, 3rd or 4th compressed internode | 4th compressed internode | 2nd compressed internode | 2 nd or 3rd compressed internode | 2nd or 3rd compressed internode | ? | 2nd compressed internode |
| Reproductive Characters |  |  |  |  |  |  |  |  |
| Synflorescence type | Open racemes or panicles, not unilateral | Open racemes or panicles, not unilateral | Contracted raceme, not unilateral | Contracted panicle, not unilateral | Open panicle, not unilateral | Densely contracted unilateral raceme | Raceme or an open panicle, not unilateral | Panicle, not unilateral |
| No. of fertile florets per spikelet | 2-6 (except $A$. densifolia, with one) | 7-12 | 1-3 | 2-7 | 1-7 | 3-4 | 3-4 | 2-11 |

TABLE 4. (Continued)

|  | Sri Lankan Kuruna clade [Clade XII] | Arundinaria s.s. [Clade VI] | Bergbambos tessellata [Clade I] | Thamnocalamus spathiflorus [Clade VII] | Yushania [Clade V] | $\begin{aligned} & \hline \text { Fargesia }(F . \\ & \text { spathacea-type }) \\ & {[\text { Clade } V]} \end{aligned}$ | Indocalamus (I. sinicus-type) [Clade X] | Oldeania alpina [Clade II] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Presence of spatheate empty bracts at the base of the synflorescence | Absent | Absent | One or more present | One well-developed spatheate empty bract present | One or sometimes none | Two present | Absent | Absent |
| Presence of subtending bracts | Absent | Absent | Present at each node, well developed with a sheath and a blade | Present at each node, variable in size and development, but some well developed | Present as a very small bract only at the first node, otherwise absent | Present at each node except the terminal node, variable in size | Usually very small bracts present | Absent |
| Palea apex | Biapiculate (sinus shallow) (A. floribunda \& A. densifolia) or acute, undivided (other 3spp.) | Tips long-divided (sinus deep) | Biapiculate (sinus shallow) | Biapiculate (sinus shallow) | Biapiculate (sinus shallow) | Tips longdivided (sinus deep) | Biapiculate (sinus shallow) | Acute, undivided |

Hypothesis testing:-The K-H test could not reject the possibility of the monophyly of the Sri Lankan Arundinaria species (Clade XII) plus the South African mountain bamboo Bergbambos tessellata, although morphological characters clearly differentiate Sri Lankan Arundinaria species from Bergbambos tessellata (Table 4), suggesting that these two clades are distinct. Linder et al. (1997) proposed an Indian - Sri Lankan - Madagascan - Southern African biogeographical pattern for Crinipes Hochstetter (Fürarohr 1855: 279) (Poaceae: Arundinoideae). The possible monophyly of Sri Lankan Arundinaria species (Clade XII) and Bergbambos tessellata revealed by the K-H test of the current study suggests the possibility of a similar biogeographical pattern in this group, but additional sampling of Indian and Madagascan Arundinaria species as well as better resolution among temperate bamboo lineages are both needed before this question can be addressed.

Generic status of the Sri Lankan Arundinaria clade:-The morphological comparison eliminated the possibility that any of these Sri Lankan Arundinaria species or other "Arundinaria" groups should be classified within Fargesia, Indocalamus, Chimonobambusa or Chimonocalamus. Fargesia has a densely contracted unilateral raceme with long divided (deep sinus) palea apices that separates it from the Sri Lankan Arundinaria, Thamnocalamus, Bergbambos tessellata, African alpine bamboos and Yushania. In addition, both Indocalamus and Chimonobambusa have leptomorph rhizomes while all the Sri Lankan Arundinaria, Thamnocalamus, Bergbambos tessellata, African alpine bamboo and Yushania clades have pachymorph culm bases (= pachymorph rhizomes as usually described in bamboo literature). Further, the presence of basally grooved culms and synflorescences with pseudospikelets distinguish Chimonobambusa from Arundinaria s.s., Sri Lankan Arundinaria, Thamnocalamus, Bergbambos tessellata, African alpine bamboos and Yushania. Both Chimonobambusa and Chimonocalamus have subequal multiple (or apparently multiple) buds per node which also provide evidence that these two genera are distinct from the Arundinaria s.s., Sri Lankan Arundinaria, Thamnocalamus, Bergbambos tessellata, African alpine bamboo and Yushania clades.

Unlike the K-H test, which was unable to reject the monophyly of the Sri Lankan Arundinaria clade + Bergbambos tessellata, the morphological characters indicate consistent differences. Both vegetative and reproductive morphological characters clearly differentiate the Sri Lankan Arundinaria species from Bergbambos tessellata. The presence of usually hispid culm leaves and the general absence of both culm leaf auricles and foliage leaf fimbriate auricles separate the Sri Lankan Arundinaria clade from Bergbambos tessellata, which has glabrous culm leaves and fimbriate auricles in both culm and foliage leaves. As discussed in Stapleton (2013), branch sheathing is an important character that could be used to differentiate these clades. Compared to Bergbambos tessellata, the Sri Lankan Arundinaria clade has a complete set of sheaths at the nodes (complete sheaths), while Bergbambos tessellata has lost some of the sheaths at the nodes (reduced sheaths). Even though both of these clades possess non-unilateral synflorescences, the Sri Lankan Arundinaria species have open racemes or panicles, but Bergbambos tessellata has contracted racemes. In addition, the presence of one or more spatheate bracts at the base of the synflorescence and subtending bracts at the synflorescence nodes in Bergbambos tessellata further supports the difference between these two clades, as these structures are completely absent in the Sri Lankan clade. Finally, the shape of the palea apex (Figure 3) is one of the best characters to differentiate among these temperate woody bamboo clades, particularly between the Sri Lankan clade (acute, undivided tips) and Bergbambos (biapiculate with a shallow sinus). We note that Stapleton (2013) reported a single fertile floret per spikelet in Bergbambos tessellata, which could serve as an additional distinction between Bergbambos and the Sri Lankan clade. However, based on our observations and the morphological analysis of Soderstrom \& Ellis (1982), Bergbambos tessellata has one to three fertile florets plus at least one apical reduced or rudimentary floret, so floret number is not a useful character in this case. But overall, the molecular evidence combined with the morphology supports the recognition of a new genus that will accommodate all the Sri Lankan temperate woody bamboo species, which we here describe.

Although we were unable to examine any material of Ampelocalamus calcareus (Clade XI) for the morphological analysis, the strongly arching to hanging culms of this species, along with the well-developed, fimbriate auricles on its culm leaves and foliage leaves (Yi et al. 2008), mean it is unlikely to have a close relationship to the Sri Lankan Arundinaria clade. We therefore exclude it from further consideration.

According to the molecular analyses and morphological comparison all the reported native Sri Lankan Arundinaria species, namely Arundinaria debilis, A. densifolia, A. floribunda, A. scandens and A. walkeriana, belong to this new Sri Lanka temperate woody bamboo genus. However, based on morphology, especially of the spikelets, previous studies suggest a possible relationship between Arundinaria densifolia and allies in Sri Lanka and South India (Campbell, unpubl.). Seethalakshmi \& Muktesh Kumar (1998) described A. floribunda and A. walkeriana as being distributed in both South India and Sri Lanka in very similar habitats. These taxa of "Arundinaria" from India were not sampled for the current analysis, so we could not confirm their identification. Furthermore, A. wightiana Nees von Esenbeck (1834: 482) is also reported to occur in both South India and Sri Lanka (Seethalakshmi \& Muktesh Kumar 1998), but
in our field work this species could not be located in Sri Lanka. Further, no previous studies relating to the Flora of Ceylon (Soderstrom \& Ellis 1988, Dassanayake \& Fosberg 1994) indicated any distribution of A. wightiana in Sri Lanka. Morphological comparison of A. wightiana and the Sri Lankan Arundinaria species shows some resemblance of the Indian taxon mainly with $A$. debilis and $A$. floribunda from Sri Lanka. Presence of a well-developed supranodal ridge, abaxially hispid culm leaves, fimbriate culm leaf sheath summits and foliage leaves with fimbriae are the main similarities among these three species. However, the very small culm leaf blade, relatively long fimbriae on both culm leaf sheath summits and on the foliage leaf auricles distinguish A. wightiana from the Sri Lankan Arundinaria species. In addition, the abaxial culm leaf surfaces of $A$. wightiana are covered by dark brown irritating hairs, while the abaxial culm leaf surfaces of Sri Lankan Arundinaria species are covered with non-irritating whitish brown hairs. Thus, morphological comparison suggests that A. wightiana could belong to the Sri Lankan Arundinaria clade, but this species needs further study and it has not yet been sampled in a molecular analysis. In addition, Dransfield (2003) reported six Arundinaria species endemic to Madagascar, but only one (Yushania ambositrensis) has been sampled in this and previous molecular analyses (Triplett \& Clark 2010), and it clusters with Oldeania alpina. Stapleton (2013) suggests that temperate bamboos radiated from India to Asia, Africa, and North America. Therefore, it is possible that one or more of these Madagascan Arundinaria species will ultimately be shown to belong to the Sri Lankan Arundinaria clade, but these species are poorly known and more work is needed before they can be assigned to an appropriate genus.

## Conclusions

A major finding of this investigation is the resolution of a robustly supported twelfth lineage, the Sri Lankan Arundinaria clade (Clade XII), within the temperate woody bamboos (Arundinarieae). Although the position of this clade with respect to the other ten sampled clades of temperate woody bamboos is unresolved, alternate hypothesis testing rejects monophyly of the Sri Lankan Arundinaria in combination with Arundinaria s.s. (restricted to North America) or other clades considered as Arundinaria in the broad sense, with the exception of Bergbambos tessellata (Clade I) from South Africa. A morphological analysis of these clades, however, provides characters to distinguish the Sri Lankan Arundinaria clade from Bergbambos.

The current study therefore provides robust molecular and morphological support for the recognition of the Sri Lankan Arundinaria clade as a new genus, here named Kuruna. We also make new combinations in Kuruna for the five described species in Sri Lanka; a complete taxonomic revision for this group is currently in preparation. We emphasize that the south Indian species of Arundinaria have not yet been sampled in a molecular study, and therefore concepts of Bergbambos, Kuruna, African alpine bamboos or other temperate woody genera may ultimately change, and we also cannot rule out the recognition of additional lineages within the temperate woody bamboos.

We suggest the use of other markers such as low copy nuclear markers and plastid genome sequences to better understand phylogenetic relationships within the highly complex, taxonomically difficult temperate woody bamboo clade. Though the topology that we obtained was imperfectly resolved, it can still serve as a foundation for testing biological or biogeographic hypotheses. The integration of more polymorphic markers into molecular analyses is necessary to obtain better resolution in order to critically examine divergence times, biogeography and morphological evolution within temperate woody bamboos.

## Taxonomic Treatment

Kuruna Attigala, Kaththriarachchi \& L. G. Clark, gen. nov.

TYPE: Arundinaria debilis Thwaites (1864: 375).

Kuruna debilis (Thwaites) Attigala, Kaththriarachchi \& L. G. Clark

Diagnosis:-Differs from Arundinaria s.s. by its pachymorph culm bases with short necks, culm leaves usually abaxially hispid, culm leaf girdles ca. 1 mm wide, culm leaf auricles absent and the palea apex biapiculate to acute. The following characters differentiate Kuruna from other "Arundinaria" groups (Bergbambos, African alpine bamboos,

Thamnocalamus and Yushania): pachymorph culm bases with short necks, unicaespitose clumps, culm leaf girdles present as a band ca. 1 mm wide, usually abaxially hispid culm leaves with non-irritating hairs, persistent foliage leaf sheaths and complete branch sheathing, palea apex biapiculate (sinus shallow) to acute and undivided, and both spatheate empty bracts at the base of the synflorescence and subtending bracts absent.

Description:-Culm bases pachymorph, short necked, two or more tillers per culm base present. Culms woody, erect, shrubby or scandent; midculm internodes usually hollow, terete to flattened or shallowly sulcate above the branches, smooth, wall thickness (ratio of 2 times wall thickness: culm diameter) moderate (ratio 0.31-0.45) to thick (ratio $0.46-0.61$ ), lacuna greater than $1 / 3$ of the diameter of the culm; nodal lines horizontal; supranodal ridge mostly conspicuous. Culm leaves clearly differentiated from the foliage leaves; girdle present as a band at least 1 mm wide; sheath usually abaxially hispid with non-irritating hairs, sheath apex usually symmetrically concave, fimbriate, sheath summit extension present; blade usually reflexed, sessile, more or less narrowly triangular. Branching pattern intravaginal. Branch complement derived from one bud per node and born on a promontory; bud prophyll margins unitary, free; two to several compressed proximal internodes at the base of the primary axis; secondary branches subequal to the primary axis, developing from the second or third compressed internodes and above; central primary branch smaller in diameter than the main culm; three or more leaves per leafy branch and leaf branch apex growth indeterminate. Foliage leaves fimbriate, erect, all leaves with a sheath and a blade; sheath usually strongly keeled at least near the summit. Synflorescences paniculate or racemose, with 1-2 orders of branching, open, terminating the leafy branches, both spatheate bracts at the base and subtending bracts absent. Spikelets pedicellate, laterally compressed, consisting of two glumes, usually two to six female-fertile florets per spikelet (in A. densifolia only one); rachilla extension hairy, bearing a rudimentary floret, shorter than or equal to about half the length of a fertile floret; glumes shorter than the spikelet, unawned; lemmas unawned; paleas 2-keeled, the keels winged, apex biapiculate or acute, sulcus well developed for the full length. Lodicules 3, ciliate; stamens 3, filaments free, anther apex lobes rounded, anther connective lower than the apical anther lobes; stigmas 2 or 3, plumose. Fruit a basic caryopsis with a linear hilum as long as the fruit.

Etymology:-The generic name Kuruna is derived from the common name in Sinhalese of the native Sri Lankan Arundinaria group, "KuruUna". "Kuru" means dwarf, and "Una" means bamboo.

Distribution:-Warm temperate and montane regions (both forests and open grasslands) of Sri Lanka (Soderstrom \& Ellis, 1988).

Following are the new combinations for all the native Arundinaria species in Sri Lanka:

\author{

1. Kuruna debilis (Thwaites) Attigala, Kaththriarachchi \& L. G. Clark, comb. nov. Basionym:-Arundinaria debilis Thwaites (1864: 375).
}
2. Kuruna densifolia (Munro) Attigala, Kaththriarachchi \& L. G. Clark, comb. nov. Basionym:-Arundinaria densifolia Munro (1868: 32).
3. Kuruna floribunda (Thwaites) Attigala, Kaththriarachchi \& L. G. Clark, comb. nov.

Basionym:-Arundinaria floribunda Thwaites (1864: 375).
4. Kuruna scandens (Soderstrom \& Ellis) Attigala, Kaththriarachchi \& L. G. Clark, comb. nov.

Basionym:-Arundinaria scandens Soderstrom \& Ellis (1988: 20).
5. Kuruna walkeriana (Munro) Attigala, Kaththriarachchi \& L. G. Clark, comb. nov.

Basionym:-Arundinaria walkeriana Munro (1868: 21).

## Acknowledgments

Field work was supported by National Science Foundation grant DEB-0515712 to LGC and support for LA and for the final preparation of this manuscript came from National Science Foundation grant DEB-1120750 to LGC. We are especially grateful to the Forest Department, Department of Wildlife Conservation of Sri Lanka and Sri Lanka Customs for providing the necessary permits to collect and export both herbarium material and silica dried leaf material from Sri

Lanka. We would also like to thank Nuwan De Silva and Abayapala De Silva for their generous help during field work. We thank the curators of the herbaria (ISC, K, MO, PDA, US) that loaned specimens for this study. We also thank Kara Grupp, Hathairat Chokthaweepanich, Chakkrapong Rattamanee and the laboratory of Dr. Jonathan Wendel, Iowa State University for technical assistance, laboratory assistance and access to laboratory facilities.

## References

Abeywicrama, B.A. (1986) The threatened plants of Sri Lanka. UNESCO and MAB National Committee for Sri Lanka, Publication No 16.NARESA, Colombo, Sri Lanka, 56 pp.

Bamboo Phylogeny Group (2005) Bamboo Biodiversity, Iowa State University. Available from: http://www.eeob.iastate.edu/research/ bamboo/ (accessed on: 12/06/2011).
Bamboo Phylogeny Group (2012) An updated tribal and subtribal classification for the Bambusoideae (Poaceae). In: Gielis, J. \& Potters, G. (eds.) Proceedings of the 9th World Bamboo Congress. Antwerp, Belgium, pp. 3-27.

Bystriakova, N., Kapos, V., Stapleton, C. \& Lysenko, I. (2003) Bamboo biodiversity: information for planning conservation and management in the Asia-Pacific region. UNEP-WCMC/INBAR, Biodiversity Series 14. UK: Swaingrove Imaging. Available from: http://www.ourplanet.com/wcmc/14.html (accessed: 19 May 2011).
Camus, E.-G. (1913) Les Bambuseés - Monographie, biologie, culture, principaux usages. Paris, Lechevalier 2, 215 pp. http://dx.doi.org/10.5962/bhl.title. 15463
Chao, C.S. \& Chu, C.D. (1981) Journal of Nanjing Technological College of Forest Products. Nanjing 3, 43 pp.
Chao, C.S. \& Chu, C.D. (1983) A new species of Genus Ampelocalamus. Acta Phytotaxonomica Sinica 21: 204-206.
Dassanayake, M.D. \& Fosberg, F.R. (1994) A revised handbook to the flora of Ceylon. Amerind publishing company (pvt.) Ltd., New Delhi, VXII, 458 pp.
De Zoysa, N.D. \& Vivekanandan, K. (1994) Field guide to the rattans of Sri Lanka. Forestry Information Service, Forest Department of Sri Lanka, Sri Lanka, 83 pp.
Demesure, B., Sodzi, N. \& Petit, R.J. (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology 4: 129-131.
Doyle, J.J., Davis, J.I., Soreng, R.J., Garvin, D. \& Anderson, M. (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proceedings of the National Academy of Sciences USA 89: 7722-7726.
http://dx.doi.org/10.1073/pnas.89.16.7722
Dransfield, S. (2003) Poaceae, Bambuseae, Bamboos. In: Goodman, S.M. \& Benstead, J. (Eds.) The Natural History of Madagascar. University of Chicago Press, Chicago, pp. 467-471.
Fisher, A.E., Triplett, J.K., Ho, C.-S., Schiller, A.D., Oltrogge, K.A., Schroder, E.S., Kelchner, S.A. \& Clark, L.G. (2009) Paraphyly in the bamboo subtribe Chusqueinae (Poaceae: Bambusoideae) and a revised infrageneric classification for Chusquea. Systematic Botany 34: 673-683. http://dx.doi.org/10.1600/036364409790139790
Franchet, A. (1893) Fargesia - nouveau genre de Bambusées de la Chine. Bulletin Mensuel de la Société Linnéenne de Paris 2: 10671069.

Gaut, B.S., Clark, L.G., Wendel, J.F. \& Muse, S.V. (1997) Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). Molecular Biology and Evolution 14: 769-777. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025817
Giribert, G. \& Wheeler, W.C. (1999) On gaps. Molecular Phylogenetics and Evolution 13: 132-143.
Guindon, S. \& Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696-704. http://dx.doi.org/10.1080/10635150390235520
Gunatilleke, I.A.U.N. \& Gunatilleke, C.V.S. (1990) Distribution of floristic richness and its conservation in Sri Lanka. Conservation Biology 4: 1-31. http://dx.doi.org/10.1111/j.1523-1739.1990.tb00262.x
Gunatilleke, I.A.U.N., Gunatilleke, C.V.S. \& Abeygunawardena, P. (1994) An interdisciplinary research initiative towards sustainable management of forest resources in lowland rain forests of Sri Lanka. Journal of Sustainable Forestry 1: 95-114. http://dx.doi.org/10.1300/j091v01n04_05
Hance, H.F. (1876) A new Chinese Arundinaria. Journal of Botany, British and Foreign 14: 339-340.
Handel-Mazzetti, H. (1936) Symbolae Sinicae: Botanische Ergebnisse der Expedition der Akademie der Wissenschafien in Wien nach

Südwest China 1914/1918. Julius Springer, Vienna, 1450 pp.
Hayata, B. (1907) Supplements to the Enumeratio Plantarum Formosanarum. Botanical Magazine Tokyo 21: 49-55.
Fürarohr, A. E. (1855) Flora oder allgemeine botanische Zeitung, Flora 38. Botanischen Gesellschaft in Regensburg, Germany, 782 pp.
Hodkinson, T.R., Ní Chonghaile, G. Sungkaew, S., Chase, M. W., Salamin, N. \& Stapleton, C.M.A. (2010) Phylogenetic analyses of plastid and nuclear DNA sequences indicate a rapid late Miocene radiation of the temperate bamboo tribe Arundinarieae (Poaceae, Bambusoideae). Plant Ecology and Diversity 3: 109-120. http://dx.doi.org/10.1080/17550874.2010.521524
Janzen, D.H. (1976) Why bamboos wait so long to flower. Annual Reviews Ecology and Systematics 7: 347-391. http://dx.doi.org/10.1146/annurev.es.07.110176.002023
Judziewicz, E.J., Clark, L.G., Londoño, X. \& Stern, M.J. (1999) American Bamboos. Smithsonian Institution Press, Washington, D.C., 392 pp.
Kariyawasam, D. (1998) Bamboo resources and utilization in Sri Lanka. In: Rao, A.N. \& Rao, R. (Eds.) Bamboo - Conservation, Diversity, Ecogeography, Germplasm, Resource Utilization and Taxonomy. Proceedings of training course cum workshop. IPGRI, Italy, 275 pp.
Kelchner, S.A. \& Bamboo Phylogeny Group (2013) Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Molecular Phylogenetics and Evolution 67: 404-413. http://dx.doi.org/10.1016/j.ympev.2013.02.005
Keng, P.C. (1957) One new genus and two new species of Chinese bamboos, Acta Phytotaxonomica Sinica 6: 355-360.
Kishino, H. \& Hasegawa, M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29:170-179. http://dx.doi.org/10.1007/bf02100115
Kunth, C.S. (1822) Synopsis Plantarum. I. F. G. Levrault, Paris, 491 pp.
Li, D.-Z., Hsueh, C.-J. \& Xia, N.-H. (1995) Gaoligongshania, a new bamboo genus from Yunnan, China. Acta Phytotaxonomica Sinica 33: 597-601.
Li, D.-Z., Wang, Z.-P., Zhu, Z.-D., Xia, N.-H., Jia, L.-Z., Guo, Z.-H., Yang, G.-Y. \& Stapleton, C.M.A. (2006) Bambuseae. In: Wu, Z.-Y., Raven, P.H. \& Hong, D.-Y. (Eds.) Flora of China Vol. 22, Poaceae. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, pp. 7-180.
Li, D.-Z. \& Xue, J.-R. (1997) The biodiversity and conservation of bamboos in Yunnan, China. In: G.P. Chapman (Ed.) The Bamboos. New York Academic Press, pp. 83-94.
Linder, H.P., Verboom, G.A. \& Barker, N.P. (1997) Phylogeny and evolution in the Crinipes group of grasses (Arundinoideae: Poaceae). Kew Bulletin 52: 91-110. http://dx.doi.org/10.2307/4117843
Maddison, W.P. \& Maddison, D.R. (2005) MacClade: analysis of phylogeny and character evolution. Version 4.08. Sunderland: Sinauer Associates.
Majumdar, R.B. (1989) Florae Indicae Enumeratio: Monocotyledonae. Botanical Survey of India, Calcutta, 283 pp.
Makino, T. (1912) Take no ichi shinzoku (A new genus of Bambusaceae), Shibataea Makino. Botanical Magazine Tokyo 26: 236-237.
Makino, T. (1914) Observations on the flora of Japan. Botanical Magazine Tokyo 28: 153-155.
Mason-Gamer, R.J. \& Kellogg, E.A. (1996) Chloroplast DNA analysis of the monogenomic Triticeae: phylogenetic implications and genome specific markers. In: Jauhar, P.P. \& Raton, B. (Eds.) Methods of genome analysis in plants. CRC Press, pp. 301-325.
McClure, F.A. (1966) The bamboos, a fresh perspective. Harvard University Press, Cambridge, Massachusetts, 347 pp.
McClure, F.A. (1973) Genera of bamboos native to the New World (Gramineae: Bambusoideae). Smithsonian Contributions to Botany 9: 1-148. http://dx.doi.org/10.5479/si.0081024x. 9
Michaux, A. (1803) Flora Boreali-Americana, sistens caracteres plantarum quas in America septentrionali collegit et detexit. Paris and Strasbourg, 330 pp . http://dx.doi.org/10.5962/bhl.title. 50919
Muhlenberg, G.H.E. (1813) Catalogus Plantarum Americae Septentrionalis iv. William Hamilton Lancaster, Pennsylvania, 112 pp.
Munro, W. (1868) A monograph of the Bambusaceae, including descriptions of all the species. Transactions of the Linnean Society of London 33: 1-157. http://dx.doi.org/10.1111/j.1096-3642.1968.tb00502.x
Muroi, L.H. (1963) Guide Book of the Fuji Bamboo Garden [H. Muroi]. Fuji bamboo garden, Nagahara, Gotemba, Japan, 76 pp.
Mutschler, T. \& Tan, C.L. (2003) Hapalemur, bamboo or gentle lemurs. In: Goodman, S.M. \& Benstead, J.P. (Eds.) The Natural History of Madagascar. The University of Chicago Press, Chicago, pp. 1324-1329.
Nakai, T. (1925) Two new genera of Bambusaceae, with special remarks on the related genera growing in eastern Asia. Journal of the

Arnold Arboretum 6: 145-153.
NCBI Genbank (2011) Available from: http://www.ncbi.nlm.nih.gov/genbank (accessed: 10 January 2011).
Nees von Esenbeck, C.G.D. (1834) Bambuseae brasilienses. Recensuit, et alias in India orientali provenientes adjecit. Linnaea 9: 461494.

Ohrnberger, D. (1999) The bamboos of the world: annotated nomenclature and literature of the species and the higher and lower taxa. Elsevier, 585 pp.
Olmstead, R.G. \& Sweere, J.A. (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Systematic Biology 43: 467-481. http://dx.doi.org/10.1093/sysbio/43.4.467
Palisot de Beauvois, A.M.F.J. (1812) Essai d'une Nouvelle Agrostographie ou Nouveaux Genres des Graminées. In: Palisot de Beauvois A.M.F.J. (Ed.) Essai d'une Nouvelle Agrostographie. Imprimerie de Fain, Paris, pp. 1-182.

Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083
Ramanayake, S.M.S.D., Meemaduma, V.N. \& Weerawardene, T.E. (2006) In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris 'Striata'). Scientia Horticulturae 110: 109-113. http://dx.doi.org/10.1016/j.scienta.2006.06.016
Ramanayake, S.M.S.D., Wanniarachchi, W.A.V.R. \& Tennakoon, T.M.A. (2001) Axillary shoot proliferation and in vitro flowering in an adult giant bamboo, Dendrocalamus giganteus Wall. ex Munro. In vitro Cellular and Developmental Biology-Plant 37: 667-671. http://dx.doi.org/10.1007/s11627-001-0116-9
Ramanayake, S.M.S.D. \& Weerawardene, T.E. (2003) Flowering in a bamboo, Meloccana (Bambusoideae: Poaceae). Botanical Journal of the Linnaean Society 143: 287-291.
Ramanayake, S.M.S.D. \& Yakandawala, K. (1995) Some observations in the flowering in Dendrocalamus giganteus and Bambusa vulgaris. In: Gunasena, H.P.M., (Ed.) Multipurpose Tree Species in Sri Lanka. Proceedings of the 6th Regional Workshop on Multipurpose Tree Species In Sri Lanka. MPTS Research Network, Faculty of Agriculture, Peradeniya, Sri Lanka. pp. 116-120.
Ramanayake, S.M.S.D. \& Yakandawala, K. (1998) Incidence of flowering, death and the phenology of the giant bamboo (Dendrocalamus giganteus Wall. Ex Munro). Annals of Botany 82: 779-785.
Rambaut, A. (2001) Se-Al: sequence alignment editor, version v2.0a11. Department of Zoology, University of Oxford. Oxford, U. K.
Rendle, A.B. (1914) Gramineae, Tribus Bambuseae, In: Wilson, H. \& Sargent, C.S. (Eds.) Plantae Wilsonianae; an enumeration of the woody plants collected in western China for the Arnold Arboretum of Harvard University. Publications of the Arnold Arboretum 4, pp. 63-65.
Ronquist, F., Huelsenbeck, J.P. \& van der Mark, P. (2005) MrBayes 3.1 Manual. Draft 26/05/2005. Available at: http://mrbayes.csit.fsu. edu/manual.php (accessed: 25 May 2011).
Schreber, J.C.D. (1789) Carolia Linnéenne Genera Plantarum editio octava post Reichhardianam secunda prioribus Ionge auctior atque emendatior 2 (xxxii), Frankfurt, Germany, 872 pp.
Seethalakshmi, K.K. \& Muktesh Kumar, M.S. (1998) Bamboos of India - a Compendium. Bamboo Information Centre -India, Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, Beijing. Eindhoven, New Delhi, 342 pp.
Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E., Small, R.L. (2005) The tortoise and the hare. II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142-166. http://dx.doi.org/10.3732/ajb.92.1.142
Shaw, J., Lickey, E.B., Schilling, E.E. \& Small, R.L. (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275-288. http://dx.doi.org/10.3732/ajb.94.3.275
Smith, S.A. \& Donoghue, M.J. (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86-89. http://dx.doi.org/10.1126/science. 1163197
Soderstrom, T.R. \& Calderón, C.E. (1979) Ecology and phytosociology of bamboo vegetation. In: Numata, M. (Ed.) Ecology of grasslands and bamboo lands of the world. VEB Gustav Fisher Verlag, Jena, pp. 223-236.
Soderstrom, T.R. \& Ellis, R.P. (1982) Taxonomic status of the endemic South African bamboo, Thamnocalamus tessellatus. Bothalia 14: 53-67.
Soderstrom, T.R. \& Ellis, R.P. (1988) The woody bamboos (Poaceae: Bambuseae) of Sri Lanka: a morphological-anatomical study. Smithsonian Contributions to Botany 72: 1-75.
http://dx.doi.org/10.5479/si. $0081024 x .72$
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
http://dx.doi.org/10.1093/bioinformatics/btl446
Stapleton, C.M.A. (2013) Bergbambos and Oldeania, new genera of African bamboos (Poaceae, Bambusoideae). PhytoKeys 25: 87-103. http://dx.doi.org/10.3897/phytokeys.25.6026
Stapleton, C.M.A., Hodkinson, T.R. \& Ní Chonghaile, G. (2009) Molecular phylogeny of Asian woody bamboos: Review for the Flora of China. Bamboo Science and Culture, Journal of the American Bamboo Society 22: 5-25.
Swofford, D.L. (2002) PAUP*. Phylogenetic analysis using parsimony, ver. 4.0b10. Sunderland: Sinauer Associates.
Taberlet, P., Gielly, L., Pautou, G., \& Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109. http://dx.doi.org/10.1007/bf00037152
Thwaites, G.H.K. (1864) Enumeratio plantarum Zeylaniae: an enumeration of Ceylon plants, with descriptions of the new and littleknown genera and species, observation on their habitats, uses, native names, etc. John Edward printers, London, 483 pp.
Triplett, J.K. \& Clark, L.G. (2010) Phylogeny of the temperate woody bamboos (Poaceae: Bambusoideae) with an emphasis on Arundinaria and allies. Systematic Botany 35: 102-120.
http://dx.doi.org/10.1600/036364410790862678
Triplett, J.K., Oltrogge, K. \& Clark, L.G. (2010) Phylogenetic relationships and natural hybridization among the North American woody bamboos (Poaceae: Bambusoideae: Arundinaria). American Journal of Botany 97: 471-492. http://dx.doi.org/10.3732/ajb. 0900244
Triplett, J.K., Weakley, A.S. \& Clark, L.G. (2006) Hill cane (Arundinaria appalachiana), a new species of bamboo (Poaceae: Bambusoideae) from the southern Appalachian Mountains. Sida 22: 79-95.
Walter, T. (1788) Flora Caroliniana. J. Fraser publishers, London, 263 pp.
Watts, C.D., Fisher, A.E., Shrum, C.D., Newbold, W.L., Hansen, S., Liu, C. \& Kelchner, S.A. (2008) The D4 set: primers that target highly variable intron loops in plant chloroplast genomes. Molecular Ecology Resources 8: 1344-1347. http://dx.doi.org/10.1111/j.1755-0998.2008.02229.x
Wendland, J.C. (1808) Collectio Plantarum 2. Hannover, Germany, 26 pp.
Wilcox, T.P., Zwickl, D.J., Heath, T.A., \& Hillis, D.M. (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution 25: 361-371.
Xue, J.-R. \& Yi, T.-P. (1979) Two new genera of Bambusoideae from S.W. China. Acta Botanica Yunnanica 1: 75-76.
Yamane, K. \& Kawahara, T. (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. American Journal of Botany 92 : 1887-1898. http://dx.doi.org/10.3732/ajb.92.11.1887
Yang, H.-M., Zhang, Y.-X., Yang, J.-B. \& Li, D.-Z. (2013) The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae: Bambusoideae) inferred from four plastid and two nuclear markers. Molecular Phylogenetics and Evolution 68: 340-356. http://dx.doi.org/10.1016/j.ympev.2013.04.002
Yi, T.-P. (1983) New species of Fargesia Franchet and Yushania Keng f. from Tibet. Journal of Bamboo research 2: 18-51.
Yi, T.-P., Shi, J.-Y., Ma, L.-S., Wang, H.-T. \& Yang, L. (2008) Iconographia Bambusoidearum Sinicarum. Science Press, Beijing, 766 pp.
Zeng, C.-X., Zhang, Y.-X., Triplett, J.K., Yang, J.-B. \& Li, D.-Z. (2010) Large multi-locus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence. Molecular Phylogenetics and Evolution 56: 821-839.
http://dx.doi.org/10.1016/j.ympev.2010.03.041
Appendix 1. Alphabetical list of voucher specimens utilized in the cpDNA analysis. All the vouchers are deposited at ISC unless otherwise indicated

| Taxon | Voucher | Source | GenBank accession no. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { ndhF (3' } \\ & \text { end) } \end{aligned}$ | rps16-trnQ | trnC-rpoB | $t r n D-t r n T$ | trnT-trnL |
| Acidosasa edulis | Triplett148 | GenBank | --- | FJ643789 | FJ643882 | FJ643975 | FJ644126 |
| Arundinaria debilis 1 | Attigala123 | Horton Plains, Sri Lanka | KJ638186 | KJ638172 | KJ638200 | KJ638191 | KJ638179 |
| A. debilis2 | Attigala147 | Hayes-Gongala, Sri Lanka | --- | KJ638173 | KJ638201 | KJ638192 | KJ638180 |
| A. densifolia | Attigala126 | Horton Plains, Sri Lanka | KJ638187 | KJ638174 | KJ638197 | KJ638193 | KJ638181 |
| A. floribunda | Attigala139 | Amanawala-Ampane, Sri Lanka | --- | KJ638175 | --- | --- | KJ638182 |
| A. gigantea | Triplett 197 | GenBank | FJ643707 | FJ643794 | FJ643887 | FJ643980 | FJ644131 |
| A. scandens | Attigala166 | Pidurutalagala summit, Sri Lanka | KJ638188 | KJ638176 | KJ638202 | KJ638194 | KJ638183 |
| A. tecta | Triplett 173 | GenBank | FJ643708 | FJ643795 | FJ643888 | FJ643981 | FJ644132 |
| A. walkeriana | Attigala162 | Adam's Peak, Sri Lanka | KJ638189 | KJ638177 | KJ638198 | KJ638195 | KJ638184 |
| Arundinaria sp1 | Attigala146 | Hayes-Gongala, Sri Lanka | KJ638190 | KJ638178 | KJ638199 | KJ638196 | KJ638185 |
| Bambusa vulgaris | Sánchez-Ken 666 | GenBank | FJ643709 | FJ643796 | FJ643889 | FJ643982 | FJ644133 |
| Brachyelytrum erectum | Triplett 199b | GenBank | U22005 | FJ643799 | FJ643892 | FJ643985 | FJ644136 |
| Chimnocalamus montanus | Triplett 261 | GenBank | --- | FJ643807 | FJ643900 | FJ643993 | FJ644144 |
| Chimnocalamus pallens | Triplett 238 | GenBank | FJ643712 | FJ643808 | FJ643901 | FJ643994 | FJ644145 |
| Chusquea spectabilis | Clark 919 | GenBank | AF182355 | FJ751698 | FJ751725 | FJ751752 | --- |
| Fargesia nitida | Triplett 222 | GenBank | --- | FJ643813 | FJ643906 | FJ643999 | FJ644150 |
| Ferrocalamus strictus | Campbell 10 | GenBank | FJ643713 | FJ643815 | FJ643908 | FJ644001 | FJ644152 |
| Gaoligongshania megalothyrsa | Xue 9401 (KUN) | GenBank | --- | GU354641 | GU354481 | GU354801 | GU354961 |
| Guadua angustifolia | Clark \& Londoño 931 | GenBank | FJ643714 | FJ643817 | FJ643910 | FJ644003 | FJ644154 |
| Indocalamus sinicus | Zeng \& Zhang 06081 (KUN) | GenBank | --- | GU354673 | GU354513 | GU354833 | GU354993 |
| Indocalamus wilsonii | Zhang 07088 | GenBank | --- | GU354626 | GU354466 | GU354786 | GU354945 |
| Indosasa sinica | Triplett 267 | GenBank | FJ643715 | FJ643827 | FJ643920 | FJ644013 | FJ644164 |
| Pleioblastus amarus | Zhang 07082 (KUN) | GenBank | --- | FJ643836 | FJ643929 | FJ644022 | FJ644173 |
| Pleioblastus argenteostriatus | Triplett 66 | GenBank | --- | FJ643837 | FJ643930 | FJ644023 | FJ644174 |
| Pleioblastus juxianensis | Triplett 117 | GenBank | --- | FJ643841 | FJ643934 | FJ644027 | FJ644178 |
| Pseudosasa gracilis | Zhang 06107 (KUN) | GenBank | --- | FJ643849 | FJ643942 | FJ644035 | FJ644186 |
| Pseudosasa japonica | Triplett 122 | GenBank | FJ643723 | FJ643851 | FJ643944 | FJ644037 | FJ644188 |
| Sasa longiligulata | Zeng 061213 (KUN) | GenBank | --- | FJ643859 | FJ643952 | FJ644045 | FJ644196 |
| Sasa oshidensis | Triplett 161 | GenBank | --- | FJ643860 | FJ643953 | FJ644046 | FJ644197 |
| Sasa palmata | Triplett 228 (KUN) | GenBank | --- | GU354661 | GU354501 | GU354821 | GU354981 |
| Shibataea chinensis | Triplett 13 | GenBank | --- | FJ643870 | FJ643963 | FJ644056 | FJ644207 |
| Thamnocalamus spathiflorus | Clark 1319 | GenBank | FJ643728 | FJ643876 | FJ643969 | FJ644062 | FJ644213 |
| Bergbambos tessellata | Triplett 202 | GenBank | FJ643729 | FJ643877 | FJ643970 | FJ644063 | FJ644214 |
| Oldeania alpina | Fadenet al. 96/413 (US) | GenBank | FJ643730 | FJ643878 | FJ643971 | FJ644064 | FJ644215 |
| Yushania ambositrensis | Dransfield 1353 | GenBank | --- | FJ643879 | FJ643972 | FJ644065 | FJ644216 |
| Yushania niitakayamensis | March 28 | GenBank | --- | FJ643881 | FJ643974 | FJ644067 | FJ644218 |

