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Rotational motion of molecules in liquids plays an important role in determining the liquids' Nuclear Magnetic
Resonance (NMR) spin-relaxation properties. The traditional theory of NMR spin relaxation assumes that the
reorientational dynamics of molecules in liquids can be described by a continuous-time rotational-diffusion ran-
dom walk with a single rotational-diffusion coefficient. However, recent experimental and theoretical studies
have demonstrated that the simple rotational-diffusion model does not fully capture the rotational dynamics
of molecules in liquids: for example, the reorientation of molecules in liquidwater occurs through a combination
of continuous-time rotational diffusion and discrete, large angular jumps resulting from collective rearrange-
ments of the hydrogen-bond network of water.
In order to obtain further insights into the origin of large angular jumps in the rotational motion of liquid water,
we studied the rotational dynamics of methane - an apolar, non‑hydrogen-bonding liquid with a spherically
symmetric molecule. The reorientational propagator and the ensemble-averaged Legendre polynomial
reorientational functions of liquid methane were analysed using molecular dynamics simulations. On the
femtosecond timescale, the reorientational motion of methane molecules was found to be characterised by
free-rotation gas-like Gaussian decay of the reorientational Legendre polynomials, a result consistent with the
available experimental data for liquid methane. On the long timescale (picoseconds) the decay of the
reorientational Legendre polynomials was exponential, suggestive of a Debye-like continuous-time rotational
diffusion behaviour. However, the ratios of the exponential time constants for different orders of the Legendre
polynomials failed to match the rotational-diffusion model. We discuss the implications of these findings for
the understanding of rotational motion of molecules in hydrogen-bonding and non‑hydrogen-bonding liquids.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Rotational dynamics of molecules in liquids is determined bymicro-
scopic intermolecular interactions. In turn, rotational molecular dynam-
ics determines many macroscopic properties of the liquid, making it an
important component of the linkbetween themolecular and themacro-
scopic scale. Understanding of the reorientational behaviour of mole-
cules in liquids is therefore important not only from the point of view
of molecular physics, but also in many practical contexts. Experimen-
tally, information about the rotational dynamics of molecules in liquids
can be obtained from techniques such as infrared and Raman spectros-
copy [1–4], NMR spin relaxation [5] and neutron scattering [6–9]. Inter-
pretation of these experimental data requires the use of the appropriate
theoretical model that describes how molecular reorientation occurs.
Weerasinghe andK.I.Momot,
ular Liquids, https://doi.org/1
The majority of NMR spin-relaxation literature treats molecular re-
orientation in liquids using theDebyemodel, whichdescribesmolecular
reorientation as a rotational random walk on the surface of a sphere
[10,11]. The solution of the respective diffusion equation is the rota-
tional diffusion propagator, which can be conveniently expressed as
an expansion in terms of spherical harmonics. An extension of the
Debye model to asymmetric molecules was given by Perrin [12].
Thesemodels are particularly suitable for describing the reorientational
motion of large molecules in a homogeneous liquid made up of much
smaller molecules.

However, the applicability of theDebye rotational-diffusionmodel is
seriously questioned in the case of single-componentmolecular liquids.
This is particularly apparent in liquid water, which has a strong
hydrogen-bondingnetwork and therefore represents an extreme exam-
ple of a “strongly-interacting”molecular liquid. The shortcomings of the
Debye model in liquid water have been postulated theoretically over
50 years ago [13] and definitively demonstrated in the early 2000's
[14–16]. Molecular dynamics (MD) simulations, performed both by
Reorientational dynamics ofmolecules in liquidmethane: Amolecular
0.1016/j.molliq.2020.114727
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Table of symbols

ΔS angular part of the 3D Laplacian operator
D Debye rotational diffusion coefficient
Ψ rotational diffusion propagator
Υl,m spherical harmonics
τl = 1/Dl(l + 1)

Debye rotational time constants
Ω0, Ω orientation of a vector fixed relative to the rotatingmol-

ecule at times 0 and t, respectively
k Boltzmann constant
T temperature
η dynamic viscosity of the liquid
r effective hydrodynamic radius of the molecule
Pl l-th-rank Legendre polynomial
α angular displacement
F = kT/I Free-rotation coefficient
I moment of inertia of the molecule
r is the distance between a pair of particles
p(r, r + dr) average number of C–C atom pairs within the

spherical shell r … r + dr
Npairs number of unique pairs of atoms in the system
V total volume of the system
A, B, C Amplitudes of individual Gaussian or exponential decay

components of correlation functions
Dfit, D1fit, D2fit Apparent Debye rotational-diffusion

coefficients
Ffit Apparent free-rotation coefficient
a = F l(l + 1)/2
Apparent Gaussian time constant
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other researchers [14,15,17–19] and by us [20], have shown that the ro-
tational dynamics of water molecules in liquid water fail to follow the
Debye form of the rotational-diffusion propagator characterised by a
single rotational-diffusion coefficient. Rather, rotational reorientation
of water molecules in the long-time regime (0.5–100 ps) was found to
occur via a superposition of two mechanisms: “true” continuous-time
rotational diffusion and large-angle “instantaneous” jumps associated
with collective rearrangements of the hydrogen-bonding network. The
latter mechanism is distinct from the Debye-type rotational diffusion:
when an existing hydrogen bond between two water molecules is bro-
ken and a new bond is formed with another neighbouring water mole-
cule, a water molecule can be found to be rotating by an anomalously
large angle within a very short time interval. Therefore, both diffusion
and hydrogen bonding play a crucial role in the reorientational dynam-
ics of water molecules [21,22]. The presence of the two mechanisms of
molecular reorientation also distorts the ratios of the rotational correla-
tion times associated with different orders of reorientational Legendre
polynomials. In our own MD study of liquid water, we observed that
the reciprocal time constants of Legendre polynomial functions of or-
ders 1–4 (1/τ1, 1/τ2, 1/τ3, 1/τ4) exhibited strongly non-ideal ratios, 1 :
2.0 : 3.0 : 3.8, that significantly deviated from the Debye's theoretical ra-
tios, 1 : 3 : 6 : 10 [20]. This deviation can be used as a measure of how
“far” the liquid is from the pure rotational-diffusion regime.

The opposite extreme is the case of apolar or low-polarity liquids
such as liquid nitrogen or hydrogen sulphide. In these cases the Debye
rotational-diffusionmodel is also known to fail, albeit for reasons oppo-
site to those seen in water: intermolecular interaction in these liquids
can be too weak for them to be in the overdamped regime of Langevin
dynamics that gives rise to pure Brownian motion. Empirical rotational
autocorrelation functions for such liquids have been obtained from
Raman and infrared data [1]. These functions strongly deviated from
the Debye rotational-diffusion model in that the Legendre polynomial
correlation functions did not exhibit an exponential decay. Gordon
2

[23] has theoretically interpreted these results for linear molecules in
simple liquids using the model of free rotation interrupted by
instantaneous collisions. During a collision, the angular momentum of
the molecule is changed but the orientation of the molecule is consid-
ered to remain unchanged. Two limiting cases of Gordons' extended
model have been identified as m-diffusion and j-diffusion. In the m-
diffusion limit, the direction of the angular momentum vector is
randomised at every collision but the magnitude remains unchanged.
In the j-diffusion limit, both the direction and the magnitude of the an-
gular momentum vector are randomised according to the Boltzmann
distribution. The free-rotation model gives the short-time limiting
case of Gordons' model, while the Debye rotational-diffusion model
gives its long-time limiting case. The model was later developed by
McClung [24] to describe the rotational dynamics of spherical-top
molecules.

The key aim of the present study was to use all-atomMolecular Dy-
namics simulations in order to obtain a detailed understanding of the
rotational dynamics of molecules in “weakly-interacting” liquids free
of hydrogen bonding. Previously we have used hydrogen sulphide as a
test molecule to explore the applicability of the Debye model to liquids
that are weakly polar but free of hydrogen-bonding networks [25]. In
the present work, we extend this approach to methane. Besides being
an apolar molecule that does not form hydrogen bonds, methane is
also spherically symmetric. We therefore used this molecule as a test
case to examine the performance of theDebyemodel in a non‑hydrogen
bond-forming liquid consisting of spherical-top molecules [26,27]. We
performed molecular dynamics simulations of liquid methane and
analysed the rotational dynamics of methanemolecules and their com-
patibilitywith theDebyemodel.We tested the capability of three sets of
force field parameters that have been used previously for MD simula-
tions of methane, to accurately reproduce experimentally obtained ro-
tational correlation functions, and used the best-performing set of
force field parameters to study the rotational dynamics of methane in
detail. Using the resulting MD trajectories, we quantified the rotational
correlation functions and the reorientational propagator of methane
within a time range from femtoseconds to picoseconds. The results
demonstrate that, despite the spherical symmetry and the absence of
a hydrogen-bonding network, the Debye model still fails to provide a
comprehensive description of molecular reorientation of methane. In
the short-time regime (tens to hundreds of femtoseconds) the reorien-
tation of methane molecules in our simulations was adequately de-
scribed by the gas-like free-rotation model [6], which is characterised
by Gaussian decay of the rotational Legendre polynomials and consis-
tent with the available experimental data [3,4,6,28]. In the long-time
(picosecond) regime, we have observed an unexpected exponential
decay of the Legendre polynomials suggestive of Debye-like rotational
diffusion. However, the ratio of the time constants of the polynomials
of orders 1 and 2 was close to 1, i.e. very far from the ideal ratio of 1:3.
We discuss these findings in the following sections.

2. Theory

2.1. Debye's rotational diffusion model

Rotational diffusion of molecules in a liquids can be modelled using
the angular part of the three-dimensional diffusion equation:

∂Ψ
∂t

¼ DΔSΨ ð1Þ

where ΔS is the angular part of the 3D Laplacian operator; D is the rota-
tional diffusion coefficient; andΨ is the rotational diffusion propagator
that represents the solution of Eq. (1) and describes the conditional
probability density of molecular orientation at time t.

The solution of the rotational diffusion equation for spherical mole-
cules was given by Debye [10]:



Table 1
Parameters of the three force fields tested in the present study.

Parameter Atom(s) Force field

I [31,35] II [32] III [30,33,34]

ϵab
kB

ðKÞ C–C 33.212 46.8 10.07
H–H 15.097 6.30 2.77
C–H 17.17

σab (Å) C–C 3.50 3.45 4.12
H–H 2.50 2.67 2.64
C–H 3.06

q (e) C −0.24 −0.572 −0.360
H +0.06 +0.143 +0.090

b0 (Å) C–H 1.09 1.087 1.1110
θ0 (deg) H–C–H 107.8 107.8 108.40
kb (KJ mol−1 Å−2) C–H 2845.12 2845.12 2694.5
kθ (KJ mol−1 rad−2) H–C–H 276.14 276.14 297.06
kUB (kcal mol−1 rad−2) H–C–H 5.40

H–C–C 22.53
S0 (Å) H–C–H 1.8020

H–C–C 2.1790
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Ψ Ω,Ω0, tð Þ ¼ ∑
∞

l¼0
∑
l

m¼−l
Υ∗

l,m Ω0ð ÞΥl,m Ωð Þe− t
τl ð2Þ

whereΥl,m are the spherical harmonics; the rotational time constantsτl are
related to the rotational diffusion coefficient: 1

τl
¼ Dl lþ 1ð Þ;Ω is the orien-

tation of a vector fixed relative to the rotating molecule at a given time t;
andΩ0 is the orientation of the same vector at t=0. The rotational diffu-
sion coefficient D is commonly given by the Stokes-Einstein relationship:

D ¼ kT
8πr3η

ð3Þ

whereD is measured in rad2/s, k is the Boltzmann constant, T is the tem-
perature, η is the dynamic viscosity of the liquid and r is the effective hy-
drodynamic radius of the molecule.

As an alternative to the diffusion propagator, rotational correlation
functions based on Legendre polynomials are often used. Consider a
unit-length vector fixed relative to a rotating molecule. The cosine of
the angular displacement (α) of that vector at a given time can be calcu-
lated by taking the scalar product between the corresponding vector at
the initial time t0 = 0 and the current time t. Then the ensemble-
averaged orientational correlation functions <Pl(cos α,t)> (where Pl is
the l-th-rank Legendre polynomial) describe the reorientational dy-
namics of the molecules within the liquid. For l = 1, the function
<P1> is simply the ensemble-averaged cosine of the angular displace-
ment, <cos (α),t)>. When the rotational diffusion propagator is given
by Eq. (2), the time dependence of the ensemble-averaged Legendre
polynomial functions takes the form of an exponential decay:

〈Pl cos α, tð Þ〉 ¼ e−Dl lþ1ð Þt ð4Þ

where the rotational diffusion coefficient D can be approximated by
Eq. (3).

2.2. Gordon's free-rotation model

Experimental data shows that on time scales ~0.1 ps or shorter mo-
lecular reorientation in liquidmethane is gas-like rather than liquid-like
[1,3,29]. Methane is not unique in this respect: gas-like rotational char-
acteristics have been observed in a number of liquids. For example, in-
tensity distributions consistent with free molecular rotation have been
observed in the Raman spectra of liquid oxygen and nitrogen, as well
as methane [29]. The basic assumption of the Debyemodel, that molec-
ular displacement within a time step Δt is represented by a small angu-
lar step Δθ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4DΔt

p
, is not valid for the rotation of molecules in gases,

because in a gas themolecules are able to reorient freely between colli-
sions. Rotational motion of molecules in gases is usually modelled using
the free-rotation model. The ensemble-averaged Legendre-polynomial
functions in the case of gas-like rotation take the following form [3,6]:

〈Pl cos α, tð Þ〉 ¼ 1
2lþ 1

1þ 2∑
l

ξ¼1
1−ξ2t2Df

� �
e−

ξ2 t2F
2

 !
ð5Þ

where F = kT/I is the free-rotation coefficient; k is the Boltzmann con-
stant, T is the temperature and I is the moment of inertia of the mole-
cule. It is worth noting that, despite both appearing in exponential
attenuation functions, the rotational diffusion coefficient D and the
free-rotation coefficient F have different physical meanings: these are
reflected in their different physical units, s−1 and s−2, respectively.

3. Methods

3.1. Selection of force field parameters for MD simulations

Prior to the production MD simulations, a set of MD force field pa-
rameters that is capable of reproducing the key experimental results
3

concerning liquid methane was identified. Three all-atom models of
methane, which have been previously used for liquid phase simulations
[30–34], were tested for their capability to reproduce the experimen-
tally obtained density [36], C–C radial distribution function [37,38],
and rotational correlation functions [1,6] of methane. The molecular
mechanics force fields tested were constructed by substituting the
values of the parameters in the potential energy function used by the
CHARMM force field [30] (Eq. (6)). The values of the three sets of pa-
rameters of methane force fields I, II and III are given in Table 1, and
the detailed methodology of force field validation is given in Supple-
mentary Material sections S2 - S5. The density values, C–C radial distri-
bution functions and rotational Legendre polynomial functions
calculated from the MD trajectories were compared to the correspond-
ing experimental data in order to select the best set of force field param-
eters.

U ¼ ∑
bonds

kb b−b0ð Þ2 þ ∑
angles

kθ θ−θ0ð Þ2 þ ∑
dihedrals

kχ 1− cos nχ−δð Þð Þ

þ ∑
impropers

kimp φ−φ0ð Þ2 þ ∑
Urey−Bradley

kUB S−S0ð Þ2

þ ∑
nonbond

ϵ
Rmin ij

rij

� �12

−2
Rmin ij

rij

� �6
" #

þ qiqj
ϵ1rij

ð6Þ

Of the three parameter sets tested, set III was found to best match
each of the experimentally observed characteristics examined (density,
C–C radial distribution function and rotational correlation functions).
This parameter set was therefore used in all subsequent MD
simulations.

3.2. Calculation of the rotational correlation functions

Production-run simulations of the rotational dynamics of liquid
methane were performed in the NPT ensemble at T = 98 K, p = 1 atm
using the following steps:

(1) The methane box containing 2000 molecules was energy-
minimised for 10,000 steps.

(2) The energy-minimised systemwas heated from 0 K to the target
temperature in the NVT ensemble for 40 ps with a step size of
2 fs. (The 2 fs time step was used only for equilibration.)

(3) The system was further equilibrated in the NPT ensemble at the
target temperature, p = 1 atm for 120 ps in steps of 2 fs.

(4) The output of step (3) was used as the initial configuration of a
MD production run with the length 100 ps and a step size of
1 fs. The output coordinates were saved every 1 fs.
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For the tracking of the rotational dynamics, the unit-length orienta-
tion vector of a C–H bondwas output at a time interval of 1 fs for each of
the 2000 methane molecules in the simulation box. The cosine of the
angular displacement (α) of the C–H bond vector at each time step
was calculated by taking the scalar product of the orientation vector of
the corresponding C–H bond with the orientation vector of the same
bond at the initial time (t0 = 0). The orientational correlation functions
〈Pl(cos(α)), t〉 were then calculated, where Pl is the l-th rank Legendre
polynomial (l = 1–4).

All the MD simulations were performed using NAMD 2.12 software.
A Langevin thermostat with the damping coefficient of 1 ps−1 was used
to control the temperature, and a Langevin piston with a piston period
of 100 fs and decay period of 50 fs was used to control the pressure.
Electrostatic interactions were calculated using the PME method with
the cut-off distance of 10 Å and periodic boundary conditions were ap-
plied in all directions.

3.3. Least-squares fitting of rotational correlation functions

The trajectory of the production-runMD simulation ofmethane per-
formed at T= 98 K, p= 1 atm with parameter set III (see Table 1) was
used to investigate the rotational dynamics ofmethanemolecules in liq-
uid. The trajectory (100 ps long) was divided into 50 sub-trajectories,
each of the length 2 ps. For each sub-trajectory, Legendre polynomial
functions of the angular displacement of a single C–H vector, Pl(cos
(αm(tk))), were sampled for each molecule m at time points tk (in
steps of 1 fs) for l= 1–4. The ensemble-averaged Legendre polynomial
functions of the orders l = 1–4 were then calculated by averaging the
corresponding values of Pl(cos(αm(tk))) over the 2000 molecules. The
Legendre polynomial functions were then again averaged over the 50
sub-trajectories.

For each value of l, the values of <Pl(cos(α),tk) > were converted to
the log scale and the quantity ln(<Pl(cos(α),tk)>) were plotted against
tk. By visually examining the plot, two regions were identified for each
value of l: a “Gaussian” region (quadratic decay of the semilog plot)
and an “exponential” region (linear decay in the semilog plot). The Le-
gendre polynomials Pl were then individually least-squares fitted in
the following ways:

(1) The “exponential” regions for l=1 and2were fitted in the semi-
log coordinates (ln<Pl> vs t) using a linearised fit model with the equa-
tion

f d tð Þ ¼ A−Dfit l lþ 1ð Þt ð7Þ

(2) The “exponential” regions for l=1 and 2 were fitted in the orig-
inal coordinates (<Pl> vs t) using a nonlinear fit model A ⋅ exp [ − Dfitl
(l + 1)t];

(3) The “Gaussian” regions were fitted in the semilog-time-squared
coordinates (ln<Pl> vs t2) using a linearisedfitmodelwith the equation

f g tð Þ ¼ A−at2 ð8Þ

(4) The “Gaussian” regions were fitted in the original coordinates
(<Pl> vs t) using a nonlinear fit model A ⋅ exp [ − at2];

5) The entire curve <Pl> vs t was fitted in the original coordinates
using the nonlinearfitmodelwith twodistinct exponential components
and a Gaussian component:

f tð Þ ¼ A exp −a t2
� �þ B exp −D1fit t

� �þ C exp −D2fit t
� � ð9Þ

The objective of least-squares fitting the Legendre polynomial
curves using Eq. (9) was to test an analytic representation of the overall
shape of the Legendre polynomial decay functions rather than obtain
the quantitative values of the fitted parameters. The origin of the
model given by Eq. (9) is discussed in the Discussion section
(Subsection 5.5). In the Gaussian fitting (steps 3 and 4), in ideal case
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the fitted value of the parameter a equals F l(l + 1)/2, where F = kT/I
is the Gordonmodel's free-rotation coefficient in units ps−2. The appar-
ent value of F was calculated separately for each value of l = 1–4. The
difference between the parameter values obtained from linearised and
nonlinear fits was used as a measure of the true uncertainty of the re-
spective time constants. For l=3 and 4, the fits of the “exponential” re-
gions were considered unreliable because of the vanishingly low
amplitude of the Legendre curves in the respective regions.

3.4. Comparison of NPT and NVE ensembles

In order to ensure that the MD simulation results were not affected
by the temperature and pressure controls used in the NPT ensemble
simulations, a 100 ps long test MD run was performed at 98 K without
temperature or pressure controls (NVE ensemble) using parameter set
III. The Legendre polynomial curves Pl (l = 1–4) were calculated from
this NVE-simulated trajectory in the same way as described in
Sections 3.2 and 3.3. The least-squares fitting procedure described in
Section 3.3 was repeated for ensemble-averaged Legendre polynomial
functions P1 - P4 obtained from the NVE simulations.

3.5. Least-squares fitting of the rotational diffusion propagator

Liquidmethane is isotropic and themethanemolecule has a Td sym-
metry corresponding to spherically symmetric rotational-diffusion and
inertia tensors. Therefore, in the Debye-like reorientational regime
(which is identified in Sections 4 and 5) the reorientational motion of
methane molecules can be described, without loss of generality, by a
uniangular rotational-diffusion propagator Ψ'(α,t) that depends only
on the absolute angular displacement, α [20]. The uniangular
rotational-diffusion propagator Ψ'(α,t) can be obtained by integrating
the three-dimensional rotational-diffusion propagator given by Eq. (2)
with respect to the azimuthal angle ϕ. As the value of α at the initial
time is zero by definition, the uniangular propagator contains a zero
contribution from the spherical harmonics of non-zero orders (m ≠ 0).
The resulting uniangular propagator takes the form [20]

Ψ0 α, tð Þ ¼ 2π∑
∞

l¼0
Υ∗

l,0 0ð ÞΥl,0 αð Þe− t
τl ð10Þ

For each 2-ps sub-trajectory (see above), the orientations of a C–H
vector in each of the 2000 methane molecules were sampled every1 f.
from theMD simulation performed at T=98 K, p=1 atm. The angular
displacements of the intramolecular C–H vectors were calculated for
each time frame (k), each molecule (m) as

αm tkð Þ ¼ arccos nm t0ð Þ∙nm tkð Þ½ � ð11Þ

where nm(ti) is the unit C–H vector of m-th molecule at i-th time. The
distribution of α at time tk was then obtained by grouping the values
of αm(tk) (m=1…2000) into 50 equally sized bins covering the angular
range from 0 to π. Each distributionwas normalised so that its total area
equalled 1. Then the full uniangular rotational diffusion propagator was
constructed by taking the average of the 50 probability distributions cal-
culated from each sub-trajectory.

As the first step of the least-squares fitting process, slices of the
uniangular rotational diffusion propagator Ψ'(α,t) in the temporal di-
mensionwere individually least-squares fittedwith the Debye diffusion
propagator given by Eq. (10) truncated at lmax=50using the Levenberg
−Marquardt method. The Mathematica “NonlinearModelFit” function
was used for this purpose, and the fit was considered converged when
the relative change in the sum of the squares of the residuals between
iterative steps fell below the specified precision goal (10−8). The num-
ber of the diffusion coefficients in the Debye model was then increased
to two, and the slices of Ψ'(α,t) in the temporal dimension were again



Table 2
Reorientational parameters extracted by least-squares fitting of the Debye-like (exponen-
tial) regime of the ensemble-averaged Legendre polynomial functions of NPT and NVE
simulations.

l Range
(ps)

NPT simulation NVE simulation

τl−1 = Dl(l + 1)
(ps−1)

Ratio τl−1 = Dl(l + 1)
(ps−1)

Ratio

1 0.35–2 3.422 ± 0.004 1 3.396 ± 0.002 1
2 0.3–2 4.09 ± 0.02 1.2 4.42 ± 0.02 1.3

Table 3
Reorientational parameters extracted by least-squaresfitting of the Gaussian (short-time)
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least-squares fitted. The quality of the fit was evaluated by visually ex-
amining the distribution of fit residuals.

Fitting of the uniangular rotational-diffusion propagator simulta-
neously in the angular and temporal dimensions was started by includ-
ing only the data points corresponding to long times (1 ps < t< 2 ps) in
the fitting data set. Then the range of data was gradually increased by
including data points corresponding to shorter times in the fitting data
set, and the fitting was repeated while the distribution of the fit resid-
uals was continuously examined. This approach is similar to that we
used for fitting the rotational-diffusion propagator of water molecules
in our earlier work [20]. When the fit residuals started to exhibit sys-
tematic deviations, the fitting process was terminated and the last
range of the data set was considered to be the Debye-model range.
regime of the ensemble-averaged Legendre polynomial functions of NPT and NVE simula-
tions. For comparison, the value of F calculated directly frommethane'smoment of inertia
is 25.32 ps−2.

l Range
(ps)

NPT simulation NVE simulation

a (ps−2) F (ps−2) a (ps−2) F (ps−2)

1 0–0.09 22.83 ± 0.06 22.83 ± 0.06 22.89 ± 0.06 22.89 ± 0.06
2 0–0.075 69.8 ± 0.3 23.3 ± 0.1 70.1 ± 0.3 23.4 ± 0.1
3 0–0.07 141.3 ± 0.6 23.6 ± 0.1 141.8 ± 0.6 23.6 ± 0.1
4 0–0.06 238.7 ± 1.5 23.9 ± 0.2 239.4 ± 1.5 23.9 ± 0.2
4. Results

4.1. Fitting of the ensemble-averaged Legendre polynomial functions

The reorientational Legendre polynomial decay curves of the orders
l=1–4 obtained from the NPT production run, aswell as the respective
least-squares fits, are shown in Fig. 1. The long-t “exponential” (Debye-
like) regions of these curves could only be successfully fitted for l = 1
and 2; the results (based on the nonlinear exponential fits) are pre-
sented in Table 2. The ratios between the values of τl−1 for the orders
l = 1 and 2 were 1: 1.2, which is a very significant deviation from the
ideal ratio of 1: 3.

The short-t “Gaussian” (free gas-like rotation) regions were able to
be successfully fitted for all four curves l = 1–4. The resulting parame-
ters, based on the nonlinearGaussianfits, are given in Table 3. The ratios
between thequadratic coefficients (a) of the orders 1–4were 1: 3.0: 6.1:
Fig. 1. The decays of reorientational Legendre polynomials of the orders l = 1–4 obtained from
identification of the free rotation-like (“Gaussian”) regime and the Debye-like (“exponential”)
The least-squares fitting was performed in the original coordinates, <P > vs t: (b) Non-linear
parameters shown in Table 3; (c) Non-linear least-squares fits of the tails of the decays (“expo
only for the curves l = 1 and 2 due to the preponderance of numerical artifacts in the higher-
same equation but without the third term for l = 3 and 4.
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10.2, while the value of the free-rotation coefficient F was approxi-
mately constant for l = 1–4 (see Table 3: columns 3–6).

4.2. Comparison with the results of NVE simulation

According to the time constants reported in Tables 2 and 3 that were
determined from the trajectories obtained from the NVE simulation, the
the NPT ensemble and their least-squares fits: (a) The plot in semilog coordinates enables
regime. The slanted solid line shows the approximate boundary between the two regimes.
least-squares fits of the initial part of the decays (“Gaussian” regime) used to obtain the
nential” regime) used to obtain the parameters shown in Table 2. This regime was fitted
order polynomials; (d) Whole-curve fits performed using Eq. (9) for l = 1 and 2 and the



Fig. 3. Angular cross sections of the uniangular reorientational propagator of a C–H vector
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relative differences of τ1−1 and τ2−1 from the NPT values are −0.8%
and + 8% respectively. The relative differences from the NPT values of
the constants al (l = 1–4) were + 0.3%, +0.4%, +0.5% and + 0.3%.
With the exception of τ2−1, the differences between the NPT and NVE
values were considered insignificant. The difference between the two
values of τ2−1 could be considered significant compared to the standard
error of the least-squares fitting procedure. However, this difference
was negligible compared to the difference between the observed
value of τ2−1 and that expected from the Debye model (ideal τ2−1 =
3τ1−1). Therefore, the NPT ensemble was deemed suitable for the
simulation.
of methane (Fig. 2) at different times.
4.3. Reorientational propagator

Fig. 2 shows the uniangular reorientational propagator of a C–H vec-
tor of methane molecules calculated from the MD simulation trajectory
at T = 98 K, p = 1 atm. This propagator is analogous to the rotational-
diffusion propagator used in ref. [20]. In the present work we refer to
it as a “reorientational propagator” (as opposed to the “rotational-diffu-
sion propagator” in ref. [20] because Fig. 1 shows that molecular reori-
entation of methane is dominated by the free rotation-like motion
rather than rotational diffusion. However, the physical meaning of the
propagator is completely equivalent to that used in ref. [20] in that it il-
lustrates the evolution of the probability density distribution of the dis-
placement angle α over a certain time range (in this case, from t=0 to
t = 2 ps). The propagator implicitly contains information about all the
Legendre polynomial decay curves and therefore provides a convenient
snapshot illustration of the reorientational dynamics of themolecules. It
is also instrumental in NMR relaxation theory, where it is used for calcu-
lating the spectral densities of motion that lead to the NMR spin-
relaxation rates. Therefore, we present this propagator as a complement
to the plots of the Legendre polynomial decay curves. It can be seen
from Fig. 2 that the distribution of α values becomes uniform by ~1 ps,
indicating an essentially complete loss of orientational memory by
methane molecules by that time.

Fig. 3 illustrates the same propagator as its angular cross sections at
different points in time. It also shows that the orientations of the C–H
vectors reach a uniform distribution in the angular space (from 0 to π)
by the time of ~1 ps. This justified the selection of 2 ps as the length of
sub-trajectories used for the analysis of reorientational dynamics of
methane molecules (see Methods 3.3).
Fig. 2. Three-dimensional view of the uniangular reorientational propagator of methane.
The propagator is defined analogously to the uniangular rotational-diffusion propagator
used in ref. [20] and shows the loss of molecular “orientational memory” with time
(based on the orientation of a single C–H bond). The distribution of angular
displacements becomes practically uniform by about 1 ps, indicating a complete loss of
orientational memory after ~ 1 ps.
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Fig. 4 presents the least-squares fits of theDebyemodel, and the cor-
responding fit residuals, of a representative temporal slice of the
uniangular reorientational propagator. The Figure demonstrates that
the full range of the time points (from t = 0 to t = 2 ps) could not be
successfully fitted either with the Debye model with a single diffusion
coefficient (Eq. (10), the fit shown in Fig. 4a) or with a similar model
with two apparent diffusion coefficients (Fig. 4b). With the basic (sin-
gle-D) Debyemodel, the fit residuals in the short-time regime exhibited
significant systematic deviations (up to 10% of the uniform probability
density, see Fig. 4c). No meaningful improvement in the fit residuals
was observed when the slice was fitted with a Debye-like model with
two diffusion coefficients (see Fig. 4d).

Fig. 5 shows the 3D plot of fit residuals from least-squares fitting of
the long-time subset (t = 0.8 ps – 2 ps) of the data points of the 3-
dimensional uniangular propagator of liquid methane shown in Fig. 2
with the Debye propagator model, Eq. (10). As seen from Fig. 1, the
long-time motion regime is characterised by an exponential decay of
the Legendre polynomial correlation functions, and therefore the
reorientational propagator in this regime can be expected to follow
theDebyemodel. Indeed, the plot in Fig. 5 shows apparently random re-
siduals.When the temporal range offitted datawas increased to include
shorter times, the fit residuals started to exhibit systematic deviations,
indicating that the Debye-like behaviour holds only at long times,
t > 0.8 ps. The value of the rotational diffusion coefficient extracted
from least-squares fit used to produce Fig. 5 was (1.911 ± 0.002) ps−1.
5. Discussion

5.1. Molecular mechanics force field

In MD simulations, the accuracy of the simulated macroscopic prop-
erties critically depends on the suitability of the force field for the given
simulation. This is especially true for simulations ofmolecular liquids. In
MD simulations of liquid water, there is no “universal”water model ca-
pable of reproducing all properties of water equally well, and the choice
of the force field should therefore be made based on the properties ex-
pected to be calculated from the MD simulation [39,40]. This also holds
for simulation of hydrated biopolymers [41–43]. Different force fields,
which include single-site [31,44,45], multiple-site [46] and all-atom
[31–34,47] models, have also been developed and used to simulate
methane.

The present study was limited to all-atom force fields of methane.
We aimed to identify force fields yielding accurate results for
liquid-phase simulations, particularly with respect to reorientational
molecular motion. Three all-atom force fields previously used to simu-
late different properties of methane in the liquid phase were consid-
ered. OPLS-compatible parameter set I [31] has been used to
successfully reproduce the pressure - density relationship and several
transport properties (including translational diffusion coefficient) of
methane under a wide range of conditions. Parameter set II [32] has
been used to reproduce the radial distribution function, translational



Fig. 4. (a) Representative temporal slice of the MD-simulated uniangular reorientational propagator of methane. The slice represents the range of α from 1.51 rad to 1.57 rad; the time
range is the duration of each sub-trajectory described in Methods. The blue dots are the simulated data points; the solid red line is Eq. (10) least-squares fitted with α = 1.54 rad (the
basic Debye model with a single D value); (b) the same slice least-squares fitted with the Debye-like model with two diffusion coefficients; (c) the fit residuals corresponding to Fig. 4
(a); and (d) the fit residuals corresponding to Fig. 4(b).

Fig. 5. Plot of thefit residuals obtained from least-squaresfitting of the long-time part (t=
0.8–2 ps) of the uniangular reorientational propagator of the C–H vectors ofmethanewith
the Debye rotational diffusion propagator model, Eq. (10). The lack of systematic features
in the distribution of the residuals demonstrates the Debye-like nature of the
reorientational molecular motion at long times. This is consistent with the Legendre poly-
nomial correlation functions shown in Fig. 1.
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diffusion coefficient and velocity autocorrelation function of liquid
methane using an OPLS energy function. CHARMM-compatible param-
eter set III [33,34] has been optimised to reproduce the free energies of
hydration of amino acid sidechains and the corresponding free mole-
cules. In the present study, we found that parameter set III showed
the best performance of the three force fields investigated.We attribute
this to the CHARMM energy function being used to calculate the inter-
action energies in that force field, and specifically to two factors
discussed in the following.

Rotational correlation functions of molecules in liquids can be di-
rectly derived from the vibrational spectra of the liquid. Therefore,
when modelling rotational dynamics of molecules in a liquid, it is im-
portant to have an accurate representation of molecular vibrations in
themolecularmechanics forcefield used for the simulation. Inmethane,
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the relevant molecular vibrations include the C–H bond vibrations and
the angle-bending term of the potential energy function. For the latter,
the CHARMM potential function (including parameter set III) includes
a correction known as the Urey-Bradley term, which accounts for the
non-bonded interactions between atoms 1 and 3 of the bond angle
1–2-3 [30]. Although frequently neglected as small, the Urey-Bradley
correction can be used to refine the frequencies of the bond-angle
modes in the vibrational spectra of molecules. Its importance is
emphasised in literature for tetrahedral systems, including methane
[48–51]. Parameter set III in this study outperformed the other two
sets of parameters in reproducing the experimental values of density,
radial distribution function, and the rotational correlation functions of
methane.We hypothesise that part of the reason for this is the inclusion
of the Urey-Bradley term in parameter set III.

It should also be noted that parameter sets I and II have been
optimised to be used with the OPLS force field. Transferring parameters
optimised for one force field to a different force field does not guarantee
a performance similar to the original, whichmay also explain the failure
of parameter sets I and II in the present study. Parameter set III has been
originally optimised to be usedwith theCHARMMforcefield, and there-
fore had an apparent a priori advantage over the other two force fields.
We attribute the superior performance of parameter set III to the pres-
ence of the Urey-Bradley correction term and the fact that this set was
developed specifically as a CHARMM parameter set.

5.2. Reorientational molecular motion in liquids: General considerations

The hallmark of molecular rotational diffusion in liquids is the expo-
nential decay of ensemble-averaged reorientational Legendre polyno-
mial functions. Conversely, free-rotation regime is characterised by
the Gaussian decay of the reorientational Legendre polynomials. In the
present study, we observed both these regimes: exponential decay of
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the reorientational Legendre correlation functions in the long-time re-
gime and Gaussian decay in the short-time regime. We have analysed
these two regimes separately. This simplifies the mathematical expres-
sions involved in the analysis, while providing a good approximation of
the rotational behaviour of methane molecules in the liquid. The main
focus of the present study was to compare the mechanisms underpin-
ning molecular reorientation of spherically symmetric, non‑hydrogen
bonding molecules in liquids with those seen in hydrogen-bonding
liquids.

The present analysis was based on the dynamics of a single intramo-
lecular C–H vector in a givenmethane molecule. As methane is a spher-
ical top with the Td symmetry, we do not expect the findings of an
analysis based on an intramolecular H–H vector to materially differ
from our results. However, a direct confirmation of this in a future in-
vestigation may be beneficial.

5.3. Reorientation of liquid methane in the short-time regime

The ensemble-averaged reorientational Legendre polynomial func-
tions of liquid methane exhibited a Gaussian, rather than exponential,
behaviour in the short-time regime (t < 0.2 ps). This is consistent with
experimental data: dipole correlation functions calculated from infrared
and Raman spectroscopic data [1,4,29,52] andneutron scattering data [6]
have revealed the non-Debye nature of the rotational dynamics of mole-
cules in simple liquids. When the intramolecular component of the lon-
gitudinal spin relaxation rate constant was calculated by assuming the
values of rotational diffusion coefficients given by the Stokes-Einstein re-
lationship, poor agreement with the experimental values was observed
[5]. The non-applicability of the Debye rotational-diffusion model to
the rotational dynamics of methane has been attributed to the Debye
model's inherent assumption of the rotational correlation time being
much longer than the angular momentum correlation time. Under
these conditions the angular momentum of a molecule resets many
times during the time it takes the molecule to reorient through an
angle ~π/2, leading to an “overdamped” rotational-diffusion process.
This assumption does not hold for liquid methane, where the rotational
correlation time and angular momentum correlation time are compara-
ble [24]. Furthermore, Debye model assumes that the rotation of a mol-
ecule occurs through small diffusive angular steps, while infrared and
Raman spectroscopic data suggest that the molecules can reorient
through large angles in liquids as well as gases [29].

The free-rotationmodel iswidely used to describe the reorientation of
molecules in the gas phase [7,29,53,54]. It has beendemonstrated that the
free-rotation model is also capable of explaining the rotational dynamics
of small molecules in certain liquids [29]. Orientational correlation func-
tions based on the free-rotation model have been found to be in good
agreement with the experimentally obtained orientational correlation
functions of methane [3,4,6,28]. For spherical-top molecules, if the rota-
tion is equivalent to that of a rigid rotator, the equation of motion is
given by a Langevin-like equationwith linear velocities replaced by angu-
lar velocities [55]. It can be shown that the time dependence of the distri-
bution of the molecular orientational displacements in this case is given
by a sum of exponential terms (exp[−ξt/I]) when ξt/I >> 1 (where ξ is
the friction coefficient). Conversely, when ξt/I << 1, it is given by a sum
of Gaussians of the type exp.[−J(J + 1)(kT/2I)t2]. In the short-time limit,
therefore, the reorientational motion depends only on the kinetic energy
and the tensor of inertia of themolecule and is independent of the friction
coefficient, thus exhibiting the characteristics of gas-like free rotation
[56,57]. Recent MD-based studies have shown that the spin-rotational
contribution to the experimentally measured 1H NMR spin-relaxation
rates of methane under a wide range of conditions is explained well by
this “kinetic model” in the gas phase and by the “diffusion model” in the
liquid phase [58]. Diffusion model also explains the properties of larger
hydrocarbons confined to nanopores [59].

Our results show that the evolution of the reorientational Legendre-
polynomial functions of methane in the short-time regime (0–0.2 ps)
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can be eithermodelled by the exact free-rotationmodel or approximated
by a Gaussian function. The former is based on an actual physical inter-
pretation of molecular motion, while the latter is a formal mathematical
approximation of the physical model. The apparent Gaussian nature of
the short-time Legendre correlation functions therefore suggests that
in the short-time limit the reorientation of methane molecules is free
rotation-like, in the sense of angular momentum correlation time being
comparable to the reorientational correlation time.

5.4. Reorientation of liquid methane in the long-time regime

Examination of Fig. 1(a) reveals that in the long-time regime
(t > ~0.2 ps) the Legendre polynomial functions exhibit a linear decay
in the semilog coordinates, corresponding to an exponential decay of
Pl(t). The relative amplitude of the exponential component decreases
with the increasing l, and in the case of l = 3 and 4 this part of the
plot is significantly overwhelmed by artifactual features. For this reason,
the least-squares fitting of the exponential regime was performed only
for l = 1 and 2.

The exponential form of the decay in this regime suggests that the
molecular rotation on these time scales is sufficiently hindered to be
diffusion-like. This is supported by the finding that, at t > 0.8 ps, the
reorientational propagator of the methane molecules was consistent
with theDebyemodelwith a single rotational-diffusion coefficient. Hin-
dered molecular reorientation driven by stochastic intermolecular
forces is the fundamental assumption underpinning Debye's
rotational-diffusion model. But interestingly, the ratio of the time con-
stants of the two polynomials τ2−1/τ1−1 is inconsistent with the Debye
model: it is close to 1 rather than the theoretical Debye value of 3. Devi-
ations of the MD-simulated ratio τ2−1/τ1−1 from the Debye value of 3
have been observed in liquid water, where they were attributed to the
presence of discrete large-angle orientational jumps superimposed on
rotational diffusion [14,15,20]. However, the value of the ratio τ2−1/τ1−1

observed in the present study (1.2) is significantly lower than the low-
est possible theoretical value of τ2−1/τ1−1 = 1.8 provided by Ivanov's
jump model [13]. It is also significantly lower than the values observed
in MD simulations of liquid water, which were between 1.95 and 2.1
[15,20]. Therefore, the presence of discrete jumps fails to explain the
discrepancy between the exponential regime seen in Fig. 1 and the
Debye model. Therefore, we refer to this regime as “Debye-like”. This
nomenclature is meant to point out the exponential nature of the
decay Pl(t) and the Debye form of the long-time reorientational propa-
gator, but also to emphasise the deviation from the true Debye model.

At this stage, we are unable to conclusively ascertain the exact na-
ture of the “Debye-like” exponential regime. However, the followingob-
servations appear important:

1) The exponential regime is observed not only in the semilog plots
(Fig. 1(a)) but also in the original coordinates, Pl vs t. Therefore, it
is not an artifact of the semilog coordinate transformation;

2) The amplitude of the exponential component is significantly greater
than statistical noise. It is also greater than the amplitude of the os-
cillatory artifacts seen in Fig. 1(a) and particularly prominent for
l = 3 and 4;

3) A visual comparison of the slopes of the four plots (l=1–4) suggests
that the apparent exponential time constant in this regime is either
independent or nearly independent of the value of l.

We believe that these observations provide important clues into the
nature of the Debye-like regime. Its origin will be the subject of future
research.

5.5. Decay of the Legendre polynomials: whole-curve fitting

Fig. 1(a) clearly shows the existence of two regimes in the decay of
the reorientational Legendre polynomials: the initial Gaussian decay
followed by an exponential decay. However, attempts to fit the
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polynomial P1(t) with a linear combination of a single Gaussian and a
single exponential function were unsuccessful: the best fit using this
model exhibited strong systematic distortions with non-random resid-
uals of up to 5% amplitude (relative to the value of P1 at t = 0). On the
other hand, the model that included a second exponential component
(Eq. (9)) yielded an excellent fit with the relative residuals not exceed-
ing 0.3%. The origin of the second apparent exponential component can
be intuitively explained in terms of the Wiener-Khinchin theorem.
While the following analysis is not absolutely rigorous mathematically,
it provides a qualitative justification of the form of Eq. (9).

Consider a stochastic process, f(t), that is a superposition of a free
rotation-like process, s(t) (characterised by a Gaussian autocorrelation
function and a Gaussian spectral density of motion) and a diffusion-
like process, r(t) (characterised by an exponential autocorrelation func-
tion and a Lorentzian spectral density of motion):

f tð Þ ¼ s tð Þ þ r tð Þ ð12Þ

The Legendre polynomial P(t) is a self-convolution of the of the sto-
chastic function f(t). Since the Fourier transform of a convolution is the
product of the respective Fourier transforms of the functions being con-
voluted, the Fourier transform of P(t), P(ω), equals the power of the
Fourier transform of f(t), F(ω):

P ωð Þ ¼ F2 ωð Þ ð13Þ

According to Eq. (12), F(ω) is a linear combination of a complex
function whose square is a Lorentzian, and another complex function
whose square is a Gaussian. Therefore, the Fourier transform of the Le-
gendre polynomial, P(ω), is a linear combination of a Lorentzian
(Term 1, diffusion-like process), a Gaussian (Term 2, free rotation-like
process), and a function whose envelope can be approximated by a
product of a Lorentzian and a Gaussian function (Term 3). An inverse
Fourier transform of P(ω) enables the reconstruction of the general
form of the original Legendre polynomial temporal function, P(t):
Term 1 of P(ω) leads to an exponential function of time; Term 2 pro-
duces a Gaussian function; and the inverse Fourier transform of Term
3 can be approximated as a convolution between an exponential and a
Gaussian function, which has an exponential form. This last term can
be interpreted as the second exponential term in Eq. (9). Therefore,
the presence of the second exponential component in Eq. (9) does not
imply the presence of a secondDebye-like process in the reorientational
dynamics of methane molecules; rather, it represents a cross-
correlation between the Gaussian and the Debye-like process.

The Legendre polynomials P2 - P4 did not require the second expo-
nential component in the fittingmodel: a linear combination of a single
exponential and a single Gaussian term provided a goodwhole-curve fit
for these polynomials. This can be explained by the small relative ampli-
tude of the Debye-like exponential component in the case of l = 2–4,
resulting in a negligibly small cross-term.

5.6. The role of intermolecular interactions

Intermolecular interactions play an important role in determining
the mechanism and the nature of molecular rotation in liquids. The
lack of free-rotation characteristics in the Raman wings of liquids is in
general attributed to the hindering ofmolecular rotation by intermolec-
ular forces [29], and in this case the dissipative component of intermo-
lecular interactions averages to an isotropic viscous drag given by the
Stokes-Einstein relationship. Due to dipole moments and hydrogen
bonding, the intermolecular interactions are large in liquids such as
water and ammonia; therefore, themolecules in these liquids do not ex-
hibit free rotation. In low-molecularweight hydrocarbons, the relatively
low boiling temperatures and latent heats of vaporisation are indicators
of the relatively smallmagnitude of intermolecular interactions: indeed,
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the intermolecular forces between methane molecules are much
smaller than those between water molecules in the liquid state [29].
Therefore, we suggest that the effect of intermolecular interactions on
the rotational dynamics of methane molecules in liquid methane is rel-
atively small on the short time scales, when themolecular reorientation
is described by the free-rotation model. On longer time scales (~0.5 ps
and up), the cumulativework performed by intermolecular forces even-
tually becomes significant, and as the time increases, the molecules
gradually reach the overdamped, hindered-rotation limit characterised
by the exponential decay of <P1> and <P2>. The presence of the free-
rotation regime explains how methane molecules can achieve a com-
plete loss of orientational memory much faster (~2 ps, see Fig. 3) than
water molecules (~100 ps, see Fig. 3 in ref. [20]). Conversely, in liquid
water the large-angle jumps are only occasional and superimposed on
incremental diffusional steps. In the “hindered” long-time regime, the
reorientation of methane molecules was also significantly faster than
water: the apparent rotational diffusion coefficient of methane was
~2 ps−1 at 98 K, compared to ~0.1 ps−1 at 298 K for water. This can
also be attributed to the relatively low intermolecular interactions be-
tween methane molecules (including the absence of hydrogen bonds),
which in turn results in a significantly lower viscosity than that of water.

6. Conclusions

Although methane is a spherically symmetric, non‑hydrogen-bond-
ingmolecule, the traditional Debyemodel fails to describe the rotational
dynamics of methane molecules in liquid methane. In the long-time
regime, methane molecules do exhibit Debye-like behaviour
characterised by an exponential decay of the reorientational Legendre
polynomials and the rotational-diffusion propagator with a single diffu-
sion coefficient. The latter feature is in contrast to the rotational dynam-
ics of liquid water, where two apparent rotational-diffusion coefficients
were needed to empirically approximate the rotational-diffusion prop-
agator of water molecules. We attribute this difference to the strong
hydrogen-bonding network of liquid water, which is lacking in meth-
ane. As expected from the relatively small magnitude of intermolecular
interactions in liquid methane, the rotational diffusion coefficient of
methane was found to be considerably larger than that of water, corre-
sponding to a much shorter time of orientational randomisation com-
pared to water.

Unexpectedly, the ratios of the Legendre polynomial time constants
in the long-time regimewere inconsistentwith the Debyemodel's ideal
values (1 : 3 : 6 : 10) and, in fact, exhibited no clear dependence on the
order of the Legendre polynomial. This finding requires further
investigation.

In the short-time regime (<0.2 ps) the rotational dynamics of liquid
methane failed to obey the Debye model entirely. In this regime the
reorientational Legendre polynomials exhibited a Gaussian decay, cor-
responding to the gas-like free-rotation model rather than rotational
diffusion.

These results call for further development of NMR spin-relaxation
theory, where molecular reorientation is usually the principal factor
controlling the relaxation of nuclear magnetisation.
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