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ABSTRACT 

The present era of consumerism has substantially redefined the relationship of 
buyer and seller. Heightened consumer expectations have placed more 
responsibility on the manufacturer for the performance of his goods and a 
warranty or a written affirmation of the quality or performance of the product is 
a requirement in most cases. However, little attention has been given by the 
manufacturers for the scientific setting of warranty policies on computers. Thus 
this paper explores a method to estimate warranty periods based on failure time 
of computers. The data pool consists of two data sets, namely repair data and 
sales data from a reputed IT solution company.  For each computer, the 
installation date is taken from sales data and failure data is taken from repair 
data and the failure time is calculated.  A weibull model was found to fit the data 
well. Cumulative probabilities of failures based on this model were taken in to 
account in calculating suitable warranty periods. Graphical goodness of fit 
consisting of probability plots and simultaneous equal precision (EP) confidence 
bands are used to assess the validity of distributional assumptions.  The main 
problem encountered in this study is setting suitable warranty periods. Life times 
of the computers were used as the basic modelling variable. The process of 
solving the problem consists of various statistical methods and techniques. Since 
there are various engineering methods to calculate warranty periods, these 
statistical methods show a different angle. To illustrate a valid warranty period 
certain distributional assumptions were used and those assumptions laid a base 
for solving the problem.  

Key Words: Setting warranty, Graphical goodness of fit, Maximum Likelihood 
Estimation, Equal Precision (EP) confidence bands, Weibull failure-time 
regression model 

 

INTRODUCTION 
As a general rule, producers, without first making an accurate prior assessment 
about the life time of their products, seek to increase their warranty periods over 
and above the industry standard as a means of attracting potential customers. 
However, there should be prior investigation into, and assessment of, the 
patterns of failure of products, together with the causes for failure, if one is to fix 
an accurate and realistic warranty period.  

Sri Lankan Journal of Applied Statistics, Vol. 8, 2007, p. 19-33 



 
 
20

 

A review of the literature indicates one important statistical approach developed 
by Kalbfleisch et al., (1991) which has been used to predict warranty claims. 
Most methods of setting warranty policy were found to be based on engineering 
techniques. This article illustrates the calculation of warranty periods based on 
modeling the number of failures within a given time period using a log-linear 
poisson model. Our method on the other hand models the time to failure using a 
Weibull parametric model.  

The objective of this study was to discover an applicable solution to the warranty 
- setting policy. Poisson responses used by Kalbfleisch et. al. (1991) usually 
concern the occurrence of the number of events within a specified time. A time 
to failure analysis seeks greater power by using the time from purchase of the 
product until failure as the response of interest. Thus we consider a more 
powerful approach of determining warranty based on the lines of Whitehead 
(1997). In addition the previous technique is based on several assumptions which 
may not be valid.  Another advantage of our approach is that the model 
considered can incorporate any number of continuous or categorical explanatory 
variables whereas the reviewed paper only discusses the possibility of including 
explanatory variables as an extension to their work.   

 

MATERIALS AND METHODS 
Data used 

In this paper observations of brand - wise and maintenance - policy wise impact 
on the failure time of computers were carried out, in order to classify the patterns 
of life - time. A three year warranty period is the normal industry standard for 
computers, and an assessment of the merit of this bench mark was carried out to 
clarify the validity of warranty setting.  

 

The Database has been taken from well reputed IT Solution Company and due to 
confidentiality it is unable to expose the name of the company and the brands 
which are used in this study. This paper concentrates on the time to the first 
failure of computers as this is the basis for determining warranty periods, and 
therefore it has eliminated repetitive repairs. Validation of data was carried out 
using a random sample of selected individual entities. Out of 1,752 sales in the 
year 2004, there were 526 failures which could be categorized as first time 
failures. Variables measured are brand, warranty, sales date and repair date. A 
new variable, namely, combination was constructed as follows: brand 1 with 
Warranty (combination1), brand 1 without Warranty (combination 2), brand 2 
with Warranty (combination 3) and brand 2 without Warranty (combination 4). 
Sales data for 2004 has been taken into consideration and all the data on repairs 
which occurred from 2004 to the last date of inspection, which was 25/05/2007, 
has been recorded. 
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Brief description of methods used 

The most widely used measure for reliability of a product is its failure time 
distribution. Let “T” be used to denote a non negative continuous random 
variable describing the failure time of a system. Then the distribution of failure 
time “T” can be characterized by a cumulative distribution function.  Often it is 
possible to model this function using a parametric distribution. The model is 
fitted using the method of maximum likelihood explained in Meeker and 
Escobar (1998). Quantile functions can be calculated based on the fitted model. 
These quantile functions are used to set suitable warranty policies depending on 
the proportion of failures that the company is willing to tolerate during the 
warranty period. 

 

Graphical goodness of fit 

The topic of graphical goodness of fit has been discussed in detail by Gan et al., 
(1991) Meeker and Escobar (1998), and O’Connor (2002). For the purpose of 
checking the distributional assumptions, the plot of failure time ( t ) versus  its 
cumulative distribution function (CDF) denoted by ( )F t  can be linearized by 
finding a transformation of ( )F t  and t  such that the relationship between the 
transformed variables is linear.  In this paper three distributions which are 
commonly found to fit failure time data, namely, the normal, the log-normal and 
the Weibull are considered.  For each distribution the nonparametric estimate of 
ˆ ( )F t  is plotted on the relevant linearized probability scale to asses the 

departures from a straight line and it measures the graphical goodness of fit. This 
is even more useful by plotting, in addition, simultaneous confidence bands. 
Based on the available data; any possible ( )F t  within these bands is, 
statistically, consistent with the data.  

 

Modeling failure data using the Weibull distribution  

This topic has been discussed by Meeker and Escobar (1998). It is convenient to 
use a simple alternative parameterization for the Weibull distribution. This 
alternative parameterization is based on the relationship between the Weibull 
distribution and the smallest extreme value distribution. Then the Log-Location-
Scale Based model for the Weibull distribution is denoted 
by 1log[ ( )] ( )p sevt x pμ σ−= +Φ . In the presence of a single factor with I levels 

this becomes 1
0log[ ( )] ( )p i sevt x pβ β σ−= + +Φ       where   1, 2,.....,i I= . 

This leads to  1
0( ) exp[ ( ) ]p i sevt x pβ β σ−= + +Φ .  Here ( )pt x  is the pth quantile 

of the Weibull distribution for explanatory variable values x . The parameter 0β  
is the intercept and can be interpreted as the  value of  μ  for the  null model 
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where μ  is the intercept and σ  is the scale parameter of the model. iβ  is the 

effect of the  thi  level of the factor 1, 2,.....,i I= . 1 ( )sev p−Φ  is the p  th quantile 
of the smallest extreme value distribution.  

 

Estimating the parameters of the model  

The method of maximum likelihood (ML) is used for estimating the model 
parameters. In this section, the methods of Ebling (2000) are extended to 
estimate parameters for covariate models. Ebeling (2000) goes on to show that 
for an alternatively parameterized Weibull model without covariates given by 

1
p 0log t ( ) ( )sevx pβ φ σ−⎡ ⎤ = +⎣ ⎦  where 0μ β=  the likelihood function is given by 

( )
F C

, ( ) ( )i iL f t S tμ σ =∏ ∏  where F  is the set of failures and C  is the set of 

censored indices. Here the density function is given by 
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Equation (1) has to be solved numerically and θ̂  obtained. Then substituting θ̂  
in equation (2) results in η̂ . This leads to ˆˆ logμ η=  and 1ˆ ˆσ

θ
=  from the 

invariance property of maximum likelihood estimations. 

 

The methods explained above are extended by the current authors to a covariate 
model containing one or more explanatory variables. Maximum likelihood 
estimates for these parameters requires solving a system of non-linear likelihood 
equations.  Now consider the weibull distribution where the logarithm of the 
characteristic life is a linear function of one or more covariates and is given by   
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By taking the log-likelihood and differentiating it with respect to 
; 0,.......,m m Kβ =  and θ  and equating these to zero, the likelihood equations 

are obtained. These equations have to be solved numerically to obtain the 
Maximum likelihood estimates of the parameters of obtaining ˆ 1ˆ,  ˆθ σ

θ
=  can 

be determined as before.  Both continuous and categorical covariates can be 
incorporated in the model using this same principle. 

 

Comparison of models 

Model 1 - Null model is given by 1
0log[ ( )] ( )p sevt x pβ σ−= +Φ . Here there is no 

impact of the factor on the percentile pt . Model 2- Model with a single factor 
with I  levels each level having different intercepts but same scale parameter is 
given by 1

0log[ ( )] ( )p i sevt x pβ β σ−= + +Φ  where 1, 2,.....,i I= . Model 3- I  
separate models for each level of the factor where each level has a different 
intercept and a different scale parameter is given by 

1log[ ( )] ( )p i sev it x pμ σ−= +Φ  where 1, 2,.....,i I= .Here I  separate lines are 
fitted to each combination. The likelihood ratio chi-square test as explained in 
Cox and Hinkley (1978) is used for testing the goodness of fit of the models and 
selecting the most appropriate model. 

 

The residual analysis is carried out using Cox-Snell residuals. These residuals 
have been discussed in Meeker and Escobar (1998) and Collett (1993). For 
testing the Weibull assumption standardized Cox-Snell residuals are plotted on a 
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Weibull probability plot. If the plot is linear through the origin with a slope=1, 
the fitted model is adequate. 

 

 

Setting warranty periods using quantiles of the Weibull model 

The Weibull pth  quantile can be calculated through the general way of location- 
scale based distribution using 1( ) exp[ ( ) ]p i sev it x pμ σ−= +Φ  . This equation 

gives the warranty period ( )pt x  for a proportion p of failures which the 
company is willing to tolerate for values x  of the explanatory variables. 
Location parameter iμ  and scale parameter iσ  are estimated from smallest 
extreme value location-scale based distribution and those parameters are used to 
calculate quantiles. A model with a constant scale parameter and varying 
location parameter suggest different characteristics with respect to mean value of 
the model. Compared to other distributions the Weibull distribution is more 
realistic and addresses the different aspects of failure times. Computer failures 
can be reflected in numerous ways. Therefore using a more realistic and 
appropriate model such as Weibull is essential. 

 

Calculation of probabilities of failures associated with the warranty period  

To asses the worthiness of a given reliability measure, it is required to calculate 
the probability of failure, given the failure time of the component. Since the 
location and scale parameters are known, it is possible to calculate probability 

for a given failure time, by using
log[ ( )]

{ }p i
sev

i

t x
p

μ
σ

−
= Φ .  This equation 

gives the probability of failure associated with a warranty period of ( )pt x  where 
x  gives the values of the explanatory variables. 

RESULTS AND DISCUSSION 

In this section the initial requirement is to identify the distributional form which 
the data follows. For this purpose Normal, Log-Normal and Weibull probability 
plots are plotted with the simultaneous confidence bands. Linearity of plots 
suggest adequacy of the assumed distributional model and points should be well 
inside the confidence bands. A straight line is fitted to each plot to ensure the 
validity of the model. Figure 1 gives the probability plots for the four 
combinations for the Weibull distribution. Plots (a), (b), (c), and (d) correspond 
to the four combinations. Similar plots were drawn for the normal and log-
normal distributions. However these plots are not presented in this paper.  
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Figure 1(a): Weibull Probability Plots for the four combinations  
(Note: llp = log (-log (1- cumulative probability)) and llife = log life) 
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Figure 1(b): Weibull Probability Plots for the four combinations  
(Note: llp = log (-log (1- cumulative probability)) and llife = log life) 
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Figure 1(c): Weibull Probability Plots for the four combinations  
(Note: llp = log (-log (1- cumulative probability)) and llife = log life) 
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Figure 1(d): Weibull Probability Plots for the four combinations  
(Note: llp = log (-log (1- cumulative probability)) and llife = log life) 
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For combinations 2, 3 and 4 indicated by plots (a), (b) and (c), inspection 
showed that the points are closest to a straight line for the Weibull data. Except 
for a very slight departure at the upper extreme end the fitted line lies well 
within the simultaneous confidence bands for the Weibull data while for the 
other distributions the fitted straight lines lie outside the simultaneous 
confidence bands in most cases. These results indicate that the Weibull model 
best fits the data for combination 2, 3 and 4. Since there is only one plotting 
position for combination 1, it is unable to suggest any distribution and 
assumption of Weibull distribution is fair enough with the overall characteristics 
of data. 

 

Model comparison is carried out using the likelihood ratio test.  The values of -
2logL obtained by fitting models 1, 2, 3 are 3076.366, 1628.779 and 1628.255 
respectively. The number of parameters corresponding to each of these models 
are 2,5 and 8 respectively. The value of 2 log( )l− for four separate models for 
the four combinations (model 3) has been calculated as the sum of 2 log( )l−  for 
each model. For four separate models (model 3) 

2 log( ) 25.332 68.047 153.755 1381.121 1628.255l− = + + + =∑  

 

To check whether the combination factor term is significant model 1 is 
compared with model 2 using the likelihood ratio test. Likelihood ratio (LR) test 
statistic= [ ]1 22 log( ) log( ) 3076.366 1628.779 1447.587l l− − = − = on (5-2) = 3 

degree of freedom. As 2
(3),5%1447.587 7.82χ>> =  the LR test statistic is highly 

significant suggesting that at 5 % significance level fitting the null model which 
takes whole data set as one unit is significantly worse than fitting a model with 
combination as a factor. Thus the combination factor effects failure time. Then 
to determine whether the scale parameter can be considered as a constant, model 
2 is compared with model 3 using the likelihood ratio test as,  

[ ]2 32 log( ) log( ) 1628.779 1628.054 0.524l l− − = − =  on 8-5= 3 degree of 
freedom. 

 As 2
(3),5%0.524 7.82χ<< =  this suggest that at 5% significant level fitting one 

model with combination as a factor is not significantly worse than fitting four 
separate models. Thus the scale parameter for all four combinations can be 
considered as a constant. Finally the best fitted model is the model with 
combination as a factor and common scale parameter given by 

1
0log[ ( )] ( )p i sevt x pβ β σ−= + +Φ  1,2,3i = . 
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For the purpose of diagnostic checking standardized Cox-Snell residuals are 
plotted in a Weibull probability plot. Here [ ]log log(1 )p− −  versus log( )pt  

will plot as a straight line if the distribution is Weibull[6]. Here pt ’s are the 
ordered residuals. Figure 2 gives the Weibull probability plot for the Cox-Snell 
residuals. 

l l p

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

l csres

-7 -6 -5 -4 -3 -2 -1 0 1

 
Figure 2: Cox-Snell Weibull probability plot of residuals 

(Note: llp = log (-log (1- cumulative probability))) 
 

According to Figure 2 it can be clearly observed that the plot is linear and within 
the simultaneous confidence bands. The figure indicates that the straight line 
goes through the ( 7, 7)− −  coordinates which is the origin and continues to 
follow a slope=1 straight line. Therefore it suggests the adequacy of the model. 
These results indicate that the Weibull model with combination as a factor and 
common scale parameter can model the failure time data well. Therefore this 



 
 
31

model can be used to estimate quantiles and thereby determine suitable warranty 
periods for each combination of computers. 

 

For the best model which is the model with combination as a factor, the 
parametric estimates were iβ  ; i=0,1,2,3 are 6.09(0.048), 1.776(0.477), -
0.045(0.216) and 4.936(0.334) respectively. The numbers in brackets are the 
respective standard errors. The constraint used by SAS PROC Lifereg is 4 0β = . 
The parameter estimate (standard error) of  σ  is 0.941(0.038). Here 
combination 4 is taken as the base combination and the other combinations are 
described compared to combination 4. Here it can be seen that the log of 
percentile of combination 4 are given by 1log[ ( )] 6.09 0.941 ( )p sevt x p−= + ×Φ . 

1 1.766β = (>0) suggests that the thp  quantile of combination 1 is greater than 

the thp  percentile of combination 4 for all 0 1p< < . The thp  quantile of 
combination2 (<0) is less than that of combination 4 and most importantly 
combination 3 gives the highest percentiles compared to other combinations. 
Also 3 1 4 2β β β β> > >  indicates a fair guideline of the reliability of the 
computers. It is difficult to notice a significant difference between combination 2 
and 4 with respect to reliability. The parameter estimates indicate that 
combination 3 is the best and combination 2 is the worst with respect to 
reliability.   

 

Percentiles of different combinations of computers were calculated using  
1

0( ) exp ( )p i sevt x pβ β σ−⎡ ⎤= + +Φ⎣ ⎦  . These percentiles illustrate the difference 

between the percentiles of life times of different combinations. Here high 
reliability of combination 3 was evident and it indicated a clear difference from 
the other combinations. Combination 1 comes as the second best. Assuming that 
the sales company will be willing to accommodate a 5% failure rate, the 
following warranty periods can be suggested for each combination of computers. 
A 6-month warranty for combination 1, a 1 month warranty for combination 2 
and combination 4 and a 10 year warranty for combination 3. For 10,000 
computers only 485 failures were recorded for combination 3 and this indicates 
the high reliability of this combination compared to others. This outcome 
suggests that combination 3 is very advanced. This may be due to the new 
technology, research and development process and high level of care in the 
design phase of this combination. Since the normal industry standard for a 
computer warranty is a three year period, quantification of the percentage of 
failures in three years would be very helpful for the top management of the 
company in the process of decision making. Thus the percentage of failures 
within three years for each combination was calculated. Of the four 
combinations, only combination 1 and 3 gives warranty. Therefore it is 
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meaningful only to interpret these two combinations with respect to the industry 
norm. The calculations clearly showed that the failure probability of 
combination 3 is very low compared to the combination 1 for a three year 
warranty period.  Results suggest that only 140 failures will occur in 
combination 3 out of 10000 computers while 3280 failures will occurred in 
combination 1. This clearly implies the reliability of combination 3 computers. 
According to the results obtained we can recommend extending the warranty 
period for combination 3 and reducing the warranty period for combination 1. 

 

CONCLUSION 
 

The results indicate that the computers which have no warranty tend to fail more 
frequently compared to computers which have warranty. This may be due to the 
lack of care that is given to the computers which have no warranty periods and 
lack of continuous monitoring and maintenance that warranty computers 
experience.  

It is seen that the Weibull model best fits the data for combination 2, 3 and 4. 
Since there is only one plotting position for combination 1 it is unable to suggest 
any distribution and assumption of Weibull distribution is fair enough with the 
overall characteristics of data. The brand and warranty combination is an 
important factor of the defined model. Finally 1

0log[ ( )] ( )p i sevt x pβ β σ−= + +Φ  

where iβ  is the effect of the thi  combination 0β  is the intercept of the null 
model and σ  is the common scale parameter was selected as the best model. 
Although overall results suggest the Weibull model as the best, a slight departure 
at the upper extreme for combination 4 can be observed. The EP method of 
simultaneous confidence bands clearly captures that departure. This study 
focuses on determining methods of calculating warranty periods for different 
combinations of personal computers and suggests optimized warranty periods 
that will benefit the business organization. In the decision of purchasing a 
computer warranty period plays a major role. Therefore great level of care is 
given to the reliability of computers in the design and manufacturing process. 
Reliability of a computer is very much dependent on the technology, brand, and 
ability to adapt to various environments etc. Therefore decision of warranty 
should be taken with a great level of consideration about the above mentioned 
factors. This paper concentrates on the time to the first failure of computers, and 
it has therefore eliminated repetitive repairs. It can be concluded that higher the 
level of technology and care given higher the reliability of computers.  

In the process of deciding on warranty periods, the fitted model and general idea 
of market concern is essential. Since industrial norm for computer warranty is 
three years, combination 3 can be further analyzed to check whether the 
warranty period can be extended. By comparing the economic benefit and the 
loss with respect to the decision of extending the warranty period it will be 
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possible to determine how best to implement this idea. According to this study 
we can confidently suggest to increase the warranty period for combination 3.  

Overall, it was possible to conclude that the Weibull model with combination as 
a factor and common scale parameter can provide a substantial solution to the 
problem of warranty period determination for the different combinations. The 
method of maximum likelihood (ML) is used for estimating the model 
parameters. Ebeling (2000) has described methods for estimating model 
parameters in the absence of covariates. In this paper these methods have been 
extended by the current authors to a covariate model containing one or more 
explanatory variables. 
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