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SUMMARY

In clinical trials with a long period of time between randomization and the primary assessment of the
patient, the same assessments are often undertaken at intermediate times. When an interim analysis is
conducted, in addition to the patients who have completed the primary assessment, there will be those
who have till then undergone only intermediate assessments. The efficiency of the interim analysis can be
increased by the inclusion of data from these additional patients. This paper compares four methods of
increasing information based on model-free estimates of transition probabilities to incorporate intermediate
assessments from patients who have not completed the trial. It is assumed that the observations are binary
and that there is one intermediate assessment. The methods are the score and Wald approaches, each with
the log-odds ratio and probability difference parameterizations. Simulations show that all four approaches
have good properties in moderate to large sample sizes. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many clinical trials there is a long period of time between randomization and the primary
assessment of the patient. Examples include trials of severe head injury, which often use the
Glasgow Outcome Scale at six months post-treatment, and stroke trials, which usually consider the
Barthel Index, Modified Rankin Scale or NIH Stroke Scale at three months [1–4]. Despite the delay
in obtaining assessments, a trial design incorporating interim analyses of the accumulating data
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can be advantageous, as it may reduce the time taken to reach a conclusion regarding the efficacy
of a new treatment relative to a fixed sample size design. Indeed, sequential designs have been
used for stroke trials, for example the ASCLEPIOS [5], RANTTAS [6] and eliprodil [unpublished]
studies. When there is a long period of time between randomization and the primary assessment,
the same assessment is often made at one or more intermediate times. When an interim analysis
is conducted, in addition to the patients who have completed the primary assessment there will be
those who have undergone only intermediate assessments. The efficiency of the interim analysis
can be increased by the inclusion of these additional patients.

Although primary assessments in stroke and head injury trials are ordinal, they are often di-
chotomized. The focus of this paper is on methods for binary outcomes. In subsequent work, we
hope to extend this approach to ordered categorical outcomes, which we realize would be a more
acceptable approach to such trials in practice. Sooriyarachchi et al. [7] present a method for in-
corporating subjects with binary assessments taken at three fixed time points on each subject, with
the third assessment time being the primary one. The primary assessment is predicted for those
subjects with only one or two intermediate assessments using information about the transitions
between successive assessments observed in the trial. There is no model fitted to the successive
assessments; as the primary efficacy analysis concerns the relative treatment effect at the third
assessment time, there is less interest in the earlier time points. Sooriyarachchi et al. derive a
score test for the log-odds ratio based on the real and predicted values of the primary assessment.
Marschner and Becker [8] consider a similar approach to the problem, but with only two time
points. They present the Wald test based on the probability difference parameterization.

In this paper, the results of simulations comparing the properties of four methods for the case
of binary observations taken at two time points are presented. The methods are the score and Wald
approaches, each with the log-odds ratio and probability difference parameterizations, and so they
include the method of [8] and a two-time point version of [7]. The test statistics for the four
methods are presented in Section 2, and their use in a sequential design is described in Section
3. The methods are applied to data from a sequential trial in stroke in Section 4. The simulation
study and its results are presented in Section 5 and, finally, Section 6 contains some concluding
remarks.

2. TEST STATISTICS REPRESENTING TREATMENT EFFECT AND INFORMATION

In this paper, the primary response is the binary outcome at the second assessment time, and the
measure of treatment difference is either the log-odds ratio (�) or the probability difference (�). In
this section, we first present the score and Wald statistics for these two parameters, based only on
binary data from the second assessment. Then we consider the case in which subjects providing
data only from the first assessment are additionally included. We show how the test statistics are
modified to incorporate the predicted outcomes at the second assessment from these additional
patients. Finally, we consider the handling of zero counts in the calculations.

2.1. Test statistics for binary outcomes at the second assessment

For a single binary outcome, the log-odds ratio � is given by

� = log{p1/(1 − p1)} − log{p2/(1 − p2)} (1)
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where p1 and p2 represent the success probabilities on the experimental treatment (T1) and control
treatment (T2), respectively. The score approach consists of calculating the efficient score statistic
(denoted by Z ) and Fisher’s observed information (denoted by V ) for �. These statistics (as given
in Section 3.8.3 of [9]) are

Z (�) = (n2S1 − n1S2)/n and V (�) = (n1n2SF)/n3 (2)

where ni , Si and Fi are the number of patients, successes and failures on treatment Ti , i = 1, 2,
and n = n1 + n2, S = S1 + S2 and F = F1 + F2. The use of score statistics in sequential clinical
trials has been discussed by Whitehead [9].

For the probability difference parameter

� = p1 − p2 (3)

the forms of the test statistics change to

Z (�) = n(n2S1 − n1S2)/(SF) and

V (�) = n{F4S1S2 + S2F2(S1F2 + S2F1) + S4F1F2}/(SF)3
(4)

as can be deduced directly, or from the expressions given in Section 3.6 of [10].
As an alternative to the score statistics, Wald statistics can be used. We set Z = �̂{se(�̂)}−2 and

V ={se(�̂)}−2, where �̂ denotes the maximum likelihood estimate of � and se(�̂) its standard error.
The maximum likelihood estimate of � and its standard error are

�̂ = log(S1/F1) − log(S2/F2) and se(�̂) = (S−1
1 + S−1

2 + F−1
1 + F−1

2 )1/2 (5)

(see, for example, Section 2.3.4 of [11]), from which test statistics, denoted by Z (�)
W and V (�)

W , can
be found. Use of such statistics in a sequential Wald test has been described by Cox [12]. The
maximum likelihood estimate of the probability difference � and its standard error are

�̂= (S1/n1) − (S2/n2) and se(�̂) = {(S1F1)/n31 + (S2F2)/n
3
2}1/2 (6)

(see, for example, Section 2.3 of [11]), from which the statistics Z (�)

W and V (�)

W for a sequential
Wald test can be deduced.

In each of the four methods, Z is an unstandardized statistic, constructed so that in large
samples Z follows the normal distribution with mean �V (or �V ) and variance V . The statistic V
is approximately proportional to the sample size and is a measure of the information in the trial.

2.2. Inclusion of patients with predicted second assessment outcomes

The test statistics will now be derived using data available from the intermediate assessment for
patients who have not yet had their final assessment. Using the notation introduced in [7], the
following data structure is assumed. Patients are randomized between an experimental treatment T1
and a control treatment T2 serially over time, and at time t1 after their recruitment their condition is
assessed and classified as being in either category C1 (satisfactory) or category C2 (unsatisfactory).
Patients then continue in the trial till time t2, when their condition is again assessed as being in
either category C1 or C2. The primary response of interest is whether a patient is in category C1
at time t2, and this will be taken to represent the success of the treatment. Let ni j,g be the number
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of subjects randomized to treatment Tg in category Ci at time t1 and category C j at time t2, and
ni∗,g be the number of subjects randomized to treatment Tg in category Ci at time t1 and no time
t2 assessment, for i , j , g= 1, 2. We let ◦ denote summation over the subscripts 1 and 2, and •
denote summation over the subscripts 1, 2 and ∗ (missing).

The probability that a patient on treatment Tg is in category Ci at t1 and category C j at t2
will be denoted by pi j,g . The conditional probabilities q(1)

i,g = P (category i at t1; Tg) and q(2)
i j,g =

P(categories i at t1 and j at t2| category i at t1; Tg) can also be defined, and it follows that

pi j,g = q(2)
i j,gq

(1)
i,g (7)

for i , j , g= 1, 2. Note that the probability that a patient changes category between the two
assessments is allowed to differ between the two treatment groups. The term Ni j,g will denote the
number of patients on Tg who will eventually have outcome (i, j) when all assessments have been
completed. If some patients do not complete the second assessment, the values Ni j,g will remain
as latent observations. Depending on the pattern of incomplete and complete data available at the
time that an analysis is conducted, the predicted value of Ni j,g , ei j,g , is given by

ei j,g = ni j,g + ni∗,gq
(2)
i j,g (8)

and the covariance of Ni j,g and Ni j ′,g , ci,( j),( j ′),g , is given by

ci,( j),( j ′),g = ni∗,gq
(2)
i j,g� j j ′ − ni∗,gq

(2)
i j,gq

(2)
i j ′,g (9)

where � j j ′ = 1 if j = j ′ and 0 otherwise.
To derive the test statistics, it is convenient to introduce the ‘backwards’ conditional probabilities

r (1)
j,g = P(category j at t2;Tg) and r (2)

i j,g = P(categories i at t1 and j at t2| category j at t2;Tg). It
follows that

pi j,g = r (2)
i j,gr

(1)
j,g (10)

for i, j, g= 1, 2.
Maximum likelihood estimates of the q’s, e’s and r ’s are given by

q̂(1)
i,g = ni•,g/n◦•,g, q̂(2)

i j,g = ni j,g/ni◦,g (11)

êi j,g = ni j,g + ni∗,gq̂
(2)
i j,g (12)

r̂ (1)
1,g = ê◦1,g/ê◦◦,g and r̂ (2)

i j,g = êi j,g/ê◦ j,g (13)

The four methods will now be developed in turn. In a rough order of ascending complexity the
Wald statistics are considered first, and then the score statistics, with the probability difference
version preceding the log-odds ratio in each case.

2.2.1. Wald statistics. For the probability difference parameter, �, where

�= r (1)
1,1 − r (1)

1,2 (14)
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the maximum likelihood estimate, �̂, is given by �̂ = r̂ (1)
1,1 − r̂ (1)

1,2. Reparameterizing the log-

likelihood � ((A1) in Appendix) in terms of �, �, r (2)
11,1, r

(2)
12,1, r

(2)
11,2, r

(2)
12,2, where �= r (1)

1,1 + r (1)
1,2,

the Hessian matrix of second derivatives of � with respect to �, �, r (2)
11,1, r

(2)
12,1, r

(2)
11,2, r

(2)
12,2 in that

order, H(�w), is obtained ((A2) in Appendix). The estimated variance of �̂ is given by minus
the leading element of the inverse of H(�w), replacing the r ’s, e’s and q’s by their maximum
likelihood estimates given in (11)–(13). This estimated variance together with �̂ can be used

to calculate the statistics Z (�)

W and V (�)

W for a sequential Wald test. Marschner and Becker [8]
presented their method in terms of parameters r (1)

1,1, r
(1)
1,2, q

(1)
1,1, q

(1)
1,2, q

(2)
11,1, q

(2)
11,2, which should lead

to the same estimates of � and its variance.
For the log-odds ratio parameter, �, where

� = log{r (1)
1,1/(1 − r (1)

1,1)} − log{r (1)
1,2/(1 − r (1)

1,2)} (15)

the maximum likelihood estimate, �̂, is obtained by replacing r (1)
1,g with r̂ (1)

1,g in equation (15).

The loglikelihood � can be reparameterized in terms of �, �, r (2)
11,1, r

(2)
12,1, r

(2)
11,2, r

(2)
12,2, where � is

the addition of the two log-odds terms in (15) instead of the subtraction. The Hessian matrix
of second derivatives of � with respect to �, �, r (2)

11,1, r
(2)
12,1, r

(2)
11,2, r

(2)
12,2 in that order is given by

H(�w) = H(�w), with wm = r (1)
1,mr

(1)
2,m/2, m = 1, 2.

The estimated variance of �̂ is given by minus the leading element of the inverse of H(�w),
replacing the r ’s, e’s and q’s by their maximum likelihood estimates given in (11)–(13). This
estimated variance together with �̂ can be used to calculate the statistics Z (�)

W and V (�)
W for a

sequential Wald test.

2.2.2. Score statistics. In order to derive the score statistics for �, restricted maximum likelihood
estimates under the null hypothesis H0 : �= 0 must be found. Setting ��/�� = 0 and �= 0, the
common restricted maximum likelihood estimate of r (1)

1,g, g= 1, 2 is given by

r̃ (1)
1,1 = r̃ (1)

1,2 = ẽ◦1,◦/ẽ◦◦,◦ (16)

where ẽ◦1,◦ = ẽ◦1,1 + ẽ◦1,2, and so on. Note that ẽ◦◦,◦ = n◦•,◦. The right-hand side of (16) is the
null expected number of successes, divided by the total number of patients. It follows that the
score statistic is

Z (�) = {n◦•,◦(n◦•,2ẽ◦1,1 − n◦•,1ẽ◦1,2)/(ẽ◦1,◦ẽ◦2,◦)}
In order to compute Z , restricted maximum likelihood estimates of all parameters are required,
and these must satisfy ��/�r (2)

1k,g = 0, so that

r̃ (2)
1 j,g = ẽ1 j,g/ẽ◦ j,g (17)

for g, j = 1, 2. The following iterative scheme is used: (i) the q’s are estimated using their unre-
stricted maximum likelihood estimates given by (11), (ii) the e’s are deduced from equation (12),
(iii) the r ’s are then found using the restricted maximum likelihood equations (16) and (17), (iv)
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the e’s are then found from the r ’s using equations (10), (7) and (12) in turn, and steps (iii) and
(iv) are iterated to a solution.

The Hessian matrix H(�S) has the same structure as for the unrestricted case ((A2) in Appendix).
Fisher’s information, V (�), is given by minus the reciprocal of the leading element of the inverse
of H(�S), replacing the r ’s, e’s and q’s by their restricted maximum likelihood estimates.

In order to derive the score statistics for �, restricted maximum likelihood estimates under the
null hypothesis H0 : � = 0 must be found. Setting ��/��= 0 and � = 0, the common restricted
maximum likelihood estimate of r (1)

1,g, g= 1, 2 is given by (16). It follows that the score statistic is

Z (�) = (n◦•,2ẽ◦1,1 − n◦•,1ẽ◦1,2)/n◦•,◦

The procedure for calculating Z (�) follows that for the calculation of Z (�).
The Hessian matrix H(�S) = H(�S) + Y , where Y is a 6× 6 matrix, with entry y in positions

(1,2) and (2,1), where y is given by

y ={(ẽ◦2,◦ − ẽ◦1,◦)ẽ◦1,◦ẽ◦2,◦/4n2◦•,◦}
2∑

g=1

2∑
j=1

(−1)g−1(−1) j−1{ẽ◦ j,g/ẽ◦ j,◦}

and w1 =w2 = ẽ◦1,◦ẽ◦2,◦/(2n2◦•,◦).
Fisher’s information V (�) is given by minus the reciprocal of the leading element of the inverse

of H(�S), replacing the r ’s, e’s and q’s by their restricted maximum likelihood estimates.

2.2.3. Handling of zero counts in the computations. The handling of zero counts is an important
consideration in the calculation of the test statistics, although Marschner and Becker [8] omitted
to provide any advice on this. If the denominator in any of the expressions (11)–(13) is zero, then
the numerator will be zero too, and the ratio should be set to zero. If both q̂(1)

1,g and q̂(1)
2,g are set

to zero, there are no patients at all on treatment Tg; hence, all four methods are bound to fail.

With regard to the Wald statistics, if r̂ (2)
i j,g = 0, for any i, j, g= 1, 2, then the row and column

relating to r (2)
1 j,g in H(�w) and H(�w) should be removed before computation. If r̂ (1)

j,g = 0, for any
j, g= 1, 2, then the sequential Wald test cannot be implemented. The Wald test can only be used
provided there are both successes and failures in both treatment groups at the second time point.

With regard to the score statistics, once a q term has been set to 0 in the first step of the
iterative scheme, it will remain equal to 0 in subsequent steps. If ẽ◦ j,g = 0, then the algorithm

forces r̃ (2)
1 j,g and r̃ (2)

2 j,g to be 0, so that the final estimate ẽ◦ j,g = 0, and the score statistic can still
be calculated. The score statistic will become non-determinate only if there are no patients in the
analysis. If r̃ (2)

i j,g = 0, for any i, j, g= 1, 2, then the row and column relating to r (2)
1 j,g in H(�S)

and H(�S) should be removed before computation. The score test can be used provided there are
some successes and failures at the second time point irrespective of treatment group, i.e. n◦ j,◦>0
for j = 1, 2.

3. SEQUENTIAL DESIGNS

Two sequential designs based on a boundaries approach are used to illustrate the methodology
and for the simulations used to evaluate its properties. These are the triangular test [9] and the
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O’Brien and Fleming design [13], both of which are commonly used in practice. For each of these,
the design specification is made in terms of the scalar parameter measuring the advantage of the
experimental treatment over the control. Here, the procedures are described in terms of the log-odds
ratio �, although they would apply equally to the probability difference �. Selection of the type I
and II error rates associated with a test of H0: � = 0 vs H1: � �= 0 for a specific alternative value �R
provides the stopping boundaries for the sequential clinical trial. These stopping boundaries may
be presented as a plot of Z against V , for any of the pairs of statistics presented in Section 2. We
let Vmax denote the maximum value of V which lies on the stopping boundary.

The sequential procedure consists of a series of interim analyses, at the kth of which the current
values Zk and Vk of Z and V are compared with the stopping bounds Lk and Uk deduced from
the design specification and the values of V1, . . . , Vk . Figure 1 illustrates this for the triangular
test with Christmas tree boundaries [9]. For the triangular test, the trial continues if Zk ∈ (Lk,Uk)

and Vk<Vmax and is stopped otherwise. The case Zk�Uk and Vk<Vmax corresponds to significant
evidence that the experimental treatment is superior, while the case Zk�Lk and Vk<Vmax may
correspond to significant evidence that the experimental treatment is inferior or to the conclusion
that no significant difference has been found. For the O’Brien and Fleming design Lk =−Uk , and
the trial continues if Vk<Vmax and Zk ∈ (−Uk,Uk) and is stopped otherwise. The case of Zk�Uk
with Vk<Vmax corresponds to significant evidence that the experimental treatment is superior,
while the case Zk�−Uk with Vk<Vmax corresponds to significant evidence that the experimental

Figure 1. Group-sequential analysis using the triangular test of the binary outcome data from the
stroke trial: (a) log-odds ratio—score test using only 90-day data; (b) log-odds ratio—score test using
30-day data as well; (c) probability difference—Wald test using only 90-day data; and (d) probability

difference—Wald test using 30-day data as well.
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treatment is inferior. For either design, if the trial stops with Vk�Vmax, statistical significance
cannot be determined by reference to the stopping boundaries. Once the trial is terminated a
final analysis is undertaken, in which allowance is made for the interim analyses. A p-value and
estimate and confidence interval for the treatment difference can be calculated using, for example,
the methods described in Chapter 5 of Whitehead [9].

After a stopping boundary has been crossed, it is likely that data will continue to be collected.
For example, a final analysis may be conducted when all randomized patients have completed the
second assessment, and thus be based on the outcome at the second assessment. Such an analysis
is referred to as an ‘overrunning analysis’. There is a possibility that the study may stop because
of a statistically significant result, which changes to a non-significant result at the final analysis.
However, Sooriyarachchi et al. [14] have shown that this is likely to be a rare occurrence.

4. APPLICATION TO A SEQUENTIAL TRIAL IN STROKE

We illustrate the new methods using data from an international multi-centre phase III sequential
clinical trial, comparing eliprodil with placebo for the treatment of patients following acute is-
chaemic stroke in the territory of the middle cerebral artery. Unfortunately, no medical manuscript
on this trial has been published. The primary efficacy outcome was the Barthel Index at 90 days
after randomization, grouped into the six ordered categories: 100 (complete recovery), 85–95,
60–80, 5–55, 0 (vegetative) and −5 (dead). Additional assessments were made at days 15, 30
and 60.

The study design used the triangular test, with a power of 0.9 to detect a log-odds ratio of
0.396, based on a proportional odds assumption, using a two-sided 5 per cent significance level.
Interim analyses were planned after the 90-day assessment was available from 150 patients, and
subsequently after every additional 150 patients. The ‘last observation carried forward’ principle
was used to replace 90-day assessments recorded as missing. The lower boundary of the triangular
test was crossed at the third interim analysis, with 90-day scores from 483 patients, indicating
that the study should be stopped for futility. A final ‘overrunning’ analysis was conducted after
the 875 randomized patients had provided the 90-day assessment. The overrunning analysis was
an intention-to-treat analysis, which adjusted for the three interim analyses performed and gave
an estimate for the log-odds ratio of −0.037 with 95 per cent confidence interval (−0.307, 0.264)
and p= 0.796.

For this paper, we selected the 30-day assessment as the intermediate outcome and considered
the 844 patients out of the 875 randomized who had complete data for both the 30- and 90-day
assessment times. The Barthel Index was dichotomized: �95 (success), <95 (failure). Of the 431
patients in the eliprodil group, 92 (21.3 per cent) and 136 (31.6 per cent) had a successful outcome
at days 30 and 90, respectively, and 91 (21.1 per cent) at both. Of the 413 subjects in the placebo
group, 109 (26.4 per cent) and 141 (34.1 per cent) had a successful outcome at days 30 and 90,
respectively, and 106 (25.7 per cent) at both.

For our illustrations, we set the same design objectives for both the log-odds ratio and the
probability difference parameterizations. To ensure sufficient data for a triangular test boundary to
be crossed, the clinically important treatment difference was chosen to correspond to success rates
of 30 and 41 per cent in the placebo and eliprodil groups, respectively. A power of 90 per cent was
therefore set to detect a log-odds ratio of 0.483 or a probability difference of 0.11. An equivalent
fixed sample size design would require approximately 800 patients. In the reconstructed trials,
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Table I. Data from the stroke trial.

12 July 1994 7 February 1995 29 June 1995 17 November 1995

Elip Plac Total Elip Plac Total Elip Plac Total Elip Plac Total

(1,1) 9 16 25 31 32 63 48 45 93 58 67 125
(2,1) 7 3 10 15 9 24 23 16 39 33 26 59
(1,2) 1 0 1 1 1 2 1 1 2 1 2 3
(2,2) 56 58 114 104 107 211 163 153 316 207 206 413
(1,*) 7 3 10 6 6 12 6 14 20 16 14 30
(2,*) 12 9 21 19 18 37 15 19 34 21 21 42
(*,*) 9 8 17 12 13 25 18 14 32 23 17 40

Total randomized 101 97 198 188 186 374 274 262 536 359 353 712

At overrunning analysis
(1,1) 55 60 115 80 87 167
(2,1) 30 23 53 38 29 67
(1,2) 1 2 3 1 2 3
(2,2) 188 177 365 240 235 475

Notes: Counts in the row labelled (i, j) give the numbers of subjects with assessments in Category Ci at 30
days and in Category C j at 90 days, for i, j = 1 (success), 2 (failure) or ∗ (missing).

patients were ordered according to their date of randomization, and interim analyses followed the
original planned schedule.

The dichotomized assessments available at 30 and 90 days at each of the four interim analyses
are shown in Table I. The corresponding values of Z and V computed according to the four
methods described in Section 2 are displayed in Table II, using the 90-day assessments only, and
then including the 30-day assessments. The final four rows in Table I and the final two columns
in Table II relate to overrunning analyses. If at an interim analysis a stopping boundary is crossed,
it is imagined that recruitment is stopped on the date of that analysis. The overrunning analysis
is conducted when the 90-day data from all patients who had been randomized at the time of
that interim analysis have been collected, and is based only on 90-day data. Figure 1(a) shows
the results from the interim analyses using log-odds ratio score statistics based only on data from
the 90-day assessment. The lower boundary of the triangular test is crossed at the fourth interim
inspection, when 600 patients provide 90-day data. At this time, 72 patients would have provided
only 30-day data and 40 would have been randomized but not assessed at all. The crossing of the
lower stopping boundary indicates no significant difference between eliprodil and placebo; indeed
there is a slight negative effect. An overrunning analysis conducted using 90-day assessments from
all 712 randomized patients gives an estimate for the log-odds ratio of 0.097 with 95 per cent
confidence interval (−0.256, 0.493) and p= 0.603.

Reanalyses are now presented based on the same data, but include 30-day assessments for those
patients who had completed the 30-day but not the 90-day assessment. The lower boundary of
the triangular test is crossed at the third interim inspection, when the 90-day assessment for 450
patients and the 30-day assessment for 54 additional patients have been included (Figure 1(b)).
A further 32 patients had been randomized but not yet assessed. An overrunning analysis using
90-day assessments from all 536 randomized patients gives an estimate for the log-odds ratio
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Table II. Test statistics for the stroke trial.

90-day assessments only 90-day + 30-day assessments For overrunning analysis

Date Z V Z V Z V

Log-odds ratio score statistics
12 July 1994 −1.033 6.704 0.197 7.910
7 February 1995 2.210 15.442 2.413 17.071
29 June 1995 2.067 23.274 −0.109 25.860 −0.881 28.821
17 November 1995 −0.693 31.893 0.322 35.474 0.014 39.271

Log-odds ratio Wald statistics
12 July 1994 −1.030 6.670 0.197 7.919
7 February 1995 2.207 15.405 2.410 17.038
29 June 1995 2.064 23.219 −0.109 25.861 −0.881 28.826
17 November 1995 −0.693 31.891 0.322 35.474 0.014 39.271

Probability difference score statistics
12 July 1994 −5.776 208.665 1.038 219.895
7 February 1995 10.733 363.763 11.640 396.955
29 June 1995 9.970 540.583 −0.511 569.307 −4.092 622.524
17 November 1995 −3.261 705.437 1.466 736.558 0.064 806.687

Probability difference Wald statistics
12 July 1994 −5.795 210.163 1.038 219.877
7 February 1995 10.749 364.769 11.650 397.615
29 June 1995 9.990 542.757 −0.511 569.275 −4.091 622.258
17 November 1995 −3.261 705.506 1.466 736.550 0.064 806.688

of 0.016 with 95 per cent confidence interval (−0.368, 0.434) and p= 0.935. Inclusion of the
30-day assessment has led to the same conclusion, with a 25 per cent reduction in sample size.
The calculations for the log-odds ratio parameterization using Wald statistics are very similar.

Figure 1(c) shows the results from the interim analyses using probability difference Wald
statistics based only on the data from the 90-day assessment. Although the design specification is
the same as that for the log-odds ratio, the Z and V values are quite different from those in Figures
1(a) and (b). Using only the 90-day assessment the lower boundary is crossed at the third interim
inspection, and an overrunning analysis using 90-day assessments from all 536 randomized patients
gives an estimate for the probability difference of 0.0084, with 95 per cent confidence interval
(−0.0765, 0.1028) and p= 0.852. Inclusion of the patients with only 30-day data leads to an
increase in V , although the boundary is still crossed at the third interim inspection (Figure 1(d)).
An overrunning analysis shows that in this case addition of the incomplete data makes little
difference: the estimate for the probability difference is 0.0132, with 95 per cent confidence interval
(−0.0732, 0.1077) and p= 0.772. The calculations for the probability difference parameterization
using score statistics are very similar.

In the stroke trial, the number of patients providing data only for the 30-day assessment is
small, ranging from 12 to 21 per cent of the number providing the 90-day assessment. For the
log-odds ratio parameterization, this leads to an increase in V at an interim analysis of between
11 and 18 per cent. For the probability difference parameterization, the increase in V due to
the 30-day assessments lies between 4 and 9 per cent. Estimates of the conditional probabilities
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r (2)
11,1, r

(2)
22,1, r

(2)
11,2, r

(2)
22,2 from the 844 patients with both the 30- and 90-day data were 0.669, 0.997,

0.752 and 0.989, indicating that a failure at time 2 was almost certain to have been a failure at
time 1, and that a success at time 2 would have had a high chance of being a success at time 1.

5. SIMULATION STUDIES

To explore the properties of the four repeated binary methods, two simulation studies were under-
taken.

5.1. Performance in a single analysis

The first study compares the methods in terms of their performance in a single analysis. Two sample
sizes were considered: 50 and 200 patients per treatment group. Three levels of completeness of
data were considered; the proportion of patients providing data at time t2 being set at 0.3, 0.5 and
0.6. For the control treatment, three probabilities of success at time t2 were considered: r

(1)
1,2 = 0.1,

0.5 and 0.8. For simulations under the null hypothesis of no treatment difference, the probabilities
of success at time t2 on the experimental treatment, r (1)

1,1, were set to match the control values. For

the case of 50 patients per group, the alternative hypotheses corresponding to r (1)
1,2 = 0.1, 0.5 and

0.8 were taken to be r (1)
1,1 = 0.345, 0.795 and 0.968, respectively. For the case of 200 patients per

group, the corresponding alternative hypotheses were r (1)
1,1 = 0.213, 0.659 and 0.909, respectively.

These alternatives were chosen to be those which would be detected with power 0.90 if complete
data were available. This value should be borne in mind when evaluating the power achieved using
the incomplete samples. Finally, three probabilities were set for achieving the same outcome at
each of the two assessments, r (2)

11,1 = r (2)
11,2 = r (2)

22,1 = r (2)
22,2 = 0.7, 0.8 and 0.9. These values suggest

that the patient’s category is unlikely to change, as this is the situation most likely to yield an
advantage for the incomplete data. The probabilities of not changing were set to be the same in
the two treatment groups.

For each combination of settings, 10 000 simulations were performed. The Wald test can be
calculated only when there are both successes and failures in both treatment groups at the second
time point. The score test can be calculated provided there are some successes and failures at the
second time point irrespective of the treatment group. Table III shows the proportion of times that
the test statistic Z/

√
V could be calculated and the null hypothesis rejected, that is Z/

√
V�1.96,

under the null hypothesis. The values in this table should be compared with 0.025. For the case
of 50 patients per treatment group and a success rate of 0.1, the score test for the log-odds ratio
for the repeated binary analysis inflates the type I error rate; the inflation factor increases as the
per cent of the patients who provide data at the second time reduces. For all other scenarios the
type I error rate for this test statistic is close to 0.025, with a tendency to be slightly higher. The
score test for the probability difference tends to inflate the type I error rate by a larger amount and
under more scenarios than that for the log-odds ratio. For the case of 50 patients per treatment
group, the Wald test for the probability difference has a low type I error rate when the success
rate is 0.1, but a slightly high type I error rate when the success rate is 0.5 or 0.8. For 200 patients
per group, it gives results close to 0.025 and similar to those for the score test for the log-odds
ratio. The occurrences of a low type I error rate for the Wald test are mainly due to the inability
to calculate the Wald test due to zero successes or failures in one of the treatment groups at the
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second timepoint (Table III). The Wald test for the log-odds ratio has a low type I error rate for
the case of 50 patients per treatment group and a success rate of 0.1 or 0.8.

Table IV shows the proportion rejecting the null hypothesis under the alternative hypothesis. For
the smaller sample size of 50 patients per treatment, the score test for the probability difference
tends to have the highest power out of all four tests, although for the larger sample size of 200
patients per treatment it is similar to the score test for the log-odds ratio. The Wald test for the
log-odds ratio generally has the lowest power out of the four tests. The Wald test for the probability
difference and the score test for the log-odds ratio give similar results, except when the success
rate in the control group is 0.8 with 50 patients per treatment. Compared with the analyses of
patients who have completed the second assessment, the repeated binary approach increases the
power, by about 20 per cent for the scenarios in which there is a probability of 0.9 of the same
outcome at each time point, and 50 or 60 per cent of the patients provide data at the second time
point: when only 30 per cent of the patients provide data at the second time point, the power can
increase by more than 50 per cent.

In summary, both power and type I error rates generally increase in the order: Wald test for
the log-odds ratio, Wald test for the probability difference, score test for the log-odds ratio and
score test for the probability difference. For sample sizes of 200 subjects per treatment arm,
all tests with the exception of the score test for the probability difference have type I error
rates close to the nominal level. For sample sizes of 50 subjects per treatment arm, the type I
error rates are reasonably close to the nominal level for all tests when the success rate is 0.5,
but deviate more from the nominal level as the success rate moves away from 0.5. When the
success rate is 0.1, none of the methods is satisfactory. Generally, type I error rates deviate
more from the nominal level as the percentage of subjects with data at the second time point
reduces.

5.2. Performance within a sequential setting

The second simulation study compares the four methods within a sequential setting. Two sequential
designs were selected, the triangular test and the O’Brien and Fleming design. A two-sided 5 per
cent significance level was selected. For the control treatment, three probabilities of success at time
t2 were considered: r

(1)
1,2 = 0.1, 0.5 and 0.8. Under the null hypothesis of no treatment difference the

probabilities of success at time t2 on the experimental treatment, r (1)
1,1, were set to match the control

values, and under the alternative hypothesis they were set to 0.177, 0.613 and 0.882, respectively.
These alternatives were chosen to be those which would be detected with power 0.90 if complete
data were available from a fixed sample size design with 400 patients per treatment group. This
resulted in three scenarios for each method. Whereas the fixed sample size scenarios in Section 5.1
were chosen to investigate the methods with small sample sizes, the scenarios for the sequential
setting have been chosen to represent the larger sample sizes which might occur in practice. The
specifications for the stopping boundaries for the designs are presented in Table V.

The probabilities of the same outcome at each of the two assessments, r (2)
11,1 = r (2)

11,2 = r (2)
22,1 = r (2)

22,2,

were set to be 0.7, 0.8 and 0.9. Additionally, scenarios with r (2)
11,1 = r (2)

22,1 = 0.7 and r (2)
11,2 = r (2)

22,2 = 0.9
were used to investigate the situation in which the probability of the same outcome is different
in the two treatment groups. These scenarios can be used to assess performance under the null
hypothesis that there is no treatment difference at assessment 2, in the presence of a treatment
difference at assessment 1.
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Table V. Specification of the sequential designs used in the simulations.

Upper boundary Lower boundary

r (1)
1,2 r (1)

1,1 Intercept Slope Intercept Slope Vmax

Triangular test
Log-odds ratio 0.1 0.177 7.438 0.2014 −7.438 0.6042 36.93

0.5 0.613 10.690 0.1401 −10.690 0.4204 76.29
0.8 0.882 7.867 0.1904 −7.867 0.5712 41.32

Probability difference 0.1 0.177 63.72 0.02351 −63.72 0.07052 2711
0.5 0.613 43.52 0.03442 −43.52 0.10326 1264
0.8 0.882 60.02 0.02496 −60.02 0.07487 2405

O’Brien and Fleming test
Log-odds ratio 0.1 0.177 11.249 0 −11.249 0 25.19

0.5 0.613 16.167 0 −16.167 0 52.03
0.8 0.882 11.898 0 −11.898 0 28.18

Probability difference 0.1 0.177 96.38 0 −96.38 0 1849
0.5 0.613 65.81 0 −65.81 0 862
0.8 0.882 90.77 0 −90.77 0 1640

The recruitment rate to the study was fixed at 50 patients per month, and the two assessment
time points were 1 and 3 months. Interim analyses were undertaken 6 months after the first patient
was randomized, and then every 3 months until a boundary was crossed. Of the 300 (450) patients
randomized at the first (second) interim analysis, 150 (300) would provide data from the second
assessment, and similarly at later analyses. At each interim analysis 100 patients would provide
data from the first assessment only and a further 50 would have been randomized, but not been
assessed.

For each scenario, 10 000 simulations were performed. Table VI shows the proportion of times
that an upper stopping boundary was crossed under the null hypothesis: the values in this table
should be compared with 0.025. All four methods maintain a type I error rate of about 0.025. The
better performance of the tests in these simulations relative to those in Section 5.1 is likely to be
due both to the larger sample sizes and to the way in which sequential tests overcome some of the
discreteness problems inherent in fixed sample tests concerning binary data which can yield only
a limited set of test statistic values. Accurate type I errors appear to be maintained when there is
a treatment difference at time t1, but not at time t2. Table VI also shows the average number of
patients randomized at the point when a stopping boundary is crossed under the null hypothesis.
It can be seen that when the success probability is 0.5, the average sample sizes are similar across
all four methods. However, when the success probability is 0.1, sample sizes are larger for the
log-odds ratio parameterization, and when it is 0.8 they are larger for the probability difference
parameterization. This is because the sample size for the log-odds ratio is approximately equal to
4V/{r(1 − r)}, where r = (r (1)

1,1 + r (1)
1,2)/2, whereas the sample size for the probability difference

is approximately equal to 4V {r(1 − r)}. If r under the null hypothesis moves further away from
0.5 than r under the alternative hypothesis, then sample sizes will be larger for the log-odds ratio
parameterization. If r under the null hypothesis moves closer to 0.5 than r under the alternative
hypothesis, then sample sizes will be larger for the probability difference parameterization. The
triangular test is used if it is desirable to stop early under the null hypothesis for futility. Sample
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size reductions of up to about 10 per cent can be seen for the triangular test for scenarios in which
there is a probability of 0.9 of the same outcome at each time point. The O’Brien and Fleming
test is used if it is undesirable to stop early under the null hypothesis. Sample size reductions are
smaller for the O’Brien and Fleming test, because under the null hypothesis the likely outcome is
that the vertical boundary at V = Vmax will be crossed.

Table VII shows the proportion of times that an upper stopping boundary was crossed under
the alternative hypothesis: the values in this table should be compared with 0.9. All tests maintain
power for all scenarios, including the cases in which the treatment difference at time t1 is not the
same as that at time t2. Average sample sizes under the alternative hypothesis are also shown.
These show comparable sample sizes across all four methods, as expected. Sample size reductions
due to the incorporation of 30-day data of up to about 7 per cent can be seen.

6. DISCUSSION

For interim analyses of clinical trials with long patient follow-up before the primary assessment,
inclusion of intermediate assessments from patients still being followed up makes efficient use of
the available data. In this paper, we have investigated the properties of four methods for the case
of binary observations taken at two time points. All four methods estimate transition probabilities
from the data collected in the trial, and none assume a model linking the two assessments.

Comparisons of the four methods in the analysis of a single dataset show that both power and
type I error rates generally increase in the order: Wald test for the log-odds ratio, Wald test for the
probability difference, score test for the log-odds ratio and score test for the probability difference.
For sample sizes of 200 subjects per treatment arm, all tests with the exception of the score test
for the probability difference have type I error rates close to the nominal level. However, for the
smaller sample size of 50 subjects per treatment arm, the type I error rate deviates further from
the nominal level as the success rate moves away from 0.5: the score tests tend to have an inflated
type I error rate, whereas the Wald tests have too low a type I error rate. Generally, type I error
rates deviate more from the nominal level as the percentage of subjects with data at the second
time point reduces. One advantage of the score test over the Wald test is that it can be calculated
provided that there are both successes and failures at the second time point, irrespective of the
treatment group: the Wald test requires both successes and failures in each treatment group at
the second time point. Consequently, when success rates are close to 0 or 1 in one or both of the
treatment arms and the sample size is small, there will be more occasions when the Wald test
cannot be calculated. In the sequential settings, all four tests demonstrated good properties, even
with low success probabilities, although sample sizes were quite large.

In the stroke trial, the number of patients providing data for the 30-day assessment but not the
90-day assessment was small, lying between 12 and 21 per cent of the number providing the 90-day
assessment. This led to an increase in V at an interim analysis of between 11 and 18 per cent for
the log-odds ratio and between 4 and 9 per cent for the probability difference. In the scenarios
investigated for the sequential settings, the savings in the sample size were modest. Under the
null hypothesis, sample size reductions of up to about 10 per cent were seen for the triangular
test. Sample size reductions were smaller for the O’Brien and Fleming test, because under the
null hypothesis the likely outcome is that the vertical boundary is crossed. Under the alternative
hypothesis there were comparable sample size reductions across all four methods, of up to about
7 per cent. The magnitude of the sample size reduction depends on the number of patients who
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have completed assessment 1 but not yet reached assessment 2. With expected sample sizes of
600, only 100 (17 per cent) of the patients would have been in this category. Thus, larger savings
in sample size might be expected if this proportion is higher.

For a sequential clinical trial, the expected sample sizes under the null hypothesis are dependent
on the choice of the log-odds ratio or the probability difference, and on the average success rate
across the two treatment groups. If the average success rate under the null hypothesis moves further
away from 0.5 than it does when under the alternative hypothesis, then sample sizes will be larger
for the log-odds ratio parameterization. If the average success rate under the null hypothesis moves
closer to 0.5 than it does under the alternative hypothesis, then sample sizes will be larger for the
probability difference parameterization. On the other hand, the expected sample sizes under the
alternative hypothesis are similar for the two parameterizations.

Programs written in C to calculate the Z and V statistics for the four methods for an individual
time point are available from the authors. In the case where there are no zeros in the first four rows
in Table III, the Wald statistics may also be obtained using SAS PROC NLMIXED, by specifying
the log-likelihood in the form of equation (A1) in the Appendix, and re-expressing r (1)

1,1 and r (1)
1,2

in terms of � and � for the probability difference or � and � for the log-odds ratio.
The methods described in this paper can be extended to include adjustment for categorical

covariates, using the approach of Chapter 7.2 of [9]. To achieve this, the statistics Z and V are
computed separately for each stratum created by the combination of covariate values, and then
the Z ’s are summed and the V ’s are summed to provide the overall Z and V values. Also, the
extension to ordered categorical data could be considered, in which the treatment difference at the
primary assessment was expressed as an odds ratio from a proportional odds model.

APPENDIX

In order to incorporate the intermediate assessment from patients who have not yet had their final
assessment, we express the log-likelihood � in terms of the ‘backwards’ conditional probabilities
r (1)
j,g and r (2)

i j,g as follows:

� =
2∑

g=1

2∑
i=1

2∑
j=1

ni j,g log(r
(2)
i j,gr

(1)
j,g) +

2∑
g=1

2∑
i=1

ni∗,g log(r
(2)
i1,gr

(1)
1,g + r (2)

i2,gr
(1)
2,g) (A1)

If H is the Hessian matrix of second derivatives of � with respect to the six r terms in the order
r (2)
11,1, r

(2)
12,1, r

(1)
1,1, r

(2)
11,2, r

(2)
12,2, r

(1)
1,2, then H is a 6× 6 block diagonal matrix, where each block is a

3× 3 matrix of the form
⎛
⎜⎝
a1m bm c1m

bm a2m c2m

c1m c2m dm

⎞
⎟⎠

where

akm = −
2∑

i=1
{eik,m/(r (2)

ik,m)2} +
2∑

i=1
{ci,(k),(k),m/(r (2)

ik,m)2}
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bm =
2∑

i=1
{ci,(1),(2),m/(r (2)

i1,mr
(2)
i2,m)}

ckm =
2∑

i=1

2∑
j ′=1

{(−1)i−1(−1) j
′−1ci,(k),( j ′),m/(r (1)

j ′,mr
(2)
ik,m)}

and

dm =−
2∑
j=1

{e◦ j,m/(r (1)
j,m)2} +

2∑
j=1

2∑
j ′=1

{(−1) j− j ′c◦,( j),( j ′),m/(r (1)
j,mr

(1)
j ′,m)}

for k,m = 1, 2.
For the probability difference parameter �, where

� = r (1)
1,1 − r (1)

1,2

the log-likelihood � can be reparameterized in terms of �, �, r (2)
11,1, r

(2)
12,1, r

(2)
11,2, r

(2)
12,2, where

� = r (1)
1,1 + r (1)

1,2, and H(�w), the Hessian matrix of second derivatives of � with respect to �,

�, r (2)
11,1, r

(2)
12,1, r

(2)
11,2, r

(2)
12,2 in that order, is given by

H(�w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w2
1d1 + w2

2d2 w2
1d1 − w2

2d2 w1c11 w1c21 −w2c12 −w2c22

w2
1d1 − w2

2d2 w2
1d1 + w2

2d2 w1c11 w1c21 w2c12 w2c22

w1c11 w1c11 a11 b1 0 0

w1c21 w1c21 b1 a21 0 0

−w2c12 w2c12 0 0 a12 b2

−w2c22 w2c22 0 0 b2 a22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

with wm = 0.5, m = 1, 2.
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