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SUMMARY

In this paper a robust method is developed for the analysis of data consisting of repeated binary
observations taken at up to three �xed time points on each subject. The primary objective is to compare
outcomes at the last time point, using earlier observations to predict this for subjects with incomplete
records. A score test is derived. The method is developed for application to sequential clinical trials,
as at interim analyses there will be many incomplete records occurring in non-informative patterns.
Motivation for the methodology comes from experience with clinical trials in stroke and head injury,
and data from one such trial is used to illustrate the approach. Extensions to more than three time
points and to allow for strati�cation are discussed. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many clinical trials the outcome of therapy cannot be assessed until some considerable
time after randomization. For example, in trials in stroke a follow-up of three months is
felt necessary before clinicians feel able to assess a de�nitive measure of recovery. The
primary endpoint of such studies is usually a measure of functional status three months after
treatment [1]. In trials in severe head injury the minimum follow-up time is usually taken
to be six months, and the Glasgow Outcome Scale six months after treatment is used to
assess the patient’s condition [2]. Despite the length of follow-up felt necessary for individual
patients, there is a need to monitor the accumulating results of studies in conditions as serious
as stroke or head injury with a view to stopping recruitment as soon as it is clear that the
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experimental treatment either does or does not work. Sequential designs have been constructed
for stroke trials based on ordinal measures of functional status at three months [3, 4]. Once
the stopping criterion is reached, recruitment is stopped, but for three months (or in practice
slightly longer) valid assessments of patients already randomized continue to be made. A �nal
‘overrunning analysis’ is performed when all of the data are �nally in [5, 6]. The advantages
of reduction of sample size and trial duration normally associated with sequential designs are
reduced because of this delay. In trials in severe head injury, the longer six months follow-
up means that sequential methods have little opportunity to reduce sample size. In the trial
of eliprodil in severe head injury a sample size review and a safety monitoring procedure
were used in conjunction with a �xed sample design in preference to taking a sequential
approach [7].
This paper describes an approach in which intermediate responses from each patient are

used in interim analyses in addition to the responses that are felt to be de�nitive. In stroke
trials intermediate responses might come from assessments made at day 30 and day 60, prior
to the de�nitive observation at day 90. In head injury the intermediate timings might be days
21 and 90, with the de�nitive response being observed at day 180. For the majority of patients,
the outcome is set early on. For example, in the trial of eliprodil in severe head injury fewer
than 50 per cent of patients changed their GOS between days 21 and 90, and fewer than 25
per cent changed between days 90 and 180 (Bolland, University of Reading PhD thesis, 2003).
Although it is wise to set day 180 as the de�nitive time point, reasonably accurate forecasts of
the day 180 outcome can be made at interim analyses on the basis of day 21 or 90 data from
patients still undergoing follow-up. Similar considerations apply in stroke trials. The principle
used in this paper is to make such forecasts, basing them only on the data from the trial itself,
and dealing with the experimental and control groups separately. A score test will be derived
directly from the likelihood, and it will be seen that the score statistic is of exactly the same
form as that based only on the de�nitive data except that forecasts replace those de�nitive
responses not yet observed. The score statistic is plotted against Fisher’s information in order
to conduct a sequential test, and the information statistic is reduced appropriately to allow
for using forecast data rather than the real thing. This approach makes sequential designs in
stroke more e�cient and makes possible their use in head injury.
In this paper the case of binary outcomes assessed at three time points will be considered.

Extension to more time points should be straightforward but complicated, while extension
to ordinal data with more than two outcome categories might prove more challenging. In
practice outcome scales used in stroke and head injury trials are often dichotomized, and
in that case the methods developed here could be applied directly. However, we are not
advocating dichotomization as it is an ine�cient use of data. Instead, we see this work as
a step towards methodology that will also deal with true ordinal outcomes. The settings of
stroke and severe head injury will continue to be used as a background to the development of
methods, although we are aware that the approach might be useful in other therapeutic areas
such as Alzheimer’s disease, multiple sclerosis or the assessment of quality of life following
cancer treatment. The method derived reverts to a sequential Pearson �2-test [8, Section 3.2]
once the data are complete for every patient.
In the next section, we will survey existing approaches that could be used to incorporate

intermediate responses into interim analyses. In Section 3 the principal example of the paper,
a trial in head injury, will be introduced. Section 4 reviews the sequential approach that is
adopted here, as it would be applied to the de�nitive outcomes only, and in Section 5 the
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extensions allowing incorporation of intermediate values are developed. These are applied to
the data in Section 6, and Section 7 is a discussion of the potential and limitations of the
new approach.

2. EXISTING APPROACHES TO THE INCORPORATION
OF INTERMEDIATE OUTCOMES

A generally accepted approach to the sequential analysis of repeated binary or ordinal data
from clinical trials involves the use of longitudinal models. Gange and DeMets [9] suggest the
use of marginal models �tted at each interim analysis using generalized estimating equations,
while Spiessens et al. [10] used the subject-speci�c model of Hedeker and Gibbons [11, 12] for
their interim analyses. The sequential software package EaSt includes the sequential analysis
of longitudinal models as a standard option. However, in her University of Reading PhD thesis
of 2003, Bolland found problems of lack-of-�t when the subject-speci�c model was applied
to stroke and head injury data, and both she and Spiessens et al. [10] have reported serious
di�culties in �tting the model. In short, small changes in the number of quadrature points
used in the numerical integrations can have substantial e�ects on the estimates of parameters.
The marginal model, on the other hand, su�ers from serious di�culties in interpretation [13].
A more fundamental problem in using either of the longitudinal approaches to data analysis

concerns the nature of the model itself. The hypothesis being tested in these models is not
whether there is an advantage in outcome at day 90 in a stroke trial or day 180 in a serious
head injury trial. Instead, the question is whether there is some consistent advantage over
the whole follow-up period, interpreted as a di�erence in intercept or in slope or in both, in
some linear model. In a sense, an average bene�t over the follow-up period is being sought.
A treatment that achieves bene�t sooner, but not necessarily in a greater number of patients,
would come out as successful in such a comparison (although a subsidiary analysis might
show lack-of-�t). In early interim analyses in a sequential setting, the majority of the data
available would consist of intermediate patient assessments, and these would be extrapolated
according to the linear model. Thus better outcomes at day 21 in a head injury trial (say) might
dominate, and appear to imply a consistent advantage. The trial might then be stopped, with
insu�cient data to check the model assumptions, and no prospect of such data being collected.
The severity of this problem is greatest when the follow-up time is long and recruitment
is slow.
In the approach of this paper, no model linking the successive outcomes will be assumed.

Instead, the transitions between them will be estimated from the trial data themselves. Separate
estimation within the two treatment groups will ensure maximum robustness. The underlying
assumption is that it is of little concern how quickly a good recovery was achieved, the
important thing is to achieve it by the time of the de�nitive observation. Thus the method
addresses a question that is fundamentally di�erent from that addressed by the longitudinal
approach, and one that in many cases is more appropriate.
The method described by Marschner and Becker [14] is much closer to the approach

described here. They too seek a robust test, based on minimal assumptions, for comparing the
de�nitive outcome probabilities. The di�erences between their approach and ours are matters
of detail. They parameterize treatment advantage in terms of a probability di�erence, whereas
we use a log-odds ratio. They use a Wald test, whereas we use a score test. Their paper deals
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only with a single intermediate outcome, although it could be generalized to the case of two
or more. Wald tests can be derived for either parameterization and use maximum likelihood
estimates derived under the alternative hypothesis which are easier to compute than the re-
stricted maximum likelihood estimates required for the score test. However, both approaches
involve considerable manipulation in order to derive and evaluate the second derivatives re-
quired to �nd the variance of the test statistic. Nearly all of the material in the appendices
is required to derive a sequential Wald test for this case, although we shall not follow that
through in this paper. Instead, we pursue the score test because there are more situations in
which the Wald test breaks down due to zero counts than is the case for the score test. This
important issue is not discussed in Reference [14].

3. EXAMPLE: A TRIAL IN HEAD INJURY

The work described in this paper has been motivated by experience with neurological trials,
and in particular with trials of treatments for stroke and head injury. In this section the
conduct and results of one particular trial in head injury are described. Unfortunately, no
clinical account of this trial has been published.
Between 1993 and 1996, 452 patients who had su�ered severe head injury were random-

ized in a placebo-controlled evaluation of the non-competitive N-Methyl-D-Aspartate receptor
antagonist, eliprodil. Administration of treatment, intravenously at �rst and then by oral or
naso-gastric tube, lasted for 20 days. The primary objective of the trial was to assess e�-
cacy in terms of improvement of functional status after six months of follow-up. The primary
e�cacy criterion was the score on the Glasgow Outcome Scale (GOS) at 6 months after
randomization. This scale comprises �ve ordered response categories: good recovery (GR),
moderate disability (MD), severe disability (SD), vegetative state (V) and dead (D). For the
primary e�cacy analysis the worst three categories of the GOS were combined into a single
category, and the resulting trichotomy was modelled as ordered categorical data using the
proportional odds regression model [15].
Data from previous studies suggested that the percentage of placebo patients with a 6

month GOS in the GR and MD categories would be 17 and 30 per cent, respectively. For
the conclusion of the trial to be clinically relevant it was necessary for the proportion of
patients having GR or MD to be increased from 47 per cent on placebo to 62 per cent
on eliprodil. This corresponds to a log-odds ratio of 0.61 with, respectively, 27.4 and 34.6
per cent of eliprodil patients in the GR and MD categories. A power of 90 per cent was
set to attain signi�cance at the 5 per cent level (two-sided alternative) for this magnitude of
treatment advantage. Using the sample size formula of Whitehead [16] it was calculated that
400 patients would be required. A planned sample size review was conducted on outcome
data from 93 patients and as a result the sample size was recalculated, stratifying for Glasgow
Coma Scale (GCS) score at day 0 and increased to 450 [17]. The GCS is used as a baseline
assessment of injury severity, the Glasgow Outcome Scale (GOS) cannot be assessed in an
emergency situation.
The primary analysis was on data from 229 patients on eliprodil and 223 on placebo.

In the proportional odds regression analysis adjusting for age, GCS score and geographical
region, the e�ect of treatment was found to be non-signi�cant (p=0:310). The estimate of the
odds ratio on better outcomes was 1.219 for eliprodil relative to placebo with a 95 per cent
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con�dence interval (0.832, 1.785). In this paper, we shall show how patient outcomes at
21 and 90 days can be used with those at 180 days in a sequential reconstruction of the
trial. In doing so, we will sacri�ce the trichotomous outcome and reduce to binary responses
representing good recovery: yes or no. For the binary response the full data give p=0:799,
an estimated odds ratio of 1.052 and a 95 per cent con�dence interval of (0.715,1.547). In
terms of log-odds ratios, for direct comparison with the results presented in Section 6, these
estimates are 0.051 and (−0:335; 0:436), respectively.

4. SEQUENTIAL THEORY

The speci�cation of a sequential clinical trial design is made in terms of a scalar parameter
(�) quantifying the advantage of the experimental treatment (T1) over the control (T2). The
hypothesis H0 : �=0 can be tested using a plot of the score statistic Z against its null variance
V [8]. If �= �R¿0, then the power to achieve signi�cance at the two-sided level � is required
to be (1 − �). A �xed sample design is found setting V equal to V�x = {(w�=2 + w�)=�R}2,
where w� is the upper 100� percentage point of the standard normal distribution function.
Within any family of sequential designs there will be a unique design satisfying the power
requirement. A series of interim analyses is conducted at times following some pre-arranged
plan, at the ith of which the current values Zi and Vi of Z and V will be compared with
stopping bounds ‘i and ui deduced from the design parameters and the values of V1; : : : ; Vi.
The trial continues if Zi ∈ (‘i; ui) and stops otherwise. Usually the Zi¿ui corresponds to signif-
icant evidence that T1 is better than T2, while Zi6‘i indicates either signi�cant evidence that
T1 is worse than T2 or no signi�cant di�erence. Most of the systems for creating sequential
and group sequential designs, including the �-spending approach [18] and stochastic curtail-
ment [19] can be �tted into this framework. The �nal analysis should allow for the interim
analyses [8, 18].
Here score statistics for the sequential analysis of repeated binary responses will be derived

that can be used within any sequential framework: illustrations here will be based on the
triangular test. They can also be used in �xed sample tests to allow for missing observations,
although assumptions concerning the mechanism resulting in data being missing may be harder
to justify.
For a single binary response, probabilities of success on T1 and T2 can be denoted by p1

and p2, respectively. The advantage of E over C can be parameterized by the log-odds ratio
�= log[{p1(1−p2)}={p2(1−p1)}]. When nk patients have been treated on Tk , of whom Sk
have succeeded and Fk have failed (k=1; 2), Z =(n2S1−n1S2)=n and V = n1n2S1S2=n3, where
S= S1 + S2; F =F1 + F2 and n= n1 + n2.

5. INCORPORATION OF INTERMEDIATE DATA

Suppose that the progress of patients is observed at three separate time points, t1, t2 and t3,
the schedule being the same for everyone. At each time point they are classi�ed as being in
category 1 or 2, with category 1 being more desirable. The objective of the study is to assess
whether there is a di�erence between the treatments in terms of the probability of being in
category 1 at time t3. It will be assumed that patients’ records are complete up to their last
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observation. If a patient is in category i at time t1, category j at time t2 and category k at
time t3, then their outcome will be denoted by (i; j; k), where i, j and k can take the values
1, 2 or ∗ (denoting missing).
The number of patients on Tg with outcome (i; j; k) at the interim analysis in question will

be denoted by nijk; g, and the probability of such an outcome by pijk; g, g=1, 2. The symbol
◦ will be used to denote a total over the subscripts 1 and 2, so that pij◦; g=pij1; g+pij2; g and
so on. The term Nijk; g will denote the number of patients on Tg who will eventually have
outcome (i; j; k) when all assessments have been completed. As the records might never be
complete, the values Nijk; g might remain latent observations. The pattern of incomplete and
complete data available when the analysis is actually conducted will be denoted by �. The
predicted value of Nijk; g, eijk; g=E(Nijk; g |�) can be expressed as

eijk; g=
(
nijk; g
pijk; g

+
nij∗; g
pij◦; g

+
ni∗∗; g
pi◦◦; g

)
pijk; g

The parameter of interest, �, is the log-odds ratio for success at the third time point,

�= log{p◦◦1;1=(1− p◦◦1;1)} − log{p◦◦1;2=(1− p◦◦1;2)}
It will be shown below that the score statistic takes the form

Z =(n◦••;2ẽ◦◦1;1 − n◦••;1ẽ◦◦1;2)=n◦••;◦ (1)

where the ẽijk; g are functions of restricted maximum likelihood estimates p̃ijk; g found under
the assumption that �=0 and • denotes a summation over 1, 2 and ∗. When the data are
complete, and all patients provide responses at all three time points, Z will take the form
described in Section 4. Derivation of the form of the statistic V is deferred to the Appendix.
In order to derive equation (1), we start with the log-likelihood, ‘, given by

‘=
2∑
g=1

2∑
i=1

2∑
j=1

2∑
k=1
nijk; g logpijk; g +

2∑
g=1

2∑
i=1

2∑
j=1
nij∗; g logpij◦; g +

2∑
g=1

2∑
i=1
ni∗∗; g logpi◦◦; g (2)

‘Forwards’ conditional probabilities q(1)i; g =P(category i at t1; Tg), q
(2)
ij; g=P(category j at

t2 | category i at t1; Tg) and q(3)ijk; g=P(category k at t3 | categories i at t1 and j at t2; Tg) can
be de�ned, and it follows that

pijk; g= q
(3)
ijk; g q

(2)
ij; gq

(1)
i; g ; i; j; k; g=1; 2 (3)

Expressed in terms of the q’s, the log likelihood becomes

‘=
2∑
g=1

2∑
i=1

2∑
j=1

2∑
k=1
nijk; g log q

(3)
ijk; g +

2∑
g=1

2∑
i=1

2∑
j=1

∗∑
k=1
nijk; g log q

(2)
ij; g +

2∑
g=1

2∑
i=1

∗∑
j=1

∗∑
k=1
nijk; g log q

(1)
i; g (4)

where certain sums are over 1, 2 and ∗ (missing). The maximum likelihood estimates of
the q’s are q̂ (1)i; g = ni••; g=n◦••; g, q̂

(2)
ij; g= nij•; g=ni◦•; g and q̂

(3)
ijk; g= nijk; g=nij◦; g. The predicted counts,

eijk; g, can be expressed in terms of the q’s as

eijk; g=(nijk; g + nij∗; gq
(3)
ijk; g + ni∗∗; gq

(2)
ij; gq

(3)
ijk; g) (5)

To derive the score test, restricted maximum likelihood estimates under the null hypothe-
sis are required. It is convenient to introduce the ‘backwards’ conditional probabilities r(1)k; g =
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P(category k at t3; Tg), r
(2)
jk; g=P(category j at t2 | category k at t3; Tg) and r(3)ijk; g=P(category i at

t1 | categories j at t2 and k at t3; Tg). It follows that
pijk; g= r

(3)
ijk; g r

(2)
jk; g r

(1)
k; g; i; j; k; g=1; 2 (6)

The parameters of interest will be r(1)1; g, r
(2)
1k; g and r

(3)
1jk; g. The vectors with entries consisting of all

of the eijk; g and Nijk; g values, arranged with (ijk) running through (111); (112); : : : ; (222), will
be denoted by eg and Ng, respectively, g=1, 2, and their concatenations over both treatment
groups will be denoted by e and N .
The matrix Rh;g is de�ned as diag(r

(3)
h11; g; r

(3)
h12; g; r

(3)
h21; g; r

(3)
h22; g; r

(2)
h1; g; r

(2)
h2; g; r

(1)
h; g), h=1, 2, and Rh=

diag(Rh;1; Rh;2). The matrices A1 and A2 are de�ned by

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

1 0 1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

so that Aheg=(eh11; g eh12; g eh21; g eh22; g e◦h1; g e◦h2; g e◦◦h; g)′, and similarly for AhNg; h, g=
1; 2.
Now, let Ug denote the e�cient score vector for treatment group Tg

Ug=(@‘=@r
(3)
111; g @‘=@r(3)112; g @‘=@r(3)121; g @‘=@r(3)122; g @‘=@r(2)11; g @‘=@r(2)12; g @‘=@r(1)1; g)

g=1; 2. The derivatives of ‘ with respect to the r’s are best found as sums of products
of derivatives of ‘ with respect to the p’s and derivatives of the p’s with respect to the
r’s. The results can be concisely expressed in terms of eg, which is in turn a function of
the q’s, and so we obtain Ug=(R−1

1; gA1 −R−1
2; gA2)eg, g=1; 2. As eg=E(Ng |�), it follows that

Ug=E{(R−1
1; gA1−R−1

2; gA2)Ng |�}, g=1; 2. In particular, the derivatives with respect to r(1)1; g take
the form

@‘

@r(1)1; g
=

2∑
k=1
(−1)k−1 e◦◦k; g

r(1)k; g
; g=1; 2

With these derivatives available, we can proceed to derive the score statistic for the parameter
� of interest, which is the log-odds ratio for success at the third time point, �= log{r(1)1;1=(1−
r(1)1;1)} − log{r(1)1;2=(1 − r(1)1;2)}. A nuisance parameter � can be de�ned by �= log{r(1)1;1=(1 −
r(1)1;1)}+ log{r(1)1;2=(1− r(1)1;2)}. It follows that

@‘
@�
=

2∑
g=1

@‘

@r(1)1; g

@r(1)1; g
@�

and
@‘
@�
=

2∑
g=1

@‘

@r(1)1; g

@r(1)1; g
@�
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As @r(1)1; g=@�=(−1)g−1r(1)1; gr(1)2; g=2 and @r(1)1; g=@�= r(1)1; gr(1)2; g=2, g=1; 2
@‘
@�
=
1
2
{e◦◦1;1r

(1)
2;1 − e◦◦2;1r

(1)
1;1 − e◦◦1;2r

(1)
2;2 + e◦◦2;2r

(1)
1;2}

and

@‘
@�
=
1
2
{e◦◦1;1r

(1)
2;1 − e◦◦2;1r

(1)
1;1 + e◦◦1;2r

(1)
2;2 − e◦◦2;2r

(1)
1;2}

Under the null hypothesis r(1)1;1 = r
(1)
1;2. Putting @‘=@�=0 and �=0 gives r̃

(1)
1;1 = r̃

(1)
1;2 = ẽ◦◦1;◦=

n◦••;◦ as the common restricted maximum likelihood estimate, where ẽ◦◦1;◦= ẽ◦◦1;1 + ẽ◦◦1;2
and so on. This is the null expected number of successes, divided by the total number of
patients: a very intuitive result. Thus the score statistic takes the form presented in (1) above.
To compute Z , restricted maximum likelihood estimates of all parameters are required, and

these must satisfy @‘=@r(3)1jk; g=0 and @‘=@r
(2)
1k; g=0, so that r̃

(3)
1jk; g= ẽ1jk; g=ẽ◦jk; g and r̃

(2)
1k; g= ẽ◦1k; g=

ẽ◦◦k; g for g; j; k=1; 2. The following iterative scheme is used: (i) the q’s are estimated using
their unrestricted maximum likelihood estimates, (ii) the e’s are deduced from equation (5),
(iii) the r’s are then found using the restricted maximum likelihood equations above, (iv) the
e’s are then found from the r’s using equations (6), (3) and (5) in turn, and steps (iii) and
(iv) are iterated to a solution. In the analyses for this paper we have found this scheme to
converge within eight iterations.
Some of the counts used in the calculations may be equal to zero, but in most cases this will

cause no di�culty. Zeros need careful consideration if they lead to estimates of q’s or of r’s
being indeterminate. First consider indeterminate q’s, and in particular the case nij◦; g=0 for
some i, j and g. In that case straightforward use of the ratios following equation (4) leads to
estimates q̂(3)ij1; g and q̂

(3)
ij2; g that are both indeterminate. In fact, examination of the log-likelihood

given in equation (4) shows that the parameters q(3)ij1; g and q
(3)
ij2; g both disappear. No patients

on Tg have been observed to move from category i to j and then on to either 1 or 2, and thus
the �nal status of the nij∗; g patients with incomplete records beginning with i and j cannot
be predicted. Now the value of eijk; g is given by nijk; g+ nij∗; gq

(3)
ijk; g+ ni∗∗; gq

(2)
ij; gq

(3)
ijk; g, but in this

case, the second term cannot be used for k=1 or 2. Furthermore, the third term cannot be
used, as even if moves from category i to j can be predicted, the subsequent move to 1 or 2
cannot. In the algorithm, this is achieved automatically by setting both q̂(3)ij1; g and q̂

(3)
ij2; g to 0,

that is: interpreting 0=0 as 0. If ni◦•; g=0, then q̂
(2)
i1; g and q̂

(2)
i2; g should be set to 0 for similar

reasons, although they will be removed from the e’s anyway due to their multiplication by
q̂(3)ijk; g terms that will logically also be set to 0 in these circumstances. Once a q term has
been set to 0 in the �rst step of the iterative scheme, it will remain equal to 0 in subsequent
steps. If n◦••; g=0, then q̂

(1)
1; g and q̂

(1)
2; g are indeterminate, but in this circumstance there are no

patients at all on treatment Tg and so the whole method is bound to fail.
A di�erent set of zero problems concern the r’s. If n◦jk; g is zero, then the estimated prob-

abilities of reaching category k from any starting category followed by a move to j will be
0, that is q̂(3)ijk; g=0 for i=1; 2. Equation (5) shows that ẽ◦jk; g will be equal to 0 too. This

means that r̃ (3)ijk; g= ẽijk; g=ẽ◦jk; g is indeterminate for i=1; 2. In the �rst sum of the log-likelihood
given in equation (2) the terms pijk; g (i=1; 2) will disappear. These same terms also appear
implicitly in the terms pij◦; g and pi◦◦; g (i=1; 2) that appear in the other two sums. The
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log-likelihood will be maximized when the pijk; g (i=1; 2) are equal to zero, and so these
terms can be set equal to zero from the outset. Now, derivatives of ‘ with respect to the r’s
are found as sums of products of derivatives of ‘ with respect to the p’s and derivatives of
the p’s with respect to the r’s. The p’s are related to the r’s through pijk; g= r

(3)
ijk; g r

(2)
jk; g r

(1)
k; g ,

and all of the p’s relating to r̃ (3)1jk; g and r̃
(3)
2jk; g have been removed so that @‘=@r

(3)
1jk; g=0. It is

appropriate to set r̃ (3)1jk; g and r̃
(3)
2jk; g equal to 0 in this case: again in the algorithm we force

0=0=0. This in turn makes p̃ijk; g and q̃
(3)
ijk; g equal to 0 for i=1; 2, and has the desired e�ect

of making the �nal estimate ẽ◦jk; g equal to zero. This amounts to foreseeing that when the
data are complete there will still be no patients with outcomes j and k at the second and
third time points, respectively.
If n◦◦k; g is zero, then the estimated probabilities of reaching category k from any of the

earlier states will be zero, that is q̂(3)ijk; g=0 for all i, j. An argument similar to that in the

previous paragraph shows that it is appropriate to set r̃ (2)1k; g and r̃
(2)
2k; g equal to 0 in this case

making the �nal estimate ẽ◦◦k; g equal to zero. The score statistic can still be calculated under
these circumstances. If both ẽ◦◦k;1 and ẽ◦◦k;2 become equal to 0, then Z will exist with value
zero, unless (n◦••;1 + n◦••;2)=0, in which case Z will be indeterminate and the test will fail.

6. APPLICATION TO THE HEAD INJURY DATA

In the head injury trial described in Section 3, the GOS score was assessed at days 21,
90 and 180, and in this illustration the score has been dichotomized with success being
GR. The �rst patient was recruited on 30 April 1993. Suppose that the �rst interim anal-
ysis takes place one year later on 30 April 1994 and that subsequent interim analyses are
planned every nine months. A design was created using PEST 4 [20] as if for a standard
binary response with a power of 0.90 to detect as signi�cant at the 5 per cent level (two-
sided) an improvement in the good recovery rate at 180 days from p◦◦1;2 = 0:17 on placebo
to p◦◦1;1 = 0:25 on eliprodil. The corresponding log-odds ratio is 0.487, so that this design
is more powerful than that actually used. For this power requirement, a �xed sample design
would require information corresponding to V�x =44:31. The triangular test satisfying these re-
quirements has upper boundary Z =10:129+0:148V and lower boundary Z =−10:129+0:444V
(see Figure 1).
The data at each of the �rst three interim analyses and the �nal analysis are given in

Table I. Table II presents two pairs of test statistics for each interim data set, and these are
plotted together with the triangular stopping region in Figure 1. The �rst is computed using
the repeated binary method introduced in this paper. The second pair of test statistics (denoted
with the subscript C) are calculated using only data from patients with responses at 180 days.
The �gure also shows an internal jagged boundary known as the ‘Christmas tree correction’
which allows for the amount of information accrued since the previous interim analysis. It is
su�cient to reach this less stringent criterion in order to stop [8]. Final analyses for the two
methods are presented in Table III.
At each interim analysis there is more information available (a higher value of V ) in the

repeated binary analysis than in the analysis that is restricted to patients who have completed
180 days in the study. The increases in V are 26, 37, 24 and 7 per cent, respectively, at the
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Figure 1. The completed sequential trial: (a) based on complete and partial data from all subjects;
and (b) based on complete data only.

four analyses. These repeated binary analyses take account of 80, 68, 48 and 10 per cent more
patients than in those based only on completers: this illustrates the way in which partial data
from incomplete patients contribute. The data presented in this example are from a real clinical
trial, although they are extreme in that no-one who has a good recovery at day 21 ever fails
to have that status at day 180. This means that the partial data become very informative.
At the �rst interim, the eliprodil group contains a larger proportion than the placebo group
of patients with partial follow-up who are currently in state 1 (8=22 versus 5=22). As these
patients are likely to remain in state 1, their inclusion turns an apparent (small) disadvantage
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Table II. Values of Z and V for two methods.

Repeated binary Complete binary

Date Z V ZC VC

30-04-94 0.716 4.300 −0:236 3.426
31-01-95 −0:528 11.611 −0:964 8.449
31-10-95 −0:702 20.361 −2:546 16.476
30-04-96 1.456 24.431 1.774 22.925

Table III. Final analyses for the two methods for Example 1.

p �M (�L; �U)

Repeated binary 0.755 0.063 (−0:335; 0:465)
Complete binary 0.709 0.078 (−0:332; 0:488)

of eliprodil, based on complete patient records alone, to an apparent (small) advantage for
the drug.
In both analyses, the lower boundary is reached at the third interim analysis. Recruitment

then stops, and the �nal ‘overrunning’ analysis is completed six months later. In principle,
all data records should be complete by this date, but in the real data on which this example
is based some missing data persist and so the repeated binary analysis never quite matches
the completers only analysis. The overrunning analysis shows a small rally in the fortunes of
the eliprodil patients. In the repeated binary analysis, the �nal point remains in the stopping
region, but in the completers only analysis the continuation region is re-entered. The issue
of re-entering the continuation region in an overrunning analysis is discussed at length in
Reference [6]. The e�ect is less in the repeated binary analysis because a greater proportion
of the �nal information is accounted for at the interim analysis leading to stopping. The
�nal analyses reported in Table III are similar, with the repeated binary method yielding the
narrower 95 per cent con�dence interval for �.

7. DISCUSSION

For sequential clinical trials in therapeutic areas such as stroke and head injury, the method
derived in this paper has the advantage of making the maximum use of data available at
interim analyses without the imposition of strong assumptions that may not be veri�able. The
pattern of the results derived holds true for the case of two repeated responses and is likely
to extend to more than three.
It is straightforward to apply the method of this paper to strati�ed data following the

approach of Chapter 7.2 of [8]. The statistics Z and V are computed separately within each
stratum, and then the Z’s are summed to form the score statistic for plotting on the sequential
scheme, and the V ’s are summed to form the corresponding information measure. Covariate
adjustment via linear modelling would be a greater challenge.
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It is assumed that data missing from the incomplete data sets can be treated as ‘missing
at random’, as de�ned by Rubin [21]. Provided that the patients recruited are homogeneous
over time this will be true. In practice, some of the incomplete data records might never
be completed, and such long-term missing values may not be missing at random. If there
is a substantial proportion of such records, then more elaborate approaches might become
necessary. If the method is used in a non-sequential setting, the assumption that data are
missing at random might be di�cult to justify, although the approach would certainly improve
on an analysis based on simple methods such as last-observation-carried-forward.
In the head injury data analysed in Section 6, all data records included the day 21

observation, but some lacked the day 90 record and yet included that at day 180. The method
described does not deal with such records, and in the illustrative analysis they were excluded.
As patients were mostly still in hospital on day 21, and as the outcome on day 180 was the
primary endpoint for the trial, compliance in reporting these scores was good. If the day 90
score had been identi�ed as important in the analysis, then it is likely that fewer of these
scores would have been missing. It is possible to add a term to the log-likelihood used here to
incorporate interrupted observation records: the transition probabilities would be combinations
of those already used in the model. Such an approach would be worthwhile if the proportion
of interrupted records was non-negligible, although it would be more complicated and would
rest on the missing at random assumption.
The score test formulation with a log-odds ratio parameterization has been adopted here

because, once the data are complete, it reverts to familiar statistics consistent with Pear-
son’s �2-test. Furthermore, with complete data, the score test tends to be more accurate than
equivalent Wald tests. The approach taken by Marschner and Becker [14] to the same prob-
lem, but with only two time points, is based on the Wald test for a probability di�erence.
In a subsequent paper, we will present simulation results comparing the score and Wald ap-
proaches and the log-odds ratio and probability di�erence parameterizations for the two time
point case.

APPENDIX A: SECOND DERIVATIVES OF THE LOG-LIKELIHOOD

Second derivatives of ‘ with respect to the r’s will now be presented, but �rst some additional
notation is required. Let

ci; ( jk); ( j′k′); g = (nij∗; gq
(3)
ijk; g + ni∗∗; gq

(2)
ij; gq

(3)
ijk; g)�jj′�kk′ − nij∗; gq(3)ijk; gq(3)ijk′ ; g�jj′

−ni∗∗; gq
(2)
ij; gq

(2)
ij′ ; gq

(3)
ijk; gq

(3)
ij′k′ g

where �jj′ =1 if j= j′ and 0 otherwise. The interpretation of these quantities is that
ci; ( jk); ( j′k′); g=cov(Nijk; g; Nij′k′ ; g |�). The matrix of all ci; ( jk); ( j′k′); g, with (ijk) running down
the rows and (i′j′k ′) across the columns in the order (111); (112); : : : ; (222), will be denoted
by Cg, g=1; 2; any entry with i �= i′ is taken to have value zero. The matrix C will be set to
diag(C1; C2). Now let Hg denote the Hessian matrix of second derivatives of log-likelihood
with respect to the elements of the vector made up of the entries of the matrix R1; g, in
the order in which they appear. The matrix Hg can be expressed as a sum of two matrices
(Hg=H1; g+H2; g); the �rst is diagonal comprising functions of eg that are present only in the

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)



M. R. SOORIYARACHCHI ET AL.

non-mixed second derivatives. Later the notation H =diag(H1; H2) and H (h) = diag(Hh;1; Hh;2),
so that H =H (1) + H (2), will be used. Appendix C gives details of the derivation of one of
the second derivatives of ‘, the others proceed in a similar manner. After considerable work
of this nature, it follows that

H1; g =−(R−1
1; gdiag(A1eg)R

−1
1; g + R

−1
2; g diag(A2eg)R

−1
2; g) (A1)

=−E(R−1
1; g diag(A1Ng)R

−1
1; g + R

−1
2; g diag(A2Ng)R

−1
2; g |�) (A2)

for g=1; 2, where diag represents a diagonal matrix with entries the same as its column
vector argument. Furthermore,

H2; g = (R−1
1; gA1 − R−1

2; gA2)Cg(R
−1
1; gA1 − R−1

2; gA2)
′ (A3)

=D{(R−1
1; gA1 − R−1

2; gA2)Ng|�}; g=1; 2 (A4)

where D denotes a dispersion (variance–covariance) matrix.
As an aside that will verify the validity of equations (A2) and (A4), note that the general

result D(X )=E{D(X |Y )}+D{E(X |Y )} implies that

D{(R−1
1; gA1 − R−1

2; gA2)Ng}=E{D((R−1
1; gA1 − R−1

2; gA2)Ng |�)}+D{E((R−1
1; gA1 − R−1

2; gA2)Ng |�)}

=E(H2; g) +D(Ug) (A5)

Now

D{(R−1
1; gA1 − R−1

2; gA2)Ng}=(R−1
1; gA1 − R−1

2; gA2)D(Ng)(R
−1
1; gA1 − R−1

2; gA2)
′ (A6)

and D(Ng)=D1; g +D2; g, where D1; g is diagonal with entries n◦••; gpijk; g and D2; g has entries
−n◦••; gpijk; gpi′j′k′ ; g. The term in (A6) corresponding to D2; g is equal to 0, and by careful
consideration of matrices of the form AhD1; g(Ah′)′, h= h′=1, 2, it follows that

(R−1
1; gA1 − R−1

2; gA2)D1; g(R
−1
1; gA1 − R−1

2; gA2)
′

=R−1
1; gA1D1; gA

′
1R

−1
1; g − R−1

1; gA1D1; gA
′
2R

−1
2; g − R−1

2; gA2D1; gA
′
1R

−1
1; g + R

−1
2; gA2D1; gA

′
2R

−1
2; g

=E{R−1
1; g diag(A1Ng)R

−1
1; g + R

−1
2; g diag(A2Ng)R

−1
2; g}=−E(H1; g); g=1; 2

Thus (A5) can be written −E(H1; g)=E(H2; g)+D(Ug), so that D(Ug)=−E(Hg). The disper-
sion matrix of the e�cient score statistic is equal to minus the expected value of the matrix
of second derivatives of log-likelihood. This is a general result, but in this case neither D(Ug)
nor E(Hg) can actually be evaluated without a model for the pattern of missingness �, and
no such model is being assumed.
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APPENDIX B: FISHER’S INFORMATION, V

To derive Fisher’s observed information, V , the parameters r(1)1;1 and r
(1)
1;2 need to be replaced

in the system of second derivatives by � and �, and unknown parameters replaced by their
restricted maximum likelihood estimates. We have

@2‘
@�2

=
@
@�

(
2∑
g=1

@‘

@r(1)1; g

@r(1)1; g
@�

)
=

2∑
g=1

@2‘

@(r(1)1; g)2

(
@r(1)1; g
@�

)2
+

2∑
g=1

@‘

@r(1)1; g

@2r(1)1; g
@�2

As @r(1)1; g=@�=(−1)g−1r(1)1; gr(1)2; g=2, it follows that @2r(1)1; g=@�2 = (r(1)2; g − r(1)1; g)r(1)1; gr(1)2; g=4. Thus, under
the null hypothesis, @r(1)1;1=@�=−@r(1)1;2=@�= ẽ◦◦1;◦ẽ◦◦2;◦=(2n2◦••;◦) and @

2r(1)1;1=@�
2 = @2r(1)1;2=@�

2 =
(ẽ◦◦2;◦ − ẽ◦◦1;◦)ẽ◦◦1;◦ẽ◦◦2;◦=(4n3◦••;◦). It follows that the second term in the expression for
@2‘=@�2 is equal to zero, so that

@2‘
@�2

=
(
ẽ◦◦1;◦ẽ◦◦2;◦
2n2◦••;◦

)2 2∑
g=1

@2‘

@(r(1)1; g)2

It can be seen that @2‘=@�2 will take the same value. For the mixed derivative

@2‘
@�@�

=
@
@�

(
2∑
g=1

@‘

@r(1)1; g

@r(1)1; g
@�

)
=

2∑
g=1

@2‘

@(r(1)1; g)2
@r(1)1; g
@�

@r(1)1; g
@�

+
2∑
g=1

@‘

@r(1)1; g

@2r(1)1; g
@�@�

Under the null hypothesis, using the forms of the �rst derivatives given above, @2r(1)1;1=@�@�=
@2r(1)1;2=@�@�=(−1)g−1(ẽ◦◦2;◦ − ẽ◦◦1;◦)ẽ◦◦1;◦ẽ◦◦2;◦=(4n3◦••;◦). Consequently,

@2‘
@�@�

=
(
ẽ◦◦1;◦ẽ◦◦2;◦
2n2◦••;◦

)2 2∑
g=1
(−1)g−1 @2‘

@(r(1)1; g) 2
+
(ẽ◦◦2;◦ − ẽ◦◦1;◦)ẽ◦◦1;◦ẽ◦◦2;◦

4n2◦••;◦

×
2∑

g; k=1
(−1)g−1(−1)k−1 ẽ◦◦k; g

ẽ◦◦k;◦

If the second derivatives were being evaluated at the unrestricted maximum likelihood esti-
mates, then @‘=@r(1)1; g would be equal to zero for g=1; 2. However, here evaluation is at the
restricted maximum likelihood estimates, and so this does not hold. The second term in both
@2‘=@�2 and @2‘=@�2 reduces to zero anyway, but in @2‘=@�@� it remains non-zero. This odd
term turns out to enable simpli�cation to take place later: it will be denoted by y. Other
mixed derivatives are given by

@2‘

@r(2)1k; g@�
= (−1)g−1

(
ẽ◦◦1;◦ẽ◦◦2;◦
2n2◦••;◦

)
@2‘

@r(2)1k; g@r
(1)
1; g

;
@2‘

@r(2)1k; g@�
=
(
ẽ◦◦1;◦ẽ◦◦2;◦
2n2◦••;◦

)
@2‘

@r(2)1k; g@r
(1)
1; g

@2‘

@r(3)1jk; g@�
= (−1)g−1

(
ẽ◦◦1;◦ẽ◦◦2;◦
2n2◦••;◦

)
@2‘

@r(3)1jk; g@r
(1)
1; g

;
@2‘

@r(3)1jk; g@�
=
(
ẽ◦◦1;◦ẽ◦◦2;◦
2n2◦••;◦

)
@2‘

@r(3)1jk; g@r
(1)
1; g
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Let H ∗ be the Hessian matrix with respect to �, �, the r(3)1jk;1, the r
(2)
1k;1, the r

(3)
1jk;2, and the r

(2)
1k;2

in that order. Let W be the 14× 14 diagonal matrix diag(w;w; 1; : : : ; 1) with w= ẽ◦◦1;◦ẽ◦◦2;◦=
(2n2◦••;◦), W1 be the 2× 14 matrix comprising the �rst 2 rows of W , W2 the 6× 14 matrix
comprising the next 6 rows of W and W3 the 6× 14 matrix comprising the last 6 rows of W .
Let B be the 14× 14 matrix of the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 −1
0 0 1 0 0 1

I4 0 0 0 0 0

0 I2 0 0 0 0

0 0 0 I4 0 0

0 0 0 0 I2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Ih is the h× h identity matrix. Let Y be the 14× 14 matrix with entry y in positions
(1; 2) and (2; 1) and zeros elsewhere, and Y2 the 2× 2 matrix comprising the leading entries of
Y . Then, with the parameters inherent in the H matrices replaced by their restricted maximum
likelihood estimates

H ∗ =WBHB′W ′ + Y

=

⎛
⎜⎜⎝
W1B(H (1) +H (2))B′W ′

1 + Y2 W1BH (2)B′W ′
2 W1BH (2)B′W ′

3

W2BH (2)B′W ′
1 W2B(H (1) +H (2))B′W ′

2 0

W3BH (2)B′W ′
1 0 W3B(H (1) +H (2))B′W ′

3

⎞
⎟⎟⎠

because H (1) is diagonal, so that BH (1)B′ has a 2× 2 block in the top left-hand corner and is
otherwise diagonal. Furthermore, H (2) is block diagonal, with two 7× 7 blocks, and so BH (2)B′

has blocks of zeros in the last 6 columns of rows 3–8 and in the last 6 rows of columns 3–8.
It follows that W2BH (2)B′W ′

3 =W3BH (2)B′W ′
2 = 0, explaining the zero entries above. Now let

H ∗
11 =W1BH (1)B′W ′

1 +Y2. Using equation (A1), it can be seen that the diagonal entries of this
2× 2 matrix are

−w2
2∑

g; k=1

ẽ◦◦k; g
(r̃ (1)k; g )2

=−
(
ẽ◦◦1;◦ẽ◦◦2;◦
2n◦••;◦

)2 2∑
g; k=1

ẽ◦◦k; g
(ẽ◦◦k;◦)2

=− ẽ◦◦1;◦ẽ◦◦2;◦
4n◦••;◦

O�-diagonal entries are equal to

−w2
2∑

g; k=1
(−1)g−1 ẽ◦◦k; g

(r̃ (1)k; g )2
+ y

=−
(
ẽ◦◦1;◦ẽ◦◦2;◦
2n◦••;◦

)2{ 2∑
g; k=1

(−1)g−1 ẽ◦◦k; g
(ẽ◦◦k;◦)2

− (ẽ◦◦2;◦ − ẽ◦◦1;◦)
ẽ◦◦1;◦ẽ◦◦2;◦

2∑
g; k=1

(−1)g−1(−1)k−1 ẽ◦◦k; g
ẽ◦◦k;◦

}

=−
(
ẽ◦◦1;◦ẽ◦◦2;◦
4n2◦••;◦

)
(n◦••;1 − n◦••;2)
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and so

H ∗
11 =−

(
ẽ◦◦1;◦ẽ◦◦2;◦
4n2◦••;◦

)( n◦••;◦ n◦••;1 − n◦••;2

n◦••;1 − n◦••;2 n◦••;◦

)

When the data are complete ẽ◦◦1;◦= S, ẽ◦◦2;◦=F , n◦••;1 = n1, n◦••;2 = n2 and n◦••;◦= n, in
the notation of Section 4, which leads to the usual form: V = n1n2SF=n3. For incomplete data,
V is minus the reciprocal of the leading element of the inverse of H ∗: that is minus the
reciprocal of the leading element of

[H ∗
11 +W1BH (2)B′W ′

1 −W1BH (2)B′W ′
2{W2B(H (1) +H (2))B′W ′

2}−1W2BH (2)B′W ′
1

−W1BH (2)B′W ′
3{W3B(H (1) +H (2))B′W ′

3}−1W3BH (2)B′W ′
1]

−1 (B1)

When computing V , if any of the r’s are estimated to be zero or one, then the corre-
sponding row and column in each of the vectors and matrices from which V is found should
be removed before computation. For example, in the �nal analysis of the trial described in
the next section, the estimates of r112;2, r122;2, r12;1, r12;2 are all zero and those of r212;2,
r222;2, r22;1, r22;2 are zero or one. Thus, these parameters do not actually appear in the like-
lihood. The diagonal matrices of r’s become Rh;1 = diag(r

(3)
h11;1; r

(3)
h12;1; r

(3)
h21;1; r

(3)
h22;1; r

(2)
h1;1; r

(1)
h;1) and

Rh;2 = diag(r
(3)
h11;2; r

(3)
h21;2; r

(2)
h1;2; r

(1)
h;2), the sixth element of Rh;1 being removed and the second,

fourth and sixth elements of Rh;2, h=1; 2. In dealing with group 1, the sixth rows of A1 and
A2 are removed, while dealing with group 2 the second, fourth and sixth rows of A1 and A2
are removed. The vectors e1 and e2 and the matrices C1 and C2 are unchanged. This allows
the calculation of H1; g and H2; g for g=1; 2. The former will be 6× 6 and the latter 4× 4.
The matrix B has to be modi�ed by removal of columns 6, 9, 11 and 13 and rows 8, 10, 12
and 14. These are column (0 + 6) and row (2 + 6) for the �rst group and columns (7 + 2),
(7+4) and (7+6) and rows (2+6+2), (2+6+4) and (2+6+6) for the second. The matrix
W is diagonal, and is reduced to 10× 10 by the removal of elements 8, 10, 12 and 14 from
the diagonal. The submatrices of W will be as follows: W1 is the 2× 10 matrix with wI2 at
the left-hand side and zeros everywhere else, W2 be the 5× 10 matrix with I5 in the third to
seventh columns and zeros everywhere else and W3 the 3× 10 matrix with I3 at the right-hand
side, and zeros everywhere else. Thus W remains the concatenation of W1, W2 and W3.

APPENDIX C: Derivation of @2‘=@r(3)1jk; g@r
(2)
1k′ ; g

From equation (6), @‘=@r(2)1k; g=
∑

j (−1) j−1e◦jk; g=r(2)1k; g, and as pijk; g= r(3)ijk; gr(2)jk; gr(1)k; g ,
@‘

@r(2)1k; g
=

2∑
i; j=1

(−1) j−1
(
nijk; g
pijk; g

+
nij∗; g
pij◦; g

+
ni∗∗; g
pi◦◦; g

)
r(3)ijk; g r

(1)
k; g

Next,

@2‘

@r(3)1jk; g@r
(2)
1k′ ; g

=
@

@r(3)1jk; g

(
@‘

@r(2)1k′ ; g

)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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=
@

@r(3)1jk; g

(
2∑

i; j′=1
(−1) j′−1

(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)
r(3)1j′k′ ; g r

(1)
k′ ; g

)

=
2∑

i; j′=1
(−1) j′−1

{
@

@r(3)1jk; g

(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)
r(3)ij′k′ ; g r

(1)
k′ ; g

+
(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)
@

@r(3)1jk; g
(r(3)ij′k′ ; g r

(1)
k′ ; g)

}
(C1)

Now

@

@r(3)1jk; g

(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)

=
2∑

i′′ ; j′′ ; k′′=1

@
@pi′′j′′k′′ ; g

(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)
@pi′′j′′k′′ ; g

@r(3)1jk; g

The �rst term of each summand will be equal to zero unless i′′= i. Also, because pi′′j′′k′′ ; g=
r(3)i′′j′′k′′ ; gr

(2)
j′′k′′ ; gr

(1)
k′′ ; g, the second term will be zero unless j′′= j and k ′′= k. Hence,

@

@r(3)1jk; g

(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)
=

@
@pijk; g

(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)
@pijk; g
@r(3)1jk; g

(C2)

Now, @pijk; g=@r
(3)
1jk; g=(−1)i−1r(2)jk; gr(1)k; g , and

@
@pijk; g

(
nij′k′ ; g

pij′k′ ; g
+
nij′∗; g
pij′◦; g

+
ni∗∗; g
pi◦◦; g

)
=−nijk; g�jj′�kk′

(pijk; g)2
− nij∗; g�jj′
(pij◦; g)2

− ni∗∗; g
(pi◦◦; g)2

(C3)

Also, @(r(3)ij′k′ ; gr
(1)
k′ ; g)=@r

(3)
1jk; g=(−1)i−1r(1)k; g�jj′�kk′ . Substituting this together with (C2) and (C3)

into (C1) gives

@2‘

@r(3)1jk; g@r
(2)
1k′ ; g

= (−1) j−1
2∑

i; j′=1
(−1)i+j′

{(
−nijk; g�jj′�kk′

(pijk; g)2
− nij∗; g�jj′
(pij◦; g)2

− ni∗∗; g
(pi◦◦; g)2

)
r(1)k; gr

(1)
k′ ; gr

(2)
jk; gr

(3)
ij′k′ ; g

+
(
nijk; g
pijk; g

+
nij∗; g
pij◦; g

+
ni∗∗; g
pi◦◦; g

)
�jj′�kk′r(1)k; g

}

= (−1) j−1
2∑

i; j′=1
(−1)i(−1) j−j′ 1

r(2)j′k′ ; gr
(3)
ijk; g

(nij∗; gq
(3)
ijk; g�jj′�kk′ − nij∗; gq(3)ijk; gq(3)ijk′ ; g�jj′

+ni∗∗; gq
(3)
ijk; gq

(2)
ij; g�jj′�kk′ − ni∗∗; gq

(2)
ij; gq

(2)
ij′ ; gq

(3)
ijk; gq

(3)
ij′k′ ; g)

= (−1) j−1
2∑

i; j′=1
(−1)i−1(−1) j−j′ ci; ( jk); ( j′k); g

r(2)j′k; gr
(3)
ijk; g
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