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Sequential methods provide a formal framework by which clinical trial data can be
monitored as they accumulate. The results from interim analyses can be used either
to modify the design of the remainder of the trial or to stop the trial as soon as
sufficient evidence of either the presence or absence of a treatment effect is available.
The circumstances under which the trial will be stopped with a claim of superiority for
the experimental treatment, must, however, be determined in advance so as to control
the overall type I error rate. One approach to calculating the stopping rule is the
group-sequential method. A relatively recent alternative to group-sequential approaches
is the adaptive design method. This latter approach provides considerable flexibility in
changes to the design of a clinical trial at an interim point. However, a criticism is that
the method by which evidence from different parts of the trial is combined means that
a final comparison of treatments is not based on a sufficient statistic for the treatment
difference, suggesting that the method may lack power.

The aim of this paper is to compare two adaptive design approaches with the group-
sequential approach. We first compare the form of the stopping boundaries obtained
using the different methods. We then focus on a comparison of the power of the
different trials when they are designed so as to be as similar as possible. We conclude
that all methods acceptably control type I error rate and power when the sample size
is modified based on a variance estimate, provided no interim analysis is so small that
the asymptotic properties of the test statistic no longer hold. In the latter case, the
group-sequential approach is to be preferred. Provided that asymptotic assumptions
hold, the adaptive design approaches control the type I error rate even if the sample
size is adjusted on the basis of an estimate of the treatment effect, showing that the
adaptive designs allow more modifications than the group-sequential method.

Key Words: Fisher’s combination test; Fisher’s product; Power; Sequential clinical trials; Sequential
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1. INTRODUCTION

A sequential clinical trial is one in which the accumulating data are analyzed
at a series of interim analyses during its course. The interim analyses can serve
two purposes. One purpose is sample-size review, in which the results of the
interim analysis are used to estimate either the magnitude of the treatment effect
or one or more nuisance parameters, and this information is used to determine
the sample size for the remainder of the trial. Sample-size re-estimation based on
the estimation of nuisance parameters, particularly on the variance of normally
distributed observations, was proposed by Gould and Shih (1992). A review of
the methodology is given by Gould (1995). Sample size re-estimation based on the
magnitude of the observed treatment effect at an interim analysis has been proposed
by Fisher (1998) and Cui et al. (1999).

An alternative purpose for interim analyses in a clinical trial, for which the
term sequential trial is more commonly used, is to allow the trial to be stopped
at an interim analysis. In this case, the trial might be stopped with the conclusion
that the experimental treatment is effective, be stopped to abandon the trial, or
otherwise be continued to the next interim analysis. Such trials must be designed in
advance, with the specified design adhered to, so as to maintain the overall type I
error rate. A common method is the group-sequential approach described in detail
by, for example, Jennison and Turnbull (2000). The two purposes may be combined
in trials in which both early stopping and sample-size recalculation are allowed (see
Whitehead et al., 2001).

An alternative approach to the design of sequential clinical trials has been
proposed by Bauer (1992) and Bauer and Köhne (1994). This method is called
the adaptive design approach. It allows a wide range of modifications to the trial
design, including sample size re-estimation, to be made at each interim analysis,
while maintaining control of the overall type I error rate.

Recently, Jennison and Turnbull (2003, 2004) and Tsiatis and Mehta (2003)
have reported theoretical comparisons of the adaptive and group-sequential
approaches. Tsiatis and Mehta show that for any adaptive design, a more powerful
group-sequential design can be found with the same expected sample size. The latter
will, however, generally require more interim analyses than the adaptive design.
Jennison and Turnbull (2004) show that optimal adaptive designs can be more
powerful than group-sequential designs with the same number of interim analyses,
but that this advantage is small, and the calculation of optimal adaptive designs are
computationally burdensome. Both Jennison and Turnbull and Tsiatis and Mehta
acknowledge the flexibility of the adaptive design approach.

The purpose of this paper is to compare, in a practical setting, two adaptive
design methods, the Fisher’s product combination method (Bauer and Köhne, 1994)
and the adaptive group-sequential, or inverse-normal, method (Lehmacher and
Wassmer, 1999; Müller and Schäfer, 2001), with the group-sequential method. In
order to make the comparisons as fair as possible, the three methods are compared
using tests (critical values) that have identical probabilities of stopping at each
interim analysis under the null hypothesis. Comparisons are made for trials that are
planned for both two-stages and five-stages, when the design is modified based on
interim results and when no such modification is made.

Following a short section introducing some notation, the group-sequential and
adaptive design approaches are described in detail in Section 3. A comparison of
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the stopping rules in the case of two-stage trials is summarized in Section 4. Section
5 presents the results of a simulation study to investigate the overall type I error
rate, power, and expected sample size for the different procedures, both with and
without trial modification. The paper concludes with a discussion in Section 6.

2. NOTATION

Suppose that a sequential clinical trial with a maximum of n interim analyses is
to be conducted to compare an experimental treatment, E, with a control treatment,
C. Let � be a measure of the treatment difference, with the cases � > 0� � = 0, and
� < 0 corresponding, respectively, to superiority, equality, and inferiority of E to
C. We wish to test the null hypothesis H0 � � = 0, of no difference between the
treatments in favor of the one-sided alternative hypothesis that � > 0, that is, that
E is superior to C. A possible test of H0 may be based on the efficient score statistic
for �. Let Sj denote the efficient score statistic for � based on all data observed
at or prior to the jth interim analysis, j = 1� � � � � n, and Vj denote the observed
Fisher’s information based on these data. It can be shown (Scharfstein et al., 1997)
that in a wide range of settings, asymptotically, for large sample sizes and small
�� Sj ∼ N��Vj� Vj�, with the increment in Sj at the jth interim analysis, Sj − Sj−1,
independent of Sj−1, and Sj − Sj−1 ∼ N���Vj − Vj−1�� �Vj − Vj−1��.

Efficient score and information statistics might alternatively be calculated at
each interim analysis based on the new data available at that interim analysis. We
will denote by Xj and Ij , respectively, the efficient score and observed Fisher’s
information for � based on the new data at the jth interim analysis, j = 1� � � � � n.
For large samples and small �, Xj ∼ N��Ij� Ij� and the cumulative sum, X1 + · · · +
Xj ∼ N��Vj� Vj�, have the same asymptotic distribution as Sj .

As an alternative to the use of the efficient score statistic, the treatment
comparisons may be summarized by p-values. Suppose that the new data collected
at interim analysis j led to a p-value, pj . Since under the null hypothesis pj ∼
U�0� 1�, it follows that under the null hypothesis,

√
Ij	

−1�1− pj� is normally
distributed with mean 0 and variance Ij , and so has the same distribution as Xj

introduced previously. A common approach is to obtain the p-value from a test
based on the asymptotic normality of the efficient score statistic for � from the
new data at this interim analysis, so that pj = 1−	�Xj/

√
Ij�, and

√
Ij	

−1�1− pj�
not only has the same distribution as Xj , but is equal to Xj . This is the case if the
standard normal test (sometimes called a Z-test) is used for analysis of normal data
with known variance, or if the 
2 test is used for the analysis of binary data. More
generally, some alternative analysis, such as a two-sample t-test, may be used to
obtain the p-values. In these cases, the equivalence of the test statistics derived from
the efficient score statistics and from the p-values will only hold asymptotically. In
the following work, we will assume that the p-values and efficient score statistics
correspond, so that tests based on the use of pj and Xj will be identical.

3. GROUP-SEQUENTIAL AND ADAPTIVE DESIGN METHODS

3.1. Group-Sequential Designs

In the group-sequential methods described, for example, by Whitehead (1997)
and Jennison and Turnbull (2000), at the jth interim analysis, j = 1� � � � � n, the test
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statistics Sj are compared with stopping limits, lj and uj . If Sj ≥ uj , the trial will
be stopped with the null hypothesis, H0 � � = 0, rejected in favor of the one-sided
alternative, � > 0. If Sj ≤ lj , the trial will be stopped and the null hypothesis will
not be rejected. If lj < Sj < uj , the trial continues to the �j + 1�th interim analysis.

The values of lj and uj� j = 1� � � � � n, can be chosen so as to satisfy some
specified �-spending function as described by Lan and DeMets (1983) and Kim
and DeMets (1987). Using the approach proposed by Stallard and Facey (1996) for
asymmetric tests that may stop for futility with overall one-sided type I error rate
�, two increasing functions, �∗U � �0� 1� → �0� ��, with �∗U �0� = 0 and �∗U �1� = �, and
�∗L � �0� 1� → �0� 1− ��, with �∗L�0� = 0 and �∗L�1� = 1− �, are specified. The
stopping limits are then constructed so as to satisfy

Pr�stop and reject H0 at or before look j�H0� = �∗U �tj� (1)

and

Pr�stop and do not reject H0 at or before look j�H0� = �∗L�tj� (2)

with tj , the observed information time at the jth look, equal to the ratio of Vj to
Vmax, where Vmax is the planned information, at the final interim analysis (Lan and
DeMets, 1983). Since Vj is a random variable, the observed information time will
differ slightly from its expected value, with Vn not necessarily exactly equal to Vmax.
An alternative simpler approach is to construct stopping limits to satisfy Eqs. (1)
and (2), taking tj equal to the ratio of the expected value of Vj to Vmax, rather than
using the observed value. For example, if interim analyses are planned to be equally
spaced in terms of information, tj will be taken to be j/n. This leads to critical values
that do not depend on the observed data and is similar to the approach suggested
by Slud and Wei (1982).

The values of lj and uj to give a test to satisfy Eqs. (1) and (2) can be
obtained via a recursive numerical integration technique first described by Armitage
et al. (1969). Further details are given by Jennison and Turnbull (2000). Assuming
the information available at each interim analysis will take its expected value, a
numerical search may be used to find Vmax so that the procedure has required power
under some specified alternative hypothesis.

The numerical integration method is based upon the assumptions that
Sj follows its asymptotic normal distribution, and that increments in Sj are
independent of previous values. As the increment in Sj depends on the new data
observed at each interim analysis, a sufficient condition for this independence is that
the increment in information at each stage is independent of previously observed
treatment differences.

3.2. The Adaptive Design Method Using Fisher’s
Combination Method

Several adaptive methods have been proposed. The methods differ with respect
to how the evidence from different stages of the trial is combined together. This
leads to differences in both the continuation region and the power. This section
describes the Fisher’s combination method originally proposed by Bauer and Köhne
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(1994). The following section describes the adaptive group-sequential method due
to Lehmacher and Wassmer (1999).

Bauer and Köhne (1994) proposed an adaptive approach to the design of a
two-stage trial. In their approach, the evidence from the two stages is combined via
the product of the p-values from the two stages, p1p2. If it is not planned to stop the
trial after the first interim analysis, the distribution of p1p2 under the null hypothesis
is that of the product of two independent uniformly distributed random variables.
A result due to Fisher shows that the logarithm of the reciprocal of the square root
of this product follows a 
2 distribution with 4 degrees of freedom. A critical value
for the p-value product can thus be obtained to maintain the overall one-sided type
I error rate. If the trial is stopped at the first interim analysis with rejection of the
null hypothesis, if p1 ≤ �1 for some �1, and without rejection of the null hypothesis
(that is for futility), if p1 ≥ �0, for some �0, a critical value of

c� = ��− �1�/�log �0 − log �1�

must be used for the product of p-values at the second stage in order to achieve an
overall one-sided type I error rate of �.

Wassmer (1999) generalized this method to any number of stages. At the
jth stage for j = 1� � � � � n, the product of p-values p1 × · · · × pj is calculated and
compared with a critical value c��j� , with the trial being stopped and the null
hypothesis rejected if p1 × · · · × pj ≤ c��j� for some choice of c��j� . In addition, the
trial stops without rejection of the null hypothesis if, at the jth interim analysis,
pj ≥ �

�j�
0 , for some �

�j�
0 � j = 1� � � � � n− 1, or if the nth interim analysis is reached

with p1 × · · · × pn > c��n� . Wassmer shows that, provided the c��j� are decreasing, the
probability of stopping and rejecting the null hypothesis at the jth interim analysis
is equal to Pj , which is given recursively by

Pj = c��j�
j∑

k=1

( k−1∏
i=1

log���j−i�
0 �

)(
1

�j − k�! log
j−k

(∏j−k−1
i=1 �

�i�
0

c��j−k�

)

−
j−k−1∑
i=1

1
�j − k+ 1− i�! log

j−k+1−i

(
c��i�

∏j−k−1
l=i+1 �

�l�
0

c��j−k�

)
Pi

c��i�

)
(3)

where logi�x� denotes �log�x��i,
∑b

i=a xi = 0,
∏b

i=a xi = 1 if a > b, and c��0� = 1.
It is possible to obtain values of �

�j�
0 and c��j� � j = 1� � � � � n, recursively so

that the test satisfies Eqs. (1) and (2) for some specified spending function. At the
first interim analysis the probabilities under the null hypothesis of stopping and
rejecting or not rejecting this hypothesis are, respectively, P1 = c��1� and 1− �

�1�
0 , so

that these can be set equal to �∗U �t1� and �∗L�t1�, respectively. At the jth interim
analysis, the probability under the null hypothesis of stopping and not rejecting
this hypothesis, given that the trial has not stopped earlier, is 1− �

�j�
0 . If the values

of c��i� and �
�i�
0 , for i = 1� � � � � j − 1 have been obtained so that the test satisfies

Eqs. (1) and (2) for earlier looks, the probability of not having stopped before
the jth look is 1− �∗U �tj−1�− �∗L�tj−1�. The probability of stopping at the jth look
and not rejecting the null hypothesis is, thus, equal to �1− �

�j�
0 ��1− �∗U �tj−1�−

�∗L�tj−1��. To satisfy Eqs. (1) and (2), this must be equal to �∗L�tj�− �∗L�tj−1�, so that
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�
�j�
0 = �1− �∗U �tj−1�− �∗L�tj��/�1− �∗U �tj−1�− �∗L�tj−1��. It is also desired that the
probability of stopping at the jth interim analysis and rejecting the null hypothesis is
equal to �∗U �tj�− �∗U �tj−1�. A value of c��j� to achieve this can be found from Eq. (3)
with Pj set equal to �∗U �tj�− �∗U �tj−1�.

Since p1� � � � � pn are based upon observations from different groups of patients
in the trial, under the null hypothesis of no difference between the treatments, they
will have independent uniform distributions irrespective of the choice of sample size
for the different stages. This means that design adaptations that lead to changes
in the choice of sample size for different stages of the trial do not alter the null
distribution of p1� � � � � pn, and so do not affect the overall type I error rate for
the procedure. In contrast to the group-sequential design approach, therefore, the
adaptive design methodology allows considerable flexibility in design modifications.
In particular, the sample size of the second stage and subsequent stages can depend
on the treatment difference observed at earlier stages.

3.3. Adaptive Group-Sequential Designs

An adaptive version of the group-sequential test was proposed by Lehmacher
and Wassmer (1999). In this approach, which is sometimes called the inverse-
normal method, the evidence from the different stages of the trial is combined
via the use of weighted inverse normal functions of the observed p-values.
The test statistic used at the jth interim analysis is, thus, w1	

−1�1− p1�+ · · · +
wj	

−1�1− pj� for some weights w1� � � � � wn chosen independently of the observed
data, since, under the null hypothesis, pj ∼ U�0� 1�� wj	

−1�1− pj� ∼ N�0� w2
j �. If

the weights, wj , given to the test statistic contributions from the different interim
analyses are chosen independently of the observed data, for example, by being
determined in advance, the wj	

−1�1− pj� terms are independent, so that under
the null hypothesis, w1	

−1�1− p1�+ · · · + wj	
−1�1− pj� ∼ N�0� w2

1 + · · · + w2
j �. If

w2
j was equal to the information from the new data at the jth interim analysis, Ij , the

sum w1	
−1�1− p1�+ · · · + wj	

−1�1− pj� thus has the same distribution under the
null hypothesis as the sum X1 + · · · + Xj , and so can be compared to the standard
group-sequential boundaries to give a test satisfying Eqs. (1) and (2). In practice,
the observed information levels, I1� � � � � In, depend on the observed data and so are
not known in advance. Their expected values are known in advance, however, as
these depend on the sample size. It is therefore proposed that the standard group-
sequential boundaries are used with w2

j set to be E�Ij� (Müller and Schäfer, 2001).
This approach, then, uses the same stopping boundaries as the group-sequential
approach, but with a different test statistic being compared with these boundaries.
The way in which the test statistic is constructed from the p-values obtained from
the new data available at each interim analysis means that this method has all of
the flexibility of the adaptive approach.

4. COMPARISON OF THE CONTINUATION REGIONS FOR THE
ALTERNATIVE METHODS

This section illustrates the continuation regions for the three methods
described in the previous section. The continuation regions are calculated for a trial
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that is designed to have two-stages, where no modification is allowed. It is also
assumed, as stated in Section 2, that the p-values are obtained by using efficient
score statistics, and that these follow their asymptotic normal distributions so that
pj ≤ 1−	�Xj/

√
Ij�� X1 + · · · + Xj = Sj and I1� � � � � Ij are as planned with I1 + · · · +

Ij = Vj for j = 1� � � � � n. The boundaries for each method are illustrated in terms of
both the cumulative efficient scores and p-values.

The stopping boundaries for the two-stage group-sequential trial are specified
in terms of the cumulative efficient scores S1 and S2, with stopping at the first look
if S1 ≤ l1 or S1 ≥ u1, with H0 rejected if S1 ≥ u1, or S2 ≥ u2. Under the previous
assumptions, we can also write the stopping boundaries in terms of p-values:
the trial will stop at the first interim analysis if p1 ≤ 1−	�u1/

√
V1� or p1 ≥

1−	�l1/
√
V1�, with the null hypothesis being rejected if p1 ≤ 1−	�u1/

√
V1� or

p2 ≤ 1−	��u2 −
√
V1	

−1�1− p1��/
√
�V2 − V1��. As described in Section 3.3, if the

weights w1 and w2 are chosen to be equal to 1/
√
E�I1� and 1/

√
E�I2�, then the

stopping boundaries for the adaptive group-sequential design are identical to these
group-sequential boundaries.

For a two-stage Fisher’s combination test, the stopping boundaries are given
in terms of the p-values with the test stopping at the first look if p1 ≥ �0 or p1 ≤
�1 and H0 rejected if p1 ≤ �1 or p1p2 ≤ c� for appropriate choices of �0� �1, and
c�. Under the assumptions outlined at the start of this section, these stopping
rules can be expressed in terms of the cumulative efficient score statistics. At the
first look, p1 ≤ �0 if S1 ≥ l1 where l1 =

√
V1	

−1�1− �0� and p1 ≤ �1 if S1 ≥ u1 where

Figure 1 Continuation regions in terms of S1 and S2 for Fisher’s combination (solid line) and group-
sequential (or adaptive group-sequential) (dotted line) designs with �1 = 0�0125 and �0 = 0�5125.
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Figure 2 Continuation regions in terms of p1 and p2 for Fisher’s combination (solid line) and group-
sequential (or adaptive group-sequential) (dotted line) designs with �1 = 0�0125 and �0 = 0�5125.

u1 =
√
V1	

−1�1− �1�. At the second look, p1p2 = �1−	�X1/
√
I1���1−	�X2/

√
I2��,

and so is approximately equal to �1−	�S1/
√
V1���1−	��S2 − S1�/

√
�V2 − V1���,

so that p1p2 ≤ c� if S2 ≥ S1 +
√
�V2 − V1�	

−1�1− c�/�1−	�S1/
√
V1���.

These expressions for the boundaries of the group-sequential and Fisher’s
combination test enable a comparison of the designs. For a comparison of designs
that are as similar as possible, the two-look tests may be constructed with the same
overall type I error rate and the same probability of rejecting the null hypothesis at
the first interim analysis. For each design it is assumed that the interim analyses are
taken at their planned times half-way through and at the end of the trial, and that
the designs are not adapted after the first interim analysis. The trials are designed
to have �∗U �0�5� = �1 = 0�0125, and 1− �∗L�0�5� = �0 = 0�5125, corresponding to
�∗U �t� = 0�025t and �∗L�t� = 0�975t, the simplest of the family of spending functions
proposed by Hwang et al. (1990).

Figures 1 and 2 show the corresponding continuation regions in terms of the
cumulative efficient scores, S1 and S2, and p-values, p1 and p2, respectively. Since the
interim analyses are assumed to be taken at their planned times and the designs are
not adapted after the first interim analysis, the limits of the continuation regions at
the first interim analysis coincide for all three methods (these are the vertical lines
on the plots). The figures show that if there is relatively little evidence of a treatment
effect at the first interim analysis, stronger evidence of a treatment effect from the
data observed at the second interim analysis is required for rejection of the null
hypothesis when using the group-sequential or adaptive group-sequential methods,
than for the Fisher’s combination method. If there is more considerable evidence of
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a treatment effect from the first interim analysis, the group-sequential or adaptive
group-sequential methods require less strong evidence of a treatment effect from the
second interim analysis than for the Fisher’s combination method for rejection of
the null hypothesis.

5. COMPARISON OF ERROR RATES

This section presents a simulation-based comparison of the type I error rate
and power of the group-sequential and adaptive design methods for comparing two
normal populations. In the simulation study, two different trial designs have been
considered. The first is for a trial with two stages, planned to be of equal size.
The second is for a trial with five stages, again planned to be of equal size. The
same alpha-spending functions were used for all methods, so that under the null
hypothesis, the planned probabilities of stopping are identical.

The stopping boundaries are obtained with � taken to be the standardized
difference in means between the experimental and control groups, ��E − �C�/,
where �E and �C are, respectively, the means for the experimental and control
groups and  is the common standard deviation. Suppose that, at the jth interim
analysis, a total of nE and nC observations have been taken on the experimental and
control arms, respectively, with SE and SC denoting the sums of the observations in
the two groups. For this choice of �, the test statistics Sj and Vj are given by

Sj =
nCSE − nESC
�nE + nC�D

(4)

and

Vj =
nCnE

�nE + nC�
− S2

j

2�nE + nC�
(5)

where

D =
√{

Q

�nE + nC�
− �SE + SC�

2

�nE + nC�
2

}

with Q being the total sample sum of squares of observations in the two groups
(see Whitehead, 1997). Test statistics Xj and Ij , based on the new data at
each interim analysis, can be obtained from similar expressions. The use of a
standardized difference � rather than, for example, the more natural absolute
difference, ��E − �C�, is suggested by Whitehead (1997), since it leads to Sj more
closely approximating its asymptotic normal distribution when the sample size is
small (Facey, 1992).

The probability of stopping at any stage is specified via error spending
functions; that is, the test is designed to satisfy Eqs. (1) and (2). The spending
functions �∗U �t� = 0�025t and �∗L�t� = 0�975t, as suggested by Hwang et al. (1990)
were used. The planned maximum information Vmax is calculated so as to have
power of 0.8 for a value of � equal to 0.4. For a two-stage test, this leads to a
value of V2 of 53, and for the five-stage test, to a value of V5 of 57. Under the
null hypothesis, if patients are allocated equally to the experimental and control
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groups, V is approximately equal to one-half of the number of observations in each
group, or one-quarter of the total number of observations. In the two-stage design,
therefore, 53 patients per arm are required at each stage, and in the five-stage design,
22 patients per arm at each stage are required.

As stated in Section 3, the information, tj , at the jth interim analysis that is
used to calculate the boundary values uj and lj can be calculated in one of two ways.
The simulations were used to investigate the methods when tj is taken to be j/n, or
set to be the ratio of the observed Vj to Vmax.

The comparisons are conducted in three settings. The first is that in which
the planned design is followed without any modification. In this case, the work of
Jennison and Turnbull (2003) would lead us to expect that the adaptive approach
would be less powerful. It is of interest, however, to consider the extent of the
reduction in power associated with the adaptive design in the practical setting
described previously, in which the adaptive and group-sequential designs are as
similar as possible.

At the first interim analysis, data are available from 53 patients in each
treatment group in the two-stage trial and 22 patients in each treatment group in
the five-stage trial. As illustrated in the previous section, given the assumptions we
are using, the boundaries for the first stage are identical for all three methods. The
data from these patients are used to calculate the test statistics S1 = X1 and V1 = I1
using Eqs. (4) and (5). Boundary values u1 and l1 can be found to satisfy Eqs. (1)
and (2), where, as described previously, the information time for the first interim
analysis can either be taken to be 1/n, where n is the maximum planned number of
interim analyses, or be set to the ratio of V1 to the planned maximum information.
If S1 lies in the interval �l1� u1�, the trial will continue with a further 53 or 22 patients
per treatment group.

If the trial continues to the second stage, then for the group-sequential
approach, the total sample is used to obtain S2 and V2, and critical values l2 and
u2 are obtained to satisfy Eqs. (1) and (2) using the observed values of V1 and V2

and the critical values l1 and u1 from the first interim analysis. For the Fisher’s
combination method, the new data can be used to obtain X2 and I2, from which a
p-value, p2, can be calculated. The product of the p-values, p1p2, is then compared
with the critical value, c�. For the adaptive group-sequential method, the sum of
the weighted inverse normal functions, in this case equal to X1 + X2, is compared
with the standard group-sequential boundaries. In the five-stage design, if the test
statistic is between the critical values at the second look, the trial continues to the
third look, and so on.

If the information time at the jth interim analysis is taken to be j/n, the
trial must stop after n looks. If the observed information is used, however, since
this depends on the observed data, it may happen that Vn is less than the planned
maximum information, Vmax, and that neither boundary is crossed by the final
planned interim analysis. In the simulations, for the two-stage designs, the test was
stopped at the second look, and a final analysis was obtained, allowing for the
previously conducted interim analysis; essentially, the information time was taken to
be 1 so that termination of the trial was assured. For the five-stage test, the trial was
allowed to continue, with further boundary values obtained via the defined spending
function, until one or the other boundary was reached, or until a maximum of ten
interim analyses had been conducted.
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The second setting is that in which modification of the design at the interim
analyses is undertaken based on the observed estimate of the standard deviation,
, is allowed. The trial is designed to have power 0.8 when the true standardized
difference in means between the two groups is 0.4. In many cases, however, attention
might focus not on this standardized difference, but on the absolute difference, �E −
�C . If the anticipated value of  is 1, it might be desired to have power of 0.8 when
this absolute difference is 0.4. If the true value of  exceeds 1, the power for the trial
to detect this difference will be less than 0.8. Gould (1995) has suggested the use
of interim analysis data to estimate the value of  and modify the sample size for
subsequent stages to maintain power for a specified absolute difference. In a two-
stage design, after the first interim analysis, an estimate of  is obtained, and a new
value of Vmax, equal to the original value divided by the square of the estimate of ,
is calculated. The sample size for the next stage is then calculated in order to achieve
the new expected total information. For the five-stage design, the sample size for
the next stage is chosen so as to achieve the required total information, given the
current estimate of , if the remaining looks were all to be of equal size. In this
case, we expect the adaptive design approach to maintain the overall type I error
rate whatever design adaptations are made. For the group-sequential approach, the
type I error rate may not be preserved, and the magnitude of any deviations from
the planned error rate is of interest.

When the sample size is adjusted in this way, if the estimate of  obtained
at an interim analysis is less than that anticipated at the design stage, the revised
total sample size might be less than that already observed. If this occurred in the
simulations, the trial was stopped at this point and an analysis conducted allowing
for any previous interim analyses.

The third setting is that in which the estimated value of the treatment
difference, �, is used to determine the sample size for the next stage, as proposed
by Cui et al. (1999). This is appropriate if the stopping rule has been designed to
give specified power for a large treatment effect, �R say, in the hope of a small
sample size, but a smaller treatment effect might, nevertheless, be of interest. In this
case, if a smaller treatment effect, �̂, is indicated at the interim analysis, it might
be considered worthwhile increasing the sample size to maintain power to detect
this smaller effect. In this case, a new value of Vmax, equal to the original value
multiplied by (�R/�̂�

2, is found. The sample size for the next stage is then taken to
achieve this new expected total information by the end of the trial. As for the sample
size recalculation based on the estimated standard deviation, we expect the adaptive
design approach to maintain the overall type I error rate. However, the type I error
rate for the group-sequential approach may not be preserved.

If this method is used, a very small estimate of the treatment difference at
an interim analysis will lead to a very large sample size. In the simulation study,
a maximum total sample size of 1,000 patients per treatment arm was imposed.
As soon as this sample size was attained, the trial was stopped and an analysis
performed, allowing for previous interim analyses.

For each of the three settings described, simulations were conducted for
�E − �C = 0; that is, under the null hypothesis, and �E − �C = 0�4 for values of 
ranging from 0.5 to 2, so that the true value of � = ��E − �C�/, ranges from 0.2 to
0.8. In each case, 10,000 trials were simulated. For a true one-sided type I error rate
of 0.025 and power of 0.8, this would lead to standard errors in the simulation-based
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estimates of 0.0016 and 0.004, respectively. For the two-stage design, the stopping
rule at the first interim analysis is the same for the adaptive and group-sequential
approaches, as illustrated in Section 4. For these simulations, the same simulated
trials were used for the evaluation of the different methods. Thus, the average
sample sizes are the same. For the five-stage design, the stopping rules at stages two
and beyond depend on the way in which the information from the different stages is
combined, so that in this case different simulations were conducted for the different
approaches.

5.1. Comparison of Error Rates When the Design is not Modified

The results from the simulations with no design modifications are given in
Tables 1 and 2 for the two and five-stage designs, respectively. In each case, the
proportion of trials that led to rejection of the null hypothesis in the positive
direction, that is, an estimate of the one-sided type I error rate or power, and the
average sample size are given.

The results given in Tables 1 and 2 show that all methods effectively maintain
the overall one-sided type I error rate at the nominal 0.025 level, with very little
difference between the results for the test constructed using information time of
j/n for the jth look and that using the observed information level. Unsurprisingly,
the power decreases as  increases, or equivalently as the effect size, �, decreases.

Table 1 Simulation results for two-stage trials with no modification at the interim analysis

Estimated power

(�E − �C )  Fisher’s combination Adaptive group-sequential Group-sequential
Average

sample size

Information time at interim analysis taken to be 1/2
0 0�5 0.0262 0.0266 0.0252 158.0
0 0�75 0.0265 0.0262 0.0256 157.8
0 1�0 0.0253 0.0252 0.0247 159.5
0 1�5 0.0254 0.0254 0.0247 158.4
0 2 0.0267 0.0269 0.0261 159.4

0.4 0�5 0.9993 0.9995 0.9995 112.9
0.4 0�75 0.9499 0.9504 0.9493 143.9
0.4 1�0 0.7710 0.7763 0.7691 168.0
0.4 1�5 0.4350 0.4365 0.4310 184.5
0.4 2 0.2847 0.2885 0.2804 184.6

Information time depending on observed information

0 0�5 0.0264 0.0266 0.0257 159.2
0 0�75 0.0263 0.0258 0.0257 158.7
0 1�0 0.0245 0.0237 0.0237 160.4
0 1�5 0.0257 0.0254 0.0249 159.4
0 2 0.0265 0.0259 0.0255 160.2

0.4 0�5 0.9993 0.9995 0.9995 113.1
0.4 0�75 0.9497 0.9494 0.9488 144.6
0.4 1�0 0.7702 0.7734 0.7693 168.9
0.4 1�5 0.4350 0.4333 0.4299 185.5
0.4 2 0.2860 0.2858 0.2810 185.4
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Table 2 Simulation results for five-stage trials with no modification at the interim analysis

Fisher’s combination Adaptive group-sequential Group-sequential

��E − �C�  Power Sample size Power Sample size Power Sample size

Information time at interim analysis j taken to be j/5
0 0�5 0.0278 132�2 0.0277 131�8 0.0276 131�8
0 0�75 0.0258 131�5 0.0265 132�4 0.0264 132�4
0 1�0 0.0246 131�6 0.0262 131�1 0.0268 130�9
0 1�5 0.0253 131�8 0.0247 132�0 0.0247 131�7
0 2 0.0269 131�0 0.0271 131�0 0.0250 131�1

0.4 0�5 0.9988 84�7 0.9995 82�9 0.9996 83�0
0.4 0�75 0.9281 125�7 0.9408 123�9 0.9416 124�0
0.4 1�0 0.7174 152�1 0.7492 154�0 0.7463 154�0
0.4 1�5 0.3914 166�7 0.4159 172�2 0.4168 171�9
0.4 2 0.2524 164�2 0.2702 171�4 0.2653 172�4

Information time depending on observed information

0 0�5 0.0269 137�3 0.0264 137�8 0.0263 136�8
0 0�75 0.0253 137�3 0.0261 137�8 0.0263 137�3
0 1�0 0.0248 138�1 0.0259 137�4 0.0273 136�5
0 1�5 0.0244 136�0 0.0262 137�1 0.0258 136�8
0 2 0.0268 137�7 0.0264 138�2 0.0254 137�1

0.4 0�5 0.9994 86�1 0.9998 84�1 0.9998 84�3
0.4 0�75 0.9424 130�2 0.9605 128�3 0.9604 128�2
0.4 1�0 0.7488 159�7 0.7872 163�4 0.7847 163�5
0.4 1�5 0.4152 176�6 0.4464 186�8 0.4429 186�0
0.4 2 0.2605 176�6 0.2779 186�8 0.2773 185�3

It is interesting to observe that when  = 1, that is, under the specified alternative
hypothesis that was used to calculate the boundaries, the power is slightly below
the nominal level of 0.8 for all methods. The sample size requirement calculation
was based on the assumption of normality, and it is presumably a violation of this
assumption in the relatively small sample sizes that leads to this deviation from the
anticipated power. It was anticipated that the power would be lower for the adaptive
design approach than for the group-sequential approach, and lowest for the Fisher’s
combination method. The simulations indicate, however, that any differences in
power are very small indeed; in this case smaller than the simulation error. When
the difference between the means is 0.4, the average sample size also increases as 
increases, because � decreases, and thus early stopping is less likely.

5.2. Comparison of Error Rates When the Sample Size is Modified
Based on the Estimated Standard Deviation

The results of the simulations when the sample size is modified according
to the estimated standard deviation are presented in Tables 3 and 4, in a style
analogous to the results of Tables 1 and 2.

The results indicate that for the Fisher’s combination method and the
adaptive group-sequential method, the type I error rate is sometimes inflated above
the nominal 0.025 level when  is equal to 1 or less. For small values of ,
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Table 3 Simulation results for two-stage trials with sample-size re-estimation at the interim analysis
based on estimated standard deviation

Estimated power

��E − �C�  Fisher’s combination Adaptive group-sequential Group-sequential
Average

sample size

Information time at interim analysis taken to be 1/2
0 0�5 0.0249 0.0249 0.0249 106.0
0 0�75 0.0331 0.0445 0.0263 114.5
0 1�0 0.0273 0.0265 0.0266 160.1
0 1�5 0.0262 0.0261 0.0263 294.0
0 2 0.0264 0.0262 0.0269 474.3

0.4 0�5 0.9638 0.9638 0.9638 106.0
0.4 0�75 0.7806 0.7863 0.7963 113.0
0.4 1�0 0.7750 0.7785 0.7785 171.0
0.4 1�5 0.7321 0.7204 0.7410 382.3
0.4 2 0.6922 0.6708 0.7071 664.2

Information time depending on observed information

0 0�5 0.0249 0.0249 0.0249 106.0
0 0�75 0.0357 0.0470 0.0288 114.7
0 1�0 0.0281 0.0268 0.0266 160.7
0 1�5 0.0270 0.0253 0.0260 293.6
0 2 0.0269 0.0260 0.0254 486.7

0.4 0�5 0.9638 0.9638 0.9638 106.0
0.4 0�75 0.7805 0.7829 0.7942 113.0
0.4 1�0 0.7756 0.7774 0.7786 170.9
0.4 1�5 0.7343 0.7229 0.7411 385.8
0.4 2 0.6860 0.6601 0.6994 668.9

the sample sizes of the second and subsequent groups of patients is small. In
these circumstances, the assumption that the test statistics follow their asymptotic
distribution is most violated, and it is presumably this violation that leads to the
inaccuracies in the type I error rate. This is illustrated most markedly by the results
for the two-look tests in Table 3. When  is equal to 0.5, the predicted required
sample size is so small that the trial almost always stops after the first interim
analysis of 53 patients per group, leading to identical results for the three different
methods, with a total sample size of 106. For this sample size, the asymptotic result
holds and the error rate is close to 0.025. When  is equal to 0.75, the average
total sample size is 114.5. As the first interim analysis has 53 patients per group,
the average group size at the second interim analysis is just four patients. For
such a small sample size, the asymptotic distribution is likely to be a very poor
approximation, leading to the inaccurate type I error rates observed. For the group-
sequential method the test statistics at the second interim analysis are based on
all of the data observed up to that point. In this case, then, the small size of the
second group does not lead to inaccurate results. When  is above 1, the sample sizes
are larger and the one-sided type I error rate appears to be accurately controlled.
A similar pattern of results is indicated for the five-look tests, except that the error
rate is inflated even in the  = 0�5 case, since the sample size at the first interim
analysis of 22 patients per group is insufficient to always lead to trial termination.
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Table 4 Simulation results for five-stage trials with sample-size re-estimation at the interim analyses
based on estimated standard deviation

Fisher’s combination Adaptive group-sequential Group-sequential

��E − �C�  Power Sample size Power Sample size Power Sample size

Information time at interim analysis j taken to be j/5
0 0�5 0.0347 49�3 0.0310 49�3 0.0256 49�4
0 0�75 0.0301 84�0 0.0281 84�8 0.0274 84�6
0 1�0 0.0273 133�4 0.0278 135�5 0.0268 135�4
0 1�5 0.0260 277�3 0.0242 278�2 0.0248 275�9
0 2 0.0250 474�3 0.0260 472�6 0.0266 474�9

0.4 0�5 0.6616 49�7 0.6846 50�3 0.7416 49�9
0.4 0�75 0.7154 91�5 0.7429 93�3 0.7609 92�2
0.4 1�0 0.7346 155�0 0.7683 156�8 0.7666 156�7
0.4 1�5 0.7332 335�4 0.7471 345�1 0.7644 336�2
0.4 2 0.7259 579�8 0.7239 595�8 0.7432 581�5

Information time depending on observed information

0 0�5 0.0276 52�8 0.0355 52�8 0.0280 53�0
0 0�75 0.0262 99�9 0.0276 100�3 0.0247 100�3
0 1�0 0.0268 136�3 0.0297 136�3 0.0251 136�0
0 1�5 0.0262 172�9 0.0221 171�9 0.0247 172�1
0 2 0.0261 225�9 0.0236 228�1 0.0245 227�0

0.4 0�5 0.6545 53�0 0.6907 53�0 0.7645 52�6
0.4 0�75 0.7460 103�6 0.7851 102�2 0.7967 101�3
0.4 1�0 0.7352 156�4 0.7658 159�6 0.7721 159�1
0.4 1�5 0.4957 216�6 0.5011 218�0 0.5086 219�4
0.4 2 0.3431 260�9 0.3310 261�5 0.3545 261�7

For the two-stage test, or when the information time is taken to be
proportional to the number of interim analyses conducted in the five-stage test,
the sample-size re-estimation is fairly effective in maintaining the power close to
the nominal level of 0.8 for a range of values of  above 1, or equivalently
for true values of the effect size, �, below the anticipated value of 0.4, with an
associated increase in the sample size, when either the adaptive design or the group-
sequential approach is used, though the power appears slightly lower for the Fisher’s
combination method than for the other two methods and very slightly higher for
the group-sequential method than for the adaptive group-sequential method.

For the five-stage tests constructed using the information time proportional to
the observed information, the power is not maintained at the 0.8 level by the sample-
size re-estimation when � is less than 0.4. As explained previously, in this case if
the observed value of V exceeds the planned maximum value Vmax, the spending
function values are calculated with an information time of 1, so that the trial must
terminate. The trial, therefore, stops at the first interim analysis for which the sample
size exceeds the planned maximum. For small �, the value of V required to maintain
the power may be considerably in excess of the planned maximum value Vmax. Thus,
the ratio of V to Vmax exceeds one early in the trial. Consequently, the sample size
is severely limited with this approach, leading to the indicated loss in power and
smaller average sample sizes.
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5.3. Comparison of Error Rates When the Sample Size is Modified
Based on the Estimated Treatment Effect

Simulation results analogous to those discussed previously are given in Tables
5 and 6 for the trials with modification based on the estimated treatment effect.
In this case it can be seen that the sample size re-estimation has led to inflation
of the one-sided type I error rate for the group-sequential designs. By continuing
the trial longer exactly when a smaller treatment effect is observed, a positive result
is observed more often than planned under the null hypothesis when the group-
sequential method is used. With the adaptive design approaches, the weight given
to each observation from the second and subsequent stages is reduced if the sample
size is inflated. In this way, the overall type I error rate is controlled. As the type I
error rates are not controlled for the group-sequential method, comparisons of the
power of this design with that of the adaptive approach is inappropriate. The power
of the adaptive designs is well-maintained near the nominal 0.8 level, with slightly
lower power for the Fisher’s combination method, though this is, of course at the
cost of a large sample size when the true effect size is small. It can be seen that
under the null hypothesis, when the true effect size is equal to zero, and hence when
the estimate of treatment effect is often close to zero, a very large sample size may
be required using this approach. In practice, the sample size may be more limited

Table 5 Simulation results for two-stage trials with sample-size re-estimation at the interim analysis
based on estimated treatment effect

Estimated power

(�E − �C )  Fisher’s combination Adaptive group-sequential Group-sequential
Average

sample size

Information time at interim analysis taken to be 1/2
0 0�5 0.0259 0.0258 0.0299 767.2
0 0�75 0.0266 0.0264 0.0292 760.4
0 1�0 0.0285 0.0286 0.0326 758.3
0 1�5 0.0264 0.0262 0.0315 787.7
0 2 0.0228 0.0231 0.0275 763.9

0.4 0�5 0.9998 0.9998 0.9998 119.3
0.4 0�75 0.9908 0.9908 0.9909 242.3
0.4 1�0 0.9441 0.9467 0.9432 421.7
0.4 1�5 0.8057 0.8116 0.7994 690.9
0.4 2 0.6740 0.6669 0.6602 789.1

Information time depending on observed information

0 0�5 0.0266 0.0256 0.0307 776.8
0 0�75 0.0259 0.0253 0.0294 784.1
0 1�0 0.0248 0.0248 0.0291 781.4
0 1�5 0.0248 0.0252 0.0292 787.8
0 2 0.0255 0.0251 0.0300 785.0

0.4 0�5 0.9997 0.9996 0.9997 118.7
0.4 0�75 0.9908 0.9905 0.9906 240.3
0.4 1�0 0.9468 0.9480 0.9475 425.4
0.4 1�5 0.8058 0.8145 0.8119 697.6
0.4 2 0.6558 0.6609 0.6674 790.6
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Table 6 Simulation results for five-stage trials with sample-size re-estimation at the interim analyses
based on estimated treatment effect

Fisher’s combination Adaptive group-sequential Group-sequential

��E − �C�  Power Sample size Power Sample size Power Sample size

Information time at interim analysis j taken to be j/5
0 0�5 0.0242 1186�0 0.0225 1283�5 0.0214 1494�0
0 0�75 0.0224 1174�8 0.0223 1303�0 0.0198 1480�1
0 1�0 0.0238 1205�8 0.0259 1283�3 0.0213 1480�3
0 1�5 0.0224 1182�4 0.0241 1283�7 0.0212 1476�3
0 2 0.0266 1185�9 0.0268 1293�5 0.0212 1483�8

0.4 0�5 0.9659 99�0 0.9848 98�6 1.0000 167�8
0.4 0�75 0.9190 258�7 0.9675 269�5 0.9954 426�6
0.4 1�0 0.8810 429�1 0.9442 452�1 0.9867 670�2
0.4 1�5 0.8216 727�7 0.8874 791�0 0.9602 1018�7
0.4 2 0.7574 936�5 0.8095 1035�7 0.9169 1264�2

Information time depending on observed information

0 0�5 0.0196 695�9 0.0204 772�5 0.0321 1081�7
0 0�75 0.0185 696�6 0.0191 775�6 0.0337 1075�7
0 1�0 0.0199 688�4 0.0193 778�2 0.0303 1067�2
0 1�5 0.0194 701�1 0.0190 766�2 0.0326 1092�8
0 2 0.0187 697�8 0.0204 769�5 0.0327 1089�2

0.4 0�5 0.9938 106�2 0.9935 106�2 0.9995 161�8
0.4 0�75 0.9639 265�5 0.9726 269�4 0.9942 423�1
0.4 1�0 0.8767 418�6 0.9119 442�5 0.9664 655�3
0.4 1�5 0.6595 573�4 0.6947 616�9 0.8693 890�8
0.4 2 0.5075 637�8 0.5160 705�3 0.7483 983�7

than in the simulations presented here, and the trial would probably be terminated
if the estimate of the effect size was too small.

6. DISCUSSION

Recent work by Jennison and Turnbull (2003) and Tsiatis and Mehta (2003)
has compared the adaptive design approach as proposed by Bauer and Köhne
(1994), Lehmacher and Wassmer (1999), and Müller and Schäfer (2001) with the
more traditional group-sequential approach as described, for example, by Jennison
and Turnbull (2000) and Whitehead (1997). These comparisons are generally critical
of the adaptive design method. Indeed, Tsiatis and Mehta (2003) show that for any
adaptive design a more powerful group-sequential design can be found with the
same expected sample size.

The purpose of this paper is slightly different than that of the papers of
Tsiatis and Mehta and Jennison and Turnbull. Our aim has been to attempt to
compare adaptive and group-sequential designs in a practical setting. Our focus has
been not only on how the designs differ, but also on the practical implications of
any differences. In particular, our main comparison has been a simulation study
to assess the type I error rate and power of two-stage and five-stage sequential
procedures to compare two samples of normally-distributed observations, when
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the design is modified based on the estimated standard deviation at interim
analyses, when it is modified based on the estimated treatment effect, and when no
modification is made.

The simulation results indicate that if no design modifications are made on
the basis of results from interim analyses, the adaptive designs and group-sequential
designs both accurately attain the required overall type I error rate. For the two-
look tests, the power values for the different methods are very similar over the wide
range of values for the variance of the observations. For the five-look tests, the
power is very slightly less for the Fisher’s combination method than for the other
approaches, suggesting that the way in which evidence from the different stages in
the trial is combined has a small effect.

If the sample size of the trial is modified based on the interim analysis results
as suggested by Gould (1995), the overall type I error rate is generally maintained at
the nominal level by all of the methods considered. The exception to this is when the
true standard deviation is very small. In this case, the sample sizes for some groups
may be too small for asymptotic-based results to accurately apply. This leads to
inaccurate type I error rates for the Fisher’s combination method and the adaptive
group-sequential approach. In these methods, the asymptotic results are required
for the test statistics from the data from the new group of patients at each interim
analysis rather than from the total set of data observed up to that point.

As for when no design modifications were made, the approaches led to
two-stage tests with very similar power. For the five-stage tests, however, the
power does vary slightly between the methods, with greatest power for the group-
sequential method and lowest power for the Fisher’s combination method. The
sample size re-estimation is found to be fairly effective at preserving the power
at the desired level even when the variance of the observations is much larger
than that anticipated, provided the information time used for the calculation of
the spending functions is taken to be proportional to the number of observations;
that is, to the expected information, rather than the observed information. In the
latter case, when parameterization is in terms of the standardized difference in
means, the observed information does not depend on the variance, so that the
scope for sample size re-estimation in the five-stage design is severely limited, as
described previously. We therefore recommend that, if sample size re-estimation
is conducted in a sequential test with boundaries calculated using the spending
function approach, that the expected information be used for the information time
when calculating the spending function values.

In the final comparison, the sample size for the trial was modified based on the
size of the treatment effect estimates obtained at the interim analyses, as suggested
by Cui et al. (1999). In this case, the type I error rate is inflated slightly above the
nominal level when the group-sequential design is used. For the adaptive designs,
the type I error rate is preserved, as would be expected.

Although this paper has focused on the sequential analysis of normally
distributed data, we have also conducted limited simulations for trials with binary
data, using the method proposed by Whitehead et al. (2001) for sample size
recalculation. To make the setting similar to that used for the normal data
simulations reported previously, we designed the trial to have power of 0.8 to detect
a log-odds ratio of 0.8 for an average success probability of 0.3 and investigated
the type I error and power for a range of values for the actual average success



COMPARISON OF GROUP-SEQUENTIAL AND ADAPTIVE DESIGNS 737

probability. In this case, the deviation from normality appears to be relatively
unimportant, and results were similar to those reported previously for the normal
case. For a two-look trial with this power specification, the sample size per group is
252. If the trial had been designed to detect a larger treatment effect, the required
sample size would have been smaller and the asymptotic properties might not have
held. Maximum sample sizes much smaller than this are, however, fairly uncommon
in sequentially monitored trials.

The simulation results reported in this paper suggest that if no design
modifications are made, the adaptive, adaptive group-sequential, and group-
sequential methods perform similarly, so that there is little reason to prefer one
approach to another. This is particularly true if the adaptive group-sequential
method is used to combine the evidence from the different stages rather than the
Fisher’s combination method. If the group-sequential approach is used, the design
cannot be modified based on the observed treatment effect without inflation of the
type I error rate. For the Fisher’s combination method and the adaptive group-
sequential approach, modifications can be made so long as no group of patients is
so small that asymptotic results no longer hold. We conclude, therefore, that in any
case when such modifications might be considered, the adaptive design approach or
the adaptive group-sequential approach should be used. This provides the flexibility
to allow the design modification, and, if no such modification is made, leads to a
minimal loss in power over the group-sequential approach.
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