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Summary. In a sequential clinical trial, accrual of data on patients often continues after the stopping
criterion for the study has been met. This is termed “overrunning.” Overrunning occurs mainly when the
primary response from each patient is measured after some extended observation period. The objective of
this article is to compare two methods of allowing for overrunning. In particular, simulation studies are
reported that assess the two procedures in terms of how well they maintain the intended type I error rate.
The effect on power resulting from the incorporation of “overrunning data” using the two procedures is
evaluated.
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1. Introduction
In many sequential clinical trials valid data on the primary
efficacy outcome continue to be collected after the stopping
criterion for the study has been reached. This phenomenon
is termed “overrunning.” The additional data are referred to
as “overrunning data.” Scientifically, data from as many as
possible of the patients randomized into a clinical trial should
be included in the final analysis (ICH Guideline E9, 1998,
Section 5.2.1, http://www.ifpma.org/pdf.fpma/e9.pdf, In-
ternational Conference on Harmonization of Technical Re-
quirements for Registration of Pharmaceuticals for Human
Use, 1998). However, the overrunning data should be included
only if they are “valid” in the sense of having been collected
according to the protocol and such that the treatment and
assessment of the patients concerned were not influenced by
the fact that a stopping criterion had been met. This article
discusses ways in which overrunning data can be incorporated
into the final analysis of the trial.

A method for incorporating overrunning data into a fi-
nal trial analysis was proposed by Whitehead (1992) and is
implemented in the software PEST 4 (MPS Research Unit,
2000). It has been used in the analysis of numerous se-
quential trials (Whitehead, 1993; Moss et al., 1996; Derry
et al., 1997). The method involves ordering the potential
final datasets in the manner suggested by Fairbanks and
Madsen (1982). Experience with the analysis of Moss et al.
(1996) prompted Hall and Ding (2001) to propose a new
approach based on a method of combining p-values which

was then implemented in Moss et al. (2002). In this arti-
cle, these two approaches will be described, evaluated, and
compared.

It should be stressed that in both of the methods consid-
ered in this article, it is envisaged that once the stopping
criterion has been reached, recruitment to the study will be
stopped, and that subsequent reopening of recruitment will
not be an option. This is a practical and widespread con-
vention, although some individual clinical trials might oper-
ate differently. This convention means there is no point at
the time of the overrunning analysis considering whether the
original stopping criterion would still hold: there will be no
further data.

The trial of Viagra in erectile dysfunction (Derry et al.,
1997) provides a simple example of overrunning. Men with
erectile dysfunction due to spinal cord injury, and with a reg-
ular female partner, were randomized between Viagra and
placebo. The primary outcome was the patient’s subjective
assessment of erectile improvement after one month of treat-
ment, expressed as success or failure. A triangular test was
adopted and the sample path crossed the upper boundary (in-
dicating superiority of Viagra) after results from 20 patients
had become available. Recruitment to the trial was stopped,
but at this stage, there were 6 men who had been randomized
to treatment, but who had not yet provided their one-month
assessment. As there was no reason to suppose that their as-
sessments of treatment would be affected by the termination
of the trial, it was felt to be both valid and appropriate to
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include them in the final analysis. Further details of how this
was done are given in Section 4.

A second example of overrunning is provided by the
ASCLEPIOS (A Sandoz Clinical Evaluation Program of Isra-
pidine on Stroke) study (Whitehead, 1993). This was a clinical
comparison of an experimental calcium channel blocker with
a placebo control in the immediate treatment of patients who
had suffered an acute ischaemic stroke. The primary outcome
variable was the Barthel index (Mahoney and Barthel, 1965),
assessed 90 days after randomization. This measure of the pa-
tient’s functional status is expressed as an ordinal outcome,
with 21 possible values ranging from 0 (completely vegeta-
tive) to 100 (complete recovery) in steps of 5. An additional
state (which can be thought of as −5) was added to the scale
to represent death within 90 days.

Recruitment began in October 1989 and the first interim
analysis was conducted in September 1990 on data from
140 patients. The sample path had crossed the lower bound-
ary, indicating termination of the study due to the ineffec-
tiveness of the study drug. An independent review panel con-
firmed this decision and recruitment to the study was stopped.
Follow-up of all randomized patients to day 90 was continued.
Thirteen months later, in October 1991, a final analysis was
conducted on data from 229 patients, which included all pa-
tients recruited during the 90 days preceding the termination
of the study, as well as those whose records were incomplete at
the time of termination. As the treatment period lasted only
a few days, most of these patients had already received all
of their study medication when recruitment to the study was
stopped. There was no way of altering their treatment, and
the blinding of the study was not broken. It was felt that their
responses would not be affected by the closure of the trial’s
recruitment, and so they were incorporated into the final anal-
ysis. In this example, the increase in sample size between the
termination of recruitment and the final analysis was large, in
part due to delays in data transfer. The lengthy delay before
the final analysis was due to the process of validating all of
the data.

2. Methods of Incorporating Overrunning Data
2.1 Analysis with No Overrunning
The methods of incorporating overrunning data discussed in
this article are extensions of the method of analyzing data
from a sequential trial without overrunning, which is de-
scribed in Section 5.4 of Whitehead (1997), and incorporated
into the software packages PEST (MPS Research Unit, 2000),
EaSt 2000 (Cytel, 2000), and SeqTrial (MathSoft, 2000). That
method will be outlined here, using notation from the first of
these references.

Patients are randomized between an experimental treat-
ment (E) and a control (C), and the parameter θ denotes
a measure of the advantage of E over C. The trial can be
expressed as a test of the null hypothesis H0: θ=0. Interim
analyses can be conducted in terms of the statistics Z and V,
where Z denotes the efficient score representing the cumula-
tive observed superiority of E over C, and V denotes Fisher’s
observed information, the information about θ gathered so
far. A sequential trial comprises a number of interim analy-
ses, at the ith of which the current score statistic Zi is plotted
against the current value of Fisher’s information, Vi . Upper

and lower stopping boundaries, denoted, respectively, by u1,
u2, . . . and �1, �2, . . . are defined in the Z-V plane. If Zi ≥ ui

then the trial will stop, with the conclusion that E is superior
to C. If Zi ≤ �i then the trial will stop, with the conclusion
that E is inferior to or no different from C, depending on the
design used and at what interim analysis this occurs. For de-
signs with a maximum intended value of Fisher’s information
Vmax, stopping will also occur if Vi ≥ Vmax.

Suppose that the trial terminates at the Tth inspection,
where T is a random variable. Then, either ZT lies outside
the interval (�T, uT) or VT ≥ Vmax. Denoting observed values
of T and ZT by t and zt, respectively, the outcome (T, ZT) is
considered to be more extreme than (t, zt) if (T<t and ZT ≥
uT) or (T = t and ZT ≥ zT). This ordering is due to Fairbanks
and Madsen (1982). The p-value function P(θ) can be defined
by P(θ)=P{(T, ZT) is more extreme than (t, zt); θ}. It can be
used to derive a one-sided p-value p+, a median unbiased esti-
mate θM, and a 100(1 − α)% confidence interval (θL, θU) from
p+ = P(0), P(θM) = 0.5, P(θL) = 1/2α, and P(θU)= 1 − 1/2α,
respectively. A one-sided p-value relating to the alternative
H−

1 : θ < 0 is given by p− = 1 − p+, and the two-sided p-value
is p = 2min(p+, p−). The p-value function can be computed
from

P(θ) = P{(T < t,ZT ≥ uT) or (T = t,ZT ≥ zT); θ} (2.1)

and the joint distribution of T and ZT; it will be monotonically
increasing.

Notice that if the trial stops at the first inspection, the anal-
ysis just described will be identical to the naive fixed sample
size analysis conducted on the available data.

2.2 The Deletion Method
The “deletion method” is the name that will be given here to
the approach introduced by Whitehead (1992), as its essential
feature is that the interim analysis leading to the recruitment
stoppage is deleted in the final analysis; otherwise, it is like
any other application of the Fairbanks and Madsen ordering.

Suppose that the sample path reaches a stopping boundary
at the tth interim analysis, but that data continue to be col-
lected and there is another inspection. The deletion method
analyses the trial as if the only interim analyses to have taken
place were those for I = 1, . . . , t − 1 and t + 1. That is,
the tth interim analysis is effectively deleted from the record.
Equation (2.1) becomes

P(θ) = P{(T < t,ZT ≥ uT) or (T = t + 1,ZT ≥ zT); θ}. (2.2)

This is evaluated assuming that the design only allowed stop-
ping with V = V1, . . . , Vt−1 or Vt+1. There is no need to assign
values to �t+1 or ut+1 for the calculation of P(θ). The deletion
method reduces to the analysis described in Section 2.1 when
Vt = Vt+1 and Zt = Zt+1.

2.3 The Method of Combining p-values
The method due to Hall and Ding (2001) will be referred to
here as “the method of combining p-values.” Suppose that
P1(θ) and P2(θ) are two monotonically increasing p-value
functions, relating to different datasets, but to the same pa-
rameter θ, and that w1 and w2 are constants satisfying w2

1 +
w2

2 = 1. Hall and Ding show that P(θ) defined as

P(θ) = 1 − Φ[w1g{P1(θ)} + w2g{P2(θ)}] (2.3)
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is also a monotonically increasing p-value function, in the
sense that it will give rise to valid p-values and confidence lim-
its when used as described in Section 2.1, where Φ denotes the
standard normal distribution function and g(x) = Φ−1(1−x)
for all x ∈ (0, 1).

Set VO = Vt+1 − Vt and ZO = Zt+1 − Zt. Define P1(θ) to be
the p-value function arising from the sequential portion of the
trial as defined in equation (2.1), and P2(θ) to be the p-value
function arising from the overrunning data, treated as if from
an independent fixed-sample trial. Making asymptotic normal
assumptions, that is P2(θ) = 1 − Φ{(ZO − θVO)/(VO)}. These
definitions, together with equation (2.3), allow an analysis of
the trial that incorporates overrunning for any pair of weights
w1 and w2. Hall and Ding use the weights

w1 =

√
VT

VT + VO
and w2 =

√
VO

VT + VO
, (2.4)

where VT is the value of Fisher’s information at the trial’s ter-
mination. They point out that these are not constant so that,
although the p-value function given by (2.3) will be monotoni-
cally increasing, it may not lead to valid p-values or confidence
limits. They use some precise computations to demonstrate
that any lack of validity is likely to be small. In this article, w1

and w2 given by equation (2.4) are referred to as “the random
weights.”

Hall and Ding also discuss the use of expected values of V
in the definition of weights. Expected values of VT and VO

could be used, but the properties of sample sizes (or in the
case of survival data, of numbers of events) are likely to be
more readily accessible in practice, and expectations in terms
of V are likely to be approximately proportional to those in
terms of the sample size n. Here, we will explore the weights

w′
1 =

√
E(nT;0)

E(nT;0) + E(nO;0)
and

w′
2 =

√
E(nO;0)

E(nT;0) + E(nO;0)
, (2.5)

where nT and nO denote the sample sizes in the sequential
and overrunning portions of the trial, respectively, and ex-
pectations are computed under the null hypothesis. In this
article, w′

1 and w′
2 given by equation (2.5) are referred to as

“the fixed weights,” and as they are constants, the result of
Hall and Ding (2001) we discussed following equation (2.3)
above applies. Thus, this second choice will lead to valid p-
values, although in practice, the relative weightings of the

Table 1
Alternative final analyses of the Viagra and ASCLEPIOS trials; the methods are 0:

ignoring overrunning, 1: deletion method, 2: combining p-values (random weights) and 3:
combining p-values (fixed weights)

Viagra ASCLEPIOS

Method p θM (θL,θU) p θM (θL,θU)

0 0.00377 2.735 (0.906, 4.527) 0.225 −0.382 (−0.998, 0.235)
1 0.00313 2.718 (0.972, 4.362) 0.678 −0.099 (−0.569, 0.370)
2 0.00089 2.794 (1.164, 4.401) 0.678 −0.099 (−0.569, 0.370)
3 0.00111 2.777 (1.128, 4.401) 0.466 −0.180 (−0.663, 0.304)

two portions of information might not be the most appropri-
ate resulting in an inefficient analysis. When using the fixed
weights, their values should be fixed prior to starting the trial,
or at least prior to conducting the first interim analysis. In
reality, the value used for E(nO; 0) is likely to be based on
guesswork, probably anticipating some constant amount of
overrunning. Inaccuracy in anticipating the value of E(nO; 0)
will further erode the efficiency of the weighting, but it will
not compromise the validity of the analysis.

3. Examples of Analyses Incorporating Overrunning
3.1 The Trial of Viagra
In the Viagra trial, the target treatment advantage was an in-
crease in success rate from pC = 0.25 on control to pE = 0.60
on experimental, which corresponded to a log-odds ratio of
θ= 1.50. The power was set at 0.80 to detect θ = 1.50 as sig-
nificant at the two-sided 0.05 level. The trial was conducted as
a triangular test, with stopping boundaries at Z = (−2.834+
1.586V) and Z= (2.834 + 0.529V), adjusted for discrete
looks using the “Christmas tree correction” (Whitehead,
1997). The first look was designed to take place after responses
were available from 12 patients, and subsequent looks after ev-
ery 4 new responses. At the design stage, it could be seen that
E(nT; 0) = 38.1; as the anticipated recruitment rate was one
patient per week, it is reasonable to set E(nO; 0) = 4 for use
in setting the fixed weights.

Denote by nC and nE the number of responses and by SC

and SE the number of successes, on C and E, respectively.
Set n= nC + nE, S = SC + SE, and F = n − S. Then the
test statistics are given by Z = (nCSE − nESC)/n and V =
nEnCSF/n3. The first three interim analyses took place af-
ter 12, 16, and 20 responses had been received. Values for
(V, Z) were (0.750, 2.000), (0.984, 2.500), and (1.238, 3.500),
respectively. The third point lay above the upper stopping
boundary, so recruitment was stopped. However, 6 patients
were still under treatment at this stage.

Once the data from these 6 patients were available, an over-
running analysis to incorporate them was conducted, result-
ing in V=1.529 and Z = 4.385. This point remained above
the upper stopping boundary. Table 1 presents the p-values
(two-sided alternative), median unbiased estimates of θ and
95% confidence intervals, from various analyses based on these
data.

The fixed weights given by (2.5) were w′
1 = 0.951 and w′

2 =
0.308, whereas the random weights given by (2.4) turned out
to be w1 = 0.900 and w2 = 0.437. This indicates that use
of the fixed weights in this study takes too much account of
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the sequential part of the trial. The two combining p-values
approaches have resulted in the smallest p-values and the
largest point estimates.

3.2. The ASCLEPIOS Trial
In the ASCLEPIOS study, the primary outcome variable was
the Barthel index (or death) at 90 days. The proportional-
odds model (McCullagh, 1980) was assumed, and the common
log-odds ratio θ on better outcomes adopted as the measure
of treatment advantage. The power was set at 0.90 to detect
a target improvement on this scale of 0.56 as significant at
the two-sided 0.05 level. A log-odds ratio of θ = 0.56 corre-
sponded to an approximate reduction in the 90-day death rate
from 15% on control to 9% on experimental, and to a com-
mensurate improvement in the other Barthel categories. The
trial was conducted as a triangular test, with stopping bound-
aries at Z= (−8.809+0.510V) and Z= (8.809+ 0.170V).

The anticipated recruitment rate was 15 patients per
month. The first interim analysis was planned to take place
when 140 patients had completed their 90-day evaluations
which, allowing for the three-month delay in response, was
anticipated at 12 months after the start of the study. Sub-
sequent interim analyses were planned after every 90 new
responses, anticipated to be at six monthly intervals. For
this design E(nT; 0) = 236. As the anticipated recruitment
rate was 15 patients per month, allowing for the three-month
delay in response plus one month for data transfer, it was
reasonable to set E(nO; 0) = 60 for use in setting the fixed
weights.

The test statistics Z and V were calculated with adjust-
ment for the neurological score at baseline, time from stroke
to medication, and geographic region, as described by White-
head (1993, 1997) and implemented in PEST 4.

Recruitment began in October 1989, and the first interim
analysis was performed in September 1990, when 90-day
Barthel indices were available for 140 patients. Values for V
and Z were (10.104, −3.855); the lower stopping boundary
had been crossed and recruitment to the trial was terminated.
Follow-up of patients continued until their 90-day Barthel in-
dex was recorded. An overrunning analysis to incorporate
these data from 89 additional patients was conducted in
October 1991. The resulting values were V = 17.410 and Z =
−1.728, and this point remained below the stopping bound-
ary. The results from various analyses are included in Table 1.
The fixed weights given by (2.5) were w′

1 = 0.893 and w′
2 =

0.450, whereas the random weights given by (2.4) turned out
to be w1 = 0.762 and w2 = 0.648. In this case, the dele-
tion method and the random-weights approach give identi-
cal analyses. This is because, as pointed out at the end of
Section 2.1, the analysis based on the Fairbanks and Mad-
sen (1982) ordering coincides with the fixed-sample analysis
when stopping occurs at the first interim analysis. The dele-
tion method deletes the first interim analysis, leaving a trial
with only one analysis. The random weights method com-
bines a p-value from a one-interim analysis test with a fixed-
sample overrunning analysis, leading back to that same fixed-
sample analysis. The fixed-weights approach underweights the
slight revival of experimental fortunes during the overrunning
phase, and thus gives results closer to the analysis that ignores
overrunning.

4. A Simulation Study
A simulation study was conducted in the setting of the
ASCLEPIOS study. Day-90 Barthel indices were simulated
for each patient in the study on a six-point scale represent-
ing the outcomes death, score 0, scores 5–35, 40–65, 70–95,
or 100. For control patients, the probabilities of these out-
comes were taken to be 0.169, 0.015, 0.242, 0.318, 0.181, and
0.075, respectively, as used at the design stage (Whitehead,
1993). (To overcome rounding errors, the first probability
has been increased from 0.166 to 0.169 for use here.) The
trial was simulated both under H0 and under a proportional-
odds alternative (H1) with log-odds ratio θ = 0.56; for H1

the corresponding six outcome probabilities for experimen-
tal patients were 0.104, 0.010, 0.184, 0.326, 0.252, and 0.124,
respectively.

For all simulation runs, the two-sided significance level was
set to be α = 0.05 and the power when θ = 0.56 to be 1−β =
0.90. The same triangular design as used in the real trial was
examined, together with a restricted procedure with slope
zero satisfying the same specification (Whitehead, 1997). This
procedure coincides with the O’Brien and Fleming (1979) de-
sign. However, in setting the stopping limits, the PEST 4 im-
plementation uses the Christmas tree correction to allow for
the intervals between interim analyses, rather than the more
accurate approach of recursive numerical integration. In final
analyses, the recursive numerical integration method can be
adopted.

Two analysis inspection intervals (every 30 or every 90 new
patient responses) were explored. The latter choice matched
the planned analysis inspection interval for the actual trial
(following the first interim analysis) and the former was in-
cluded for the simulations of the triangular test only. It was
imagined that the anticipated overrunning would comprise 60
new patient responses. Most of the simulations investigate
the case in which 60 overrunning patients were actually ob-
served, but some of those for the triangular test included a
scenario in which the overrunning was actually twice that an-
ticipated, giving 120 new-patient responses. For comparison,
situations in which no overrunning was anticipated and none
was observed were also considered. Ten thousand replicate
simulations were conducted for each setting.

For the triangular test using the method of combining p-
values with fixed weights, inspection intervals of 30 and 90
correspond to E(nT; 0) = 221 and 236, respectively. The
anticipated amount of overrunning was 60 patients, and so
E(nO; 0) = 60 was used in (2.5) to calculate w′

1 and w′
2. For

the O’Brien and Fleming design, E(nT; 0) = 444.
Tables 2–5 present the principal results for the triangu-

lar test. For each situation, the following items are recorded.
First, the counts of trials crossing the upper boundary are
given. (These should be equal to 250 under H0 and 9000 un-
der H1.) For ease of comparison, the simulations without over-
running reported in Table 2 were constructed to match the
later runs performed with an overrun of 60 patients. This was
accomplished by using the same random seed and generating
the overrunning data, but not using them. Next are given the
number of times the one-sided p-value for evidence favoring
the experimental treatment (p+) is less than 0.0125 and is less
than 0.025, and the number of times the one-sided p-value for
evidence favoring the control treatment (p−) is less than 0.025.
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Table 2
Simulation results for the triangular test with no overrunning

Hypothesis H0 H1

Inspection interval 30 90 30 90

Crossed upper 249 261 8981 8992
p+ ≤ 0.0125 116 125 6430 6753
p+ ≤ 0.025 249 260 8981 8992
p− ≤ 0.025 232 217 1 1
θL > θ 249 260 205 244
θM > θ 4972 5042 4957 4981
θU > θ 9768 9783 9729 9766
P97.5(θL) −0.0002 0.0018 0.5356 0.5563
MED(θM) −0.0016 0.0023 0.5573 0.5588
P02.5(θU) 0.0158 0.0209 0.5538 0.5671

The number of times the 95% confidence limits θL and θU and
the median unbiased estimate θM exceed the value of θ used
in the simulation are then given (cf. 250, 5000, and 9750 for
θL, θM, and θU, respectively). Finally, the 97.5th percentile of
θL, the median of θM, and the 2.5th percentile of θU (respec-
tively, denoted by P97.5(θL), MED(θM), and P02.5(θU)), are

Table 3
Simulation results for the triangular test, with method of combining p-values with fixed weights

Hypothesis H0 H1

Inspection interval 30 90 30 90

Overrun 60 120 60 120 60 120 60 120

Crossed upper 249 261 261 250 8981 8984 8992 8998
p+ ≤ 0.0125 113 141 125 120 7626 8484 7795 8507
p+ ≤ 0.025 228 259 256 251 8664 9111 8751 9158
p− ≤ 0.025 240 243 269 232 1 0 0 0
θL > θ 228 259 256 251 214 248 243 224
θM > θ 4979 5027 5074 4983 4949 5021 5008 4973
θU > θ 9760 9757 9731 9768 9734 9753 9762 9758
P97.5(θL) −0.0056 0.0033 0.0017 0.0006 0.5476 0.5595 0.5532 0.5480
MED(θM) −0.0011 0.0014 0.0042 −0.0008 0.5574 0.5610 0.5604 0.5574
P02.5(θU) 0.0074 0.0025 −0.0081 0.0088 0.5526 0.5616 0.5635 0.5615

Table 4
Simulation results for the triangular test, with method of combining p-values with random weights

Hypothesis H0 H1

Inspection interval 30 90 30 90

Overrun 60 120 60 120 60 120 60 120

Crossed upper 249 261 261 250 8981 8984 8992 8998
p+ ≤ 0.0125 102 114 106 99 7582 8277 7771 6884
p+ ≤ 0.025 212 242 241 236 8742 9002 8828 9130
p− ≤ 0.025 229 222 216 217 1 0 0 0
θL > θ 212 242 241 236 196 222 198 79
θM > θ 5150 5287 5239 5205 4777 4763 4840 4219
θU > θ 9771 9778 9784 9783 9770 9812 9791 9860
P97.5(θL) −0.0089 −0.0044 −0.0029 −0.0044 0.5288 0.5449 0.5358 0.4665
MED(θM) 0.0082 0.0099 0.0132 0.0099 0.5494 0.5490 0.5526 0.5111
P02.5(θU) 0.0099 0.0143 0.0163 0.0143 0.5648 0.5761 0.5764 0.6143

given. These should be equal to the value of θ used in the sim-
ulation. Based on 95% probability intervals for proportions,
counts with a target of 5000 can be expected to lie about 100
either side; those with a target of 9000 should be within 60 ei-
ther side; those with a target of 250 or 9750 should be within
31 either side; and those with a target of 125 should be within
22 either side.

Table 2 gives satisfactory results for the Fairbanks and
Madsen (1982) ordering, in the absence of overrunning. There
is not an exact correspondence between crossing the upper
boundary and finding that p+ ≤ 0.025, because the latter takes
into account the overshoot of the boundary at the first interim
analysis in which the boundary is crossed. Discrepancies are
particularly likely when stopping is very late and p+ is very
close to 0.025. The upper limit of the confidence interval tends
to be on the large (conservative) side when the inspection in-
terval is 90 patients. Table 3 shows that, for the most part, the
method of combining p-values based on fixed weights achieves
the target values satisfactorily. For an inspection interval of
90 and under H1, the power to detect p+ ≤ 0.0125 is 78% for
an overrun of 60 and 85% for an overrun of 120, illustrat-
ing the ability of this method to use the overrunning data to
strengthen positive conclusions. However, the principal power
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Table 5
Simulation results for the triangular test, with deletion method

Hypothesis H0 H1

Inspection interval 30 90 30 90

Overrun 60 120 60 120 60 120 60 120

Crossed upper 249 261 261 250 8981 8984 8992 8998
p+ ≤ 0.0125 66 60 74 52 6144 6201 6798 6884
p+ ≤ 0.025 214 204 205 180 8935 9088 8968 9130
p− ≤ 0.025 145 114 170 138 1 0 0 0
θL > θ 214 204 205 180 100 84 124 79
θM > θ 5625 6135 5784 6032 4325 4013 4605 4219
θU > θ 9855 9886 9830 9862 9835 9890 9841 9860
P97.5(θL) −0.0032 −0.0044 −0.0078 −0.0090 0.4707 0.4630 0.4800 0.4665
MED(θM) 0.0431 0.0592 0.0328 0.0384 0.5238 0.5107 0.5345 0.5111
P02.5(θU) 0.1151 0.1189 0.0616 0.1051 0.5970 0.6201 0.6079 0.6143

requirement, that for detecting p+ ≤ 0.025, is estimated as
only 87.5% for an overrun of 60. The corresponding count
is 249 below the target of 9000, which is further away than
is consistent with chance. The situation is satisfactory for an
overrun of 120, and indeed there is a gain of power.

The method of combining p-values with random weights is
acknowledged to lead to invalid analyses, and this is reflected
in the results in Table 4. The analyses are too conservative,
with the type I error rates appearing to be below the set
0.025 in each direction, especially for negative conclusions.
The confidence intervals tend to be too wide, and under H1,

the median unbiased estimate is too small. For an inspection
interval of 90 and under H1, the power to detect p+ ≤ 0.0125 is
78% for an overrun of 60, but only 69% for an overrun of 120.
The former matches the fixed-weights case, as the overrun is
60 as anticipated. The latter is poorer because the overrun is
given proportional weighting in the random-weights analysis,
while being constrained to what is an underrepresentation
in the fixed-weights case. Once more, the power to detect
p+ ≤ 0.025 is reduced, this time to 88.3% for an overrun of 60.
Again, there is a gain of power for an overrun of 120.

Table 5 shows that the deletion method departs even fur-
ther from target values than the method of combining p-values
with random weights. The conservatism is greater and the
power to detect p+ ≤ 0.0125 is less, but the loss of power to
detect p+ ≤ 0.025 is only very small.

When the amount of overrun is 60 patients, all three meth-
ods show some loss of power to detect p+ ≤ 0.025 as a result of
incorporating the overrunning data. This is because when the
upper boundary is crossed, an analysis without the overrun-
ning data would almost certainly give p+ ≤ 0.025. Adding the
overrunning data can improve estimates and lead to a lower
p-value, but in terms of finding that p+ ≤ 0.025, it can only
make matters worse. If the lower boundary is crossed, then
overrunning data can redeem the situation, but this becomes
likely only when there is a large overrun.

Table 6 further investigates loss of significance. The up-
per portion presents further data from the runs reported in
Tables 2, 4, and 5, in the case of an inspection interval of
90 and an overrun of 60. All simulated trials in which the
final conclusion was inconsistent with the boundary origi-

nally crossed were classified by the interim analysis at which
recruitment was terminated (that is, the one before the fi-
nal analysis incorporating overrunning data). The method of
combining p-values with fixed weights leads to the greatest
number of changes in conclusion, although reversals of con-
clusions drawn after trials stopped very early (that is, at
the first or second interim analysis) are unusual. The dele-
tion method has by far the least number of reversals, with
the random-weights method lying in between the other two
methods, but closer to the fixed-weights case. To create the
lower portion of Table 6, 10,000 replicate simulations were
run under H1 using an inspection interval of 90, together with
nine different amounts of overrunning data. The three anal-
ysis methods were then applied, and in each case, the fixed
weights were based on the anticipated overrun of 60 obser-
vations. The number of cases in which significance was lost
(upper boundary crossed but final p+ > 0.025) and the num-
ber in which significance was gained (lower boundary crossed
but final p+ ≤ 0.025) were counted. Loss of significance is most
common when the method of combining p-values with fixed
weights is used, and least common for the deletion method.

The results for the O’Brien and Fleming test are presented
in Table 7. These present a slightly different picture. First,
even in the no-overrunning case, there is a noticeable discrep-
ancy between crossing the upper boundary and finding that
p+ ≤ 0.025, the latter being less likely under either hypothesis.
It is only possible for crossing of the upper boundary to be fol-
lowed by an analysis yielding p+ ≤ 0.025 if the crossing takes
place at the fifth and final possible interim analysis. As men-
tioned earlier, this is because the implementation in PEST 4
calculates stopping limits using the Christmas tree correction,
as opposed to computing p-values and confidence limits us-
ing recursive numerical integration. As shown by Stallard and
Facey (1996), the Christmas tree correction is extremely ac-
curate for the triangular test, but less so for other designs
such as restricted procedures.

For the no-overrunning case, the analysis after the O’Brien
and Fleming design adheres closely to theoretical predictions.
When overrunning occurs, the three methods are in closer
agreement with one another than in the case of the triangular
test. All three are conservative, and all three lose power to
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Table 6
Simulation results for the triangular test under H1 with an inspection interval of 90—changes of conclusion by stopping

inspection and by amount of overrunning

Combining p-values Combining p-values
with fixed weights with random weights Deletion

Upper and Lower and Upper and Lower and Upper and Lower and
p+ ≥ 0.025 p+ ≤ 0.025 p+ ≥ 0.025 p+ ≤ 0.025 p+ ≥ 0.025 p+ ≤ 0.025

Number of runs (out of 10,000) stopping at the inspection indicated and
Stopping inspection changing conclusion at the final analysis (overrun = 60)

1 0 0 1 0 1 0
2 14 0 32 0 25 0
3 111 5 94 4 46 2
4 174 48 128 38 35 19
5 150 108 115 98 22 41
6 60 96 47 102 16 61
7 5 16 5 16 5 3

Total 514 273 422 258 150 126

Total number of runs (out of 10,000) changing conclusion at the final analysis
Overrunning when the amount of overrunning is as indicated

0 4 0 4 0 4 0
15 1413 139 363 87 66 14
30 954 200 426 151 108 48
45 757 234 471 201 155 95
60 514 273 422 258 150 126
75 448 292 423 280 155 156
90 343 323 422 324 173 214

105 289 358 408 377 173 242
120 232 368 345 398 154 286

detect significance with either p+ ≤ 0.0125 or p+ ≤ 0.025 rel-
ative to the no-overrunning case. The fixed-weights method
does not adhere to theory as closely as when used for the
triangular test, and this is partly because the weights are no
longer completely fixed. This occurs because recruitment is
closed after 450 patients. If the trial continues to the fifth
and final possible analysis, then there will be no overrunning
data. The algorithm used in the simulations then returns the
standard, no-overrunning, analysis. So in these circumstances,
the weights used are actually w′

1 = 1 and w′
2 = 0. Continu-

ation to the very end is common with this design, and so

Table 7
Simulation results for the O’Brien and Fleming test, inspection interval of 90, no overrunning or overrunning of 60

Method No overrunning Comb. p, fixed Comb. p, random Deletion

Hypothesis H0 H1 H0 H1 H0 H1 H0 H1

Crossed upper 276 9055 276 9055 276 9055 276 9055
p+ ≤ 0.0125 115 7554 84 7440 76 7335 80 7431
p+ ≤ 0.025 252 8988 234 8935 225 8900 232 8939
p− ≤ 0.025 250 0 221 0 209 0 217 0
θL > θ 252 226 234 226 225 216 232 207
θM > θ 5017 5042 5017 5062 5017 4983 5017 4458
θU > θ 9750 9762 9779 9762 9791 9762 9783 9762
P97.5(θL) 0.0002 0.5486 −0.0046 0.5500 −0.0075 0.5469 −0.0050 0.5409
MED(θM) 0.0010 0.5620 0.0010 0.5636 0.0010 0.5592 0.0010 0.5422
P02.5(θU) 0.0000 0.5630 0.0065 0.5630 0.0085 0.5630 0.0073 0.5630

the fixed- and random-weights approaches become similar to
one another. The deletion method still suffers the least loss of
power.

In these simulations, no trial that stopped on the lower
boundary ever reached a positive significant conclusion, due
to the addition of overrunning data. Clearly, this is more dif-
ficult to do with an O’Brien and Fleming design than with
a triangular test. Stopping early on the upper boundary, fol-
lowed by a nonsignificant result when overrunning data were
incorporated, was also rare, occuring at the fourth interim
analysis only, 3 times with the fixed-weights method, 17 times
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with the random-weights method, and 13 times with the dele-
tion method.

5. Conclusions
In order for sequential designs to be applied to clinical tri-
als with the commonly occurring feature of delayed patient
responses, it is necessary to have a strategy for dealing with
overrunning data. Simply ignoring this additional information
would be convenient, but it is not scientifically appropriate
and it runs counter to regulatory advice. Surprisingly, inclu-
sion of the overrunning data may not increase the power of
the trial, and indeed it appears to be possible for an over-
running analysis to be less powerful than an analysis ignoring
the extra data. This is because early stopping on the upper
boundary implies that a significant result has already been
found, and extra data can then only lose this positive result.
For the triangular test, this consideration can be outweighed
by apparently nonsignificant trials becoming significant after
the addition of the overrunning data, but such behavior is far
less likely for the O’Brien and Fleming design. In the case of
the triangular test, the power to achieve a more persuasive
level of significance can be enhanced through the incorpora-
tion of overrunning data.

Choosing between the methods for analyzing the final
dataset is based on two criteria. The first is the reliability
of the analysis produced, with accuracy being most desirable,
and conservatism being acceptable. The second is the stabil-
ity of the findings, with loss of significance between the time
of stopping recruitment and the final analysis being a major
disadvantage. This is because the imposition of a sequential
design would encourage investigators to stop in view of ap-
parently positive conclusions, and yet they will be left with a
nonsignificant trial. The conclusion that a larger fixed-sample
trial design would have been preferable will then be hard to
avoid. When recruitment closes late in the trial, with the sam-
ple size close to or exceeding the equivalent fixed sample size,
this “regret” will be small, but the consequences of stopping
a trial very early, only to end without a positive result, are
far more serious.

When the fixed-weights method of combining p-values can
be conducted, it provides very accurate results. The deletion
method leads to the least accurate analyses, and for the trian-
gular test, the power to obtain lower levels of significance than
set is least enhanced. However, the analyses are conservative,
and this method is the least likely to result in a change from
a significant to a nonsignificant result. It would appear that
the deletion method earns its stability by down-weighting the
overrunning data in the final analysis. The method of combin-
ing p-values with random weights gives results lying between
the properties of the other two approaches.

A further method has been suggested in the literature by
Hall and Liu (2002), based on the maximum likelihood or-
dering suggested by Emerson and Fleming (1990). The major
drawback with this method is that the maximum likelihood
ordering is not “truncation adaptable,” in the sense intro-
duced by Liu and Hall (1999). This means that the analysis
requires knowledge of the values of VT+1, VT+2, . . . , at which
interim inspections would have taken place had the trial not
been stopped at the Tth interim analysis. Clearly, in applica-
tions, values have to be imputed for these quantities, but the

principle of the method is not completely satisfactory. Among
the methods explored in this article, and for the patterns of
inspection and overrunning explored, the authors would rec-
ommend using the deletion method. This was not what we
were expecting to find, as the extent of the loss of power and
changes of conclusion inherent in the other methods had not
been anticipated. These undesirable features seem to us to
outweigh the improved accuracy when considering a method
for practical use in clinical trials. In cases where interim analy-
ses are more frequent than studied here, or where the amount
of overrunning is likely to depend on the interim at which
stopping occurs, the relative merits of the methods might be
different.

The considerations highlighted here should also be taken
into account when a design method is chosen. In particular,
the option of delaying the first interim so that V1 is consid-
erably larger than the subsequent increments (Vi −Vi−1) is
attractive, as this will avoid the situation of very early termi-
nation for treatment advantage that could be followed by an
unfortunate reversal of fortune.
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Résumé

Dans un essai clinique séquentiel, l’accumulation de données
sur les patients se poursuit souvent après que le critère d’arrêt
pour l’étude ait été obtenu. Ceci est connu sous le terme de
	dépassement
 (	overrunning
). Le dépassement inter-
vient principalement lorsque le critère principal de chaque pa-
tient est mesuré à la fin d’une période d’observation. L’objectif
de cet article est de comparer deux méthodes de prise en
compte de ce 	dépassement
. En particulier, on présente
des études de simulation qui évaluent les deux procédures en
fonction du contrôle du risque d’erreur de type I prédéfini.
On évalue également l’effet sur la puissance résultant de
l’incorporation de données de 	dépassement
 par chacune
des deux procédures.
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