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ABSTRACT 

Dengue is a common mosquito-borne tropical disease caused by a virus. It is a 
life threatening disease since it sometimes leads to death within a short period of 
time. Multilevel modeling is a form of statistical modeling when data is at 
different levels. Due to dengue seriousness and risk being more similar for 
patients within districts than between districts, there is correlation between 
patients within districts. Thus district has to be taken as a cluster variable. A 
frequently encountered response in epidemiological studies is the length of Stay 
(LOS) of a patient, which measures the time until the event of interest occurs. 
Complexity arises with the different states/destinations of the time event and 
competing risk modelling is a more appropriate method for handling such states. 
The association of platelet count and length of stay of a dengue patient leads to 
the joint modelling approach for analyzing the dengue patients. Formulation 
criteria for the joint model with clustered data is to link these models through two 
sub models that is by using the multilevel multinomial logistic model for the LOS 
of dengue patients with different destinations and multilevel continuous model for 
the log platelet count. The linkage between two responses was derived by sharing 
a common random effect. Factors that have an effect on different destinations of 
LOS are, time indicators, year, age, classification, rainfall, temperature and 
humidity, while age, sex, classification, year place treated, rainfall, temp and 
humidity are associated factors for the log platelet count of dengue patients. 
Moreover, supremacy of joint modelling was proved by the AIC and BIC values 
over two separate univariate models. 
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1. Introduction 

Dengue has become endemic in the World Health Organization (WHO) regions 
of Africa, the Americas, the Eastern Mediterranean, South-East Asia and Western 
Pacific in recent decades (WHO, 2016). Also dengue is a life threatening disease, 
since it can leads to death of a patient within a short period of time.  Dengue 
Fever (DF) and Dengue Hemorrhagic Fever (DHF) has become a prominent 
cause of hospitalization and death. Lately, the occurrence of DF and DHF 
patients’ have been rapidly spreading in Sri Lanka. In 2017, Colombo district 
showed rapid increment of dengue cases nearly with 34,000 in Sri Lanka 
(Disease Survelliance, 2018). 
 
Length of stay is an intractive tool for assessing dengue patients as it is a result of 
patient characteristics, hospital characteristics and social characteristics (Sa, 
Dismuke, and Guimaares, 2007). Also, dengue patients are influenced by the 
characteristcs of the patients as well as their living surounding with the spatial 
variation of the rainfall, temperature, humidity and degree of urbanization. 
Therefore, patients/individuals are hierachchicaly structured within their living 
surrounding such as districts. This means that the patients within the same distrct 
are more alike than patients between districts. This leads to multilevel modeling. 
Clustering effects are arising due to the correlation between the same levels 
nested within the higher level in such situation. Hence, there are different random 
effects between levels as a result of this clustering. There is a lot of literature on 
selecting district as a clustering variable for dengue. Wickremasuriya and 
Sooriyarachchi (2014) have shown that the seriousness of dengue is more 
correlated within districts than between districts. Jayanetthi and Sooriyarachchi 
(2015) has indicated that dengue survival is more correlated within districts than 
between districts.  Fernando and Sooriyarachchi(2018) have shown that dengue 
counts in Sri Lanka are related to the climate and so are correlated within districts 
as the weather is similar within districts. 
 
Length of stay (LOS) of a patient is influenced by various endpoints/failure event 
like discharge, dead and transferred. This leads to competing risk modeling. It is 
used when an individual is under risk of multiple events/different destinations  
(Prentice, et al., 1978; Haller, 2014).  
 
The shared parameter model is called a joint multilevel/hierachchical or random 
effect model, which is widely used for joining two dependent outcomes under a 
clustering nature. Here the random effect is introduced and shared with 
dependent outcomes to account for the association between these dependent 
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outomes.  On the other hand, complexity arises when one outomes is a competing 
risk event with hiearchchical nature. This is because it contains multiple events as 
well as two correlations that is correlation between responses for each cluster and 
correlarrtion between indididuals within the same cluster  (Gueorguieva and 
Agresti, 2001).   
 
The relation between LOS and platelet count of a dengue patient is motivatated 
by the study in past literature in order to evaluate the dengue patients 
(Pooransingh, Teeluksingh, and Dialsingh, 2016; Karunarathna and 
Sooriyarachchi, 2017). The joint association was built through the competing risk 
event response for the LOS of dengue patients and continuous response for 
platelet count after taking the logorithm of that variable. Although the failure 
events more often are in countinuous form , here, LOS of a dengue patient is 
recorded in dicrete form. As a result, the approach undertaken here is to analyze 
the LOS via dicrete time competing event model. The data was obtained from the 
Epidemilogical unit which had records of dengue patients reported in 2006-2008. 
In this study  districts with high dengue cases (10 districts) were used to aid 
model convergence. The climate data was obtained from Meterological 
Department of Sri Lanka.  
 
Logistic modeling for ordered categories and multinomial logistic modeling for 
nominal data are the most prominent method for modeling multilevel univaraite 
discrete competing risk models  (Agresti, 1984; McCullagh, 1980; Prentice and 
Gloeckler, 1978; Gerhard, 1995). However joint modeling approaches for 
competing risk are well known with the continous time competing risk by 
considering the cause specific hazard or subdistribution hazard models. Research 
on joint modeling of longitudunal and continuous competing risk is a field of 
interest in recent decades for formulating the joint association of competing risk 
events by sharing the random effect  among responses through two marginal sub 
models of mixed effect models for longitudinal measurement and cause specific 
hazard for the competing event (Elashoff, Li, and Li, 2007; Elashoff, Li, and Li 
2008; Deslandes and Chevret, 2010; Gould, et al., 2015; Gueogguieva, 
Rosenheck, and Lin, 2012; Williamson, et.al., 2008). The approach undertaken 
here is  multinomial logit modelling which is proposed by Steele, Diamond, & 
Wang (1996) for modeling discrete time competing risk events since this full 
multinomial model permits a clear specification of the correlation structure 
between the different outcomes  (Steele, Diamond, & Wang, 1996). The novel 
method is formulated in here because there was no work found for the joint 
modeling of the discrete competing risk event by multinomial logit with any 
other response under the clustering nature in the literature. 



G.H.S. Karunarathna, M.R. Sooriyarachchi 

48                                                          ISSN-2424-6271                                                 IASSL 

The rest of the paper is organised as follows. The methodologocial aspects which 
is used to analyze this situation is discussed under the “Methodology” section. 

The next section discusses the results of the analysis of the dengue application. 
The last section gives some concluding remarks.  

 

2. Methodology (in 12pt, bold;Below paragraph 6pt, Contents in 11pt) 

The methodology to formulate the joint model to clustered data is carried out via 
two linked sub models of multilevel multinomial logistic model for the LOS of a 
dengue patient with a different destination and multilevel continuous model for 
the platelet count. This situation arising in different families of distributions such 
as multinomial distribution and continuous (normal) distribution. The linkage 
between the two dependent variables are modeled through the association 
between random effects.  
  
2.1 Separate Sub Models 

Assume that the durations are measured in discrete time intervals indexed by t 
(t=1….,T). For each discrete time interval t for the jth individual in cluster i is 
symbolized as Y1tij

(r) that is the multinomial outcome which denotes whether an 
event r has occur during the interval t or not for the jth individual in ith cluster. 
The second response is symbolized as Y2tij (log of platelet count variable) which 
is a normally distributed outcome in the time interval t for the jth individual in the 
ith cluster.  
 
2.1.1   Multilevel Multinomial Sub Model 

The structural formulation of the model for the discrete competing risk event of 

Y1tij
(r) is given by, 

 

𝑌1𝑡𝑖𝑗
(𝑟)

=  {
     1; 𝑖𝑓 𝑒𝑣𝑒𝑛𝑡 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑟 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 

0; 𝑖𝑓 𝑛𝑜 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡
         

                                                                                                                 (1) 
; 𝑤ℎ𝑒𝑟𝑒, 𝑟 = 1,2, … . , 𝑆  

 

Let htij
(r) be the hazard of an event of type r in interval t with corresponding vector 

containing the probabilities of falling into any particular category. Then, the log 
odds of experiencing an event of type r relative to an event of types s  at time t 
for the jth individual in the ith cluster is given by, 

𝑙𝑜𝑔 (
ℎ𝑡𝑖𝑗

(𝑟)

ℎ𝑡𝑖𝑗
(𝑠)) =  𝛽0

(𝑟)
+  ∑ 𝛼𝑡

(𝑟)
𝐷𝑡𝑖𝑗

(𝑟)𝑡
𝑡=1 +  𝛽1

′(𝑟)
𝑋𝑡𝑖𝑗

(𝑟)
+ 𝑢0𝑗

(𝑟)          (2) 
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   𝑤ℎ𝑒𝑟𝑒, 𝑟 = 1,2, … . , 𝑠 − 1  

(𝑢0𝑗
(1)

, 𝑢0𝑗
(2)

, … … … , 𝑢𝑜𝑗
(𝑟)

) ~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑁𝑜𝑟𝑚𝑎𝑙 

The model can be regarded as a combination of fixed parts and a random part, 

where, 𝛽0
(𝑟)  and  𝛽1

′(𝑟)  are the parameters in the fixed part of the model and 

 𝑢0𝑗
(𝑟)are the parameters in the random part. Dtij

(r) are the indicators for the time 

interval and Xij
(r) are the covariates. 

The equation (2) represents the probabilities of being in a particular category at 
time interval t in the random effects hazards model; 
 

ℎ𝑡𝑖𝑗
(𝑟)

=
exp (𝛽0

(𝑟)
+  ∑ 𝛼𝑡

(𝑟)
𝐷𝑡𝑖𝑗

(𝑟)𝑡
𝑡=1 + 𝛽1

′(𝑟)
𝑋𝑡𝑖𝑗

(𝑟)
+ 𝑢0𝑗

(𝑟)
)

1 + ∑ exp (𝛽0
(𝑘)

+ ∑ 𝛼𝑡
(𝑘)

𝐷𝑡𝑖𝑗
(𝑘)𝑡

𝑡=1 + 𝛽1
′(𝑘)

𝑋𝑡𝑖𝑗
(𝑘)

+ 𝑢0𝑗
(𝑘)

)𝑠−1
𝑘=1

 

                                                                                          (3) 
; 𝑤ℎ𝑒𝑟𝑒, 𝑟 = 1,2, … . , 𝑆 − 1 

And 

ℎ𝑡𝑖𝑗
(𝑠)

=
1

1 + ∑ exp (𝛽0
(𝑘)

+ ∑ 𝛼𝑡
(𝑘)

𝐷𝑡𝑖𝑗
(𝑘)𝑡

𝑡=1 +  𝛽1
′(𝑘)

𝑋𝑡𝑖𝑗
(𝑘)

+ 𝑢0𝑗
(𝑘)

)𝑠−1
𝑘=1

 

                                                                                        (4) 
 
 

2.1.2    Multilevel Continuous Sub Model 

Multilevel continuous sub model can be represented as, 
 

 𝑌2𝑖𝑗 =  𝛽1 + 𝛽2
′ 𝑋𝑡𝑖𝑗 + 𝜀𝑖𝑗 + 𝑢1𝑗                             (5) 

 
 

Here, 𝛽1 is the random intercept, 𝛽2
′  is the fixed regression coefficient, 𝜀𝑖𝑗 is the 

random error for the individual which is normally distributed with mean 0 and 

variance 𝜎𝜀
2 . Here 𝑢1𝑗  is a normally distributed random effect for the cluster with 

zero meanJoint Models 
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Consider two responses, the competing risk event and a continuous event for the 

joint model as 𝒀𝟏𝒕𝒊𝒋
(𝒓)   and 𝒀𝟐𝒊𝒋 denoting the jth individual in the  ith cluster for the 

rth event types of competing event and the continuous outcome, respectively. The 

joint model is built by describing the joint density 𝒇(𝒀𝟏𝒕𝒊𝒋
(𝒓)

, 𝒀𝟐𝒊𝒋)   of the 

competing risk event 𝒀𝟏𝒕𝒊𝒋
(𝒓)  and the continuous vector  𝒀𝟐𝒊𝒋 . Joint models are 

linked through the random effects. 
 

For simplicity, assume that the random effects (𝑢0𝑗
(𝑟) ) are associated with the ith 

cluster for the event type r, is the same for each event type. Therefore equation 
(2) is rewritten as, 

𝑙𝑜𝑔 (
ℎ𝑡𝑖𝑗

(𝑟)

ℎ𝑡𝑖𝑗
(𝑠)) =  𝛽0

(𝑟)
+  ∑ 𝛼𝑡

(𝑟)
𝐷𝑡𝑖𝑗

(𝑟)𝑡
𝑡=1 +  𝛽1

′(𝑟)
𝑋𝑡𝑖𝑗

(𝑟)
+ 𝑢0𝑗             (6) 

; 𝑤ℎ𝑒𝑟𝑒, 𝑢0𝑗  ~𝑁(0, 𝝈2 ) 

A joint model is obtained by assuming a distribution for both sets of random 

effects 𝑢0𝑗  and 𝑢1𝑗  jointly. However, in here the authors are interested in 

considering the shared random intercept model with a scale parameter λ. 

Therefore, equation (5) has become as, 
 

         𝑌2𝑖𝑗 =  𝛽1 +  𝛽2
′ 𝑋𝑡𝑖𝑗 + 𝜀𝑖𝑗 + 𝜆 𝑢0𝑗                                   (7)  

Also, it assumes that, conditional on 𝑢0𝑗 , the outcome vectors 𝑌1𝑡𝑖𝑗
(𝑟)  and  𝑌2𝑖𝑗  are 

independent, that is the association between two outcome vectors are assumed to 
be completely captured by the association between the random effects (Ivanova, 
Molenberghs, and Verbeke, 2015; Elashoff, Li, and Li, 2007).  
 
2.2 Estimation and Inference 

Assuming the independence of 𝑌1𝑡𝑖𝑗
(𝑟)  and  𝑌2𝑖𝑗 , conditional on  𝑢0𝑗 , the 

corresponding likelihood function to the joint model is given by, 

𝐿(𝜃) =  ∏ ∏ ∫ 𝑓1𝑡𝑖𝑗 (𝑌1𝑡𝑖𝑗
𝑁
𝑛=1

𝐽
𝑗=1 |𝑢0𝑗)𝑓2𝑖𝑗(𝑌2𝑖𝑗|𝑢0𝑗)𝑓(𝑢0𝑗)𝑑𝑢𝑗               (8) 

Where, θ is the vector containing all parameters in the conditional 

distribution and normally distributed random effect 𝑢0𝑗 .    

where, 

𝑓1𝑡𝑖𝑗(𝑌1𝑡𝑖𝑗|𝑢0𝑗) =  ∏ [∏ ℎ𝑡𝑖𝑗
(𝑟)𝑆

𝑟=1 ]
∆

∗ exp {− ∫ [∑ ℎ𝑡𝑖𝑗
(𝑟)𝑆

𝑟=1 ] 𝑑𝑡
𝑇

0
}𝑇

𝑡=1            (9) 

; where ∆ = censoring indicator 

and ℎ𝑡𝑖𝑗
(𝑟) can be derived from equation (3) to be, 
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𝑓2𝑖𝑗(𝑌2𝑖𝑗|𝑢0𝑗) =
1

√2𝜋𝜎𝜀
2

𝑒𝑥𝑝 {−
1

2𝜎𝜀
2 (𝑌2𝑖𝑗 − 𝛽1 − 𝛽2

′ 𝑋𝑡𝑖𝑗 − 𝜆𝑢0𝑗  )2  }        (10) 

𝑓(𝑢0𝑗) =
1

√2𝜋𝜎2
exp (−

𝑢0𝑗
2

2𝜎2)                                                                            (11) 

 
Then, the likelihood function can be derived from equation (8) by 
substituting the values from equation (9) – (11). 
In this paper, standard numerical integration method of adaptive Gaussian 
quadrature, has been implemented in the SAS procedure Proc NLMIXED 
(Pinherio and Bates, 1995) due to the complexity of the integral part of the 
equation (8). 

3. Analysis, Results and Discussion 

The data is on dengue from 2006 – 2008.  For this period monthly climate data 
has been used. District is used as a clustering factor. Only data from 10  high 
incidence  districts have been considered. The districts studied  consists of 
Colombo, Galle, Gampaha, Kalutara, Kandy, Kegalle, Kurunegala, Matara, 
Puttlam and Ratnapura. In this study, discrete time approach is appropriate as the 
duration is recorded as whole days. Therefore, it can be assumed that duration 
reflects a discrete time measurement. Thus, initially, the time event; length of 
stay  is categorized into three categories; 0-4 days, 4-6 days and 6-10 days which 
are known as febrile phase, critical phase and recovery phase respectively 
according  to the clinical manifestation of dengue (Yacoub, et.al., 2014). Hence, 
each individual studied within 10 days and the recorded destination such as 
discharge, transfer or dead for each individual within the time period was used. If 
any individuals do not show any event up to 10 days, they are considered as 
censored observations.  
 
As the next step, data  need to be transformed to carry out discrete time 
competing risk modelling from the standard one-person, one-record data set (the 
person-data set) in to a one person, multiple period data set (the person-period 
data set) (Singer and Willett, 1993). That is indicator variables need to be 
introduced to the time variable and other categorical variables. Table 1 gives a 
list of variables used for this analysis. Also, reference category for the categorical 
variables is highlighted in the Table 1.  
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Table 1: Description of Data 
 

Variable Category Notation Code 
LOS 0-4 T1 1 

4-6 T2 2 
6-10 T3 3 
>10 T4 4 

Event Censored   0 
Discharged 

 
1 

Transfered 
 

2 
Dead 

 
3 

Year 2006 Yr2006 1 
2007 Yr2007 2 
2008 Yr2008 3 

Month Jan Month1 1 
Feb Month2 2 
Mar Month3 3 
Apr Month4 4 
May Month5 5 
June Month6 6 
July Month7 7 
Aug Month8 8 
Sep Month9 9 
Oct Month10 10 
Nov Month11 11 
Dec Month12 12 

Age 
   Sex Male Sex1 1 
Female Sex2 2 

Ethnicity Sinhala Ethnicity1 1 
Tamil Ethnicity2 2 
Moor Ethnicity3 3 
other Ethnicity4 4 

Place Treated Government  PlaceTreated1 1 
Private PlaceTreated2 2 
other PlaceTreated3 3 

Classification DF Classification1 1 
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DHF1 Classification2 2 
DHF2 Classification3 3 

Packed cell volume 
 

PCV 
 Logarithm of 

Platelet count 
 

Log_Platelet 
 Rainfall 

 
Rainfall 

 Rainfalllag1 
 

Rainfalllag1 
 Rainfalllag2 

 
Rainfalllag2 

 Temperature 
 

Temp 
 Temperature_lag1 

 
Templag1 

 Temperature_lag2 
 

Templag2 
 Humidity 

 
Humid 

 Humidity lag1 
 

Humidlag1 
 Humidity lag2 

 
Humidlag2 

  
Initial values for formulating the joint association between LOS of a dengue 
patients and log of platelet count were obtained by fitting the univariate models 
without considering the random effects in the model.  The different destination 
such as discharge, transfer and dead, is a competing risk event and a nominal 
category and multinomial logistic regression model was fitted by using “PROC 

LOGISTIC” procedure under the “glogit” function in SAS. Three different 

models were formulated from the multinomial logit model as discharge vs 
censored, transfer vs censored and dead vs censored. Out of the 19 explanatory 
variables, only 8 variables were significant under the chi squared test at 5% level 
of significance. These were time indicators for the LOS, year, age, classification, 
rainfall, humid, humidlag1 and temp. The other response is log platelet and it is a 
continuous variable. Univariate model for the log platelet was fitted through 
“PROC Genmod” procedure in SAS. Eight variables which are year, month, age, 
sex, place treated, classification,, humid and temp were significant for log platelet 
response.   
 
Then, the joint model was initiated through “PROC NLMIXED” procedure, with 

the significant variables from the univariate models.  When formulating the joint 
model, the shared random intercept between responses with an inflation factor (λ) 

is used to account for the different scale at which these are measured (Ivanova, 
Molenberghs, and Verbeke, 2015)  
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Table 2 presents parameter estimates of the joint model. This table shows that 
standard deviation of the random effect (district clustering effect (RI.sd)), 
residual (Res.Sd) and scale parameter (λ).  
 

Table 2: Parameter estimates for the joint model 

Response 
 

Variable Coefficient P value 
Competing 

risk 
Discharge Intercept 0.4405 <0.0001 

T1 -0.7842 0.002 
T2 -0.8727 0.012 
Age -0.00368 0.0002 
Classification3 -0.03641 <0.0001 
Rainfall -0.005 <0.0001 
Humid -0.02247 <0.0001 
Temp 0.008773 <0.0001 

Transfer Intercept 2.2512 <0.0001 
T1 -1.0513 0.0003 
T2 0.803 <0.0001 
Age 0.0228 0.0005 
Temp -0.3844 <0.0001 

Dead Intercept -16.9346 <0.0001 
T1 -0.7969 0.024 
T2 0.9909 0.035 
Yr2007 2.1742 <0.0001 
Rainfall 2.0058 0.0023 
Temp 0.3565 <0.0001 

RI.sd 
 

10.1404 <0.0001 
Log_platelet Intercept 10.3194 0.00817 

Yr2007 0.1806 <0.0001 
Yr2008 0.1876 <0.0001 
Month10 -0.08258 0.0057 
Month12 -0.2108 <0.0001 
Age -0.1007 <0.0001 
Sex1 -0.1007 <0.0001 
Placetreated2 0.1831 <0.0001 
Placetreated3 0.27 0.0237 
Classification2 -0.1163 0.0025 
Classification3 -0.2982 <0.0001 
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Humid 0.01374 <0.0001 
Temp -0.05368 <0.0001 
scale (λ) 0.4599 <0.0001 
 

0.8488 <0.0001 
 
As per the parameter estimates obtained in Table 2, the marginal models for 
competing risk event (multilevel multinomial logit with discrete time hazard) and 
the log platelet count (multilevel normally distributed model) can be written as, 
 
log(𝑝𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑃𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑⁄ ) = 0.44 − 0.7842 ∗ 𝑇1 − 0.8727 ∗ 𝑇2 − 0.00368 ∗

𝐴𝑔𝑒 − 0.03641 ∗ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛3 − 0.0050 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 − 0.002247 ∗

𝐻𝑢𝑚𝑖𝑑 + 0.008773 ∗ 𝑇𝑒𝑚𝑝                                (12) 
 
log(𝑝𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑃𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑⁄ ) = 2.2512 −  1.0513 ∗ 𝑇1 + 0.803 ∗ 𝑇2 +  0.0228 ∗

𝐴𝑔𝑒 − 0.3844 ∗ 𝑇𝑒𝑚𝑝                        (13) 
 
log(𝑝𝑑𝑒𝑎𝑑 𝑃𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑⁄ ) = −16.9346 − 0.7969 ∗ 𝑇1 + 0.9909 ∗ 𝑇2 + 2.1742 ∗

𝑦𝑟2007 + 0.0058 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 + 0.3565 ∗ 𝑇𝑒𝑚𝑝                                                          
                                                                                                                          (14) 
 
𝑙𝑜𝑔_𝑝𝑙𝑎𝑡𝑒𝑙𝑒𝑡 = 10.3194 + 0.1806 ∗ 𝑦𝑟2007 + 0.1876 ∗ 𝑦𝑟2008 − 0.08258 ∗

𝑀𝑜𝑛𝑡ℎ10 − 0.2108 ∗ 𝑀𝑜𝑛𝑡ℎ12 − 0.1007 ∗ 𝐴𝑔𝑒 − 0.1007 ∗ 𝑆𝑒𝑥1 + 0.1831 ∗

𝑃𝑙𝑎𝑐𝑒𝑡𝑟𝑒𝑎𝑡𝑒𝑑2 + 0.27 ∗ 𝑃𝑙𝑎𝑐𝑒𝑡𝑟𝑒𝑎𝑡𝑒𝑑3 − 0.1163 ∗ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛2 −

0.2982 ∗ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛3 + 0.01374 ∗ 𝐻𝑢𝑚𝑖𝑑 − 0.05368 ∗ 𝑇𝑒𝑚𝑝                         
                                                                          (15)                                                                             
The equation (12)-(14) with equation (15), emphasizes that month, sex and place treated 
is only associated with the log of platelet count. Age is negatively associated with the 
discharge patients while positively associated with transfer patients. Temperature is 
related with all three destination of discharge, transfer and dead. The risk of death among 
the patients who were in febrile phase is 0.451 times lowerr than the patients who were in 
recovery phase, while 2.69 times higher in critical phase with respect to the recovery 
phase. For Discharge a patient at the febrile phase is 0.47 times lower than the recovery 
phase and discharging a patients at the critical phase is 0.418 lower than those at the 
recovery phase. The transferring patient at the febrile phase higher by 0.35 times lower 
compare to the recovery phase, while transferring patients who are in critical phase is 
higher by amount of 2.23 times with respect to the recovery phase.  Temperature, rainfall 
and humidity were associated as geographical factors for the discharge patients. However 
rainfall and temperature were related to the death of dengue patients, temperature is only 
geographical factor among the transferred patients. Rainfall is highly associated to the 
dead patients when compared with discharged patients. In year 2007, the risk of death of 
a dengue patients are 8.8 times higher than year 2008.  
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Platelet count is related with October and December only among the months. 
Also, it indicates that male patients are having higher platelet count than the 
female patients. DHF1 and DHF2 patients show lesser platelet counts than the 
DF patients, while lowest values is having for the DHF2. So, it implies that the 
risk is higher for the patients who are classified as DHF2 for the dengue patients.  

Another important result is that the random effect related to the district and the 
parameter λ are both highly significant, indicating that taking the district as a 
cluster variable is justified. 

 

3.1 Checking for Supremacy of the Joint Model 

It is important to compare the performance of the joint model with the two 
separate univariate models to express the necessity and performance of the joint 
model. Summation of the model fit statistics of the two univariate models was 
used to compare with the model fit statistics of the joint model to check the 
advantage of using the joint model over the univariate models. This is given in 
table3. 
 

Table 3: Goodness of Fit test for Proposed Model 
 

Model fit statistics Joint 
model 

Univariate models Total 

Competing 
Risk-
Multilevel 
Multinomial 
logistic model 

Multilevel 
normal 
regression 

-2 Log Likelihood  34957 15315.23 27082.56 42397.79 

AIC 35013 15381.23 27128.56 42509.79 

AICC 35013 15381.44 27128.66 42510.1 

BIC 35021 15621.70 27296.15 42917.85 

 

According to table 3, it can be seen that the joint model has much lower AIC, 
AICC and BIC than the sum of model fit statistics from univariate models. Thus 
the supremacy of the joint model over the univariate models can be concluded. 
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4. Conclusion 

The main objective of this study was to analyze the dengue patients through the 
length of stay of dengue patients under the clustering nature. Since LOS of 
dengue patients is highly associated with the platelet count, joint model was 
formulated to analyze the dengue patients through the different destination of 
LOS and platelet count. Here platelet count was considered by converting to the 
logarithm to achieve normality.  The proposed shared parameter model was fitted 
through two sub models that is multilevel discrete time competing risk model and 
multilevel normal model by using PROC NLMIXED procedure in SAS.  Here 
multilevel discrete time competing risk model was fitted by the multinomial 
logistic model after converting the person-data set into the person-period data set. 
As the multinomial distribution was not supported by PROC NLMIXED, the 
likelihood of two univariate models were programmed to fit the joint model. 

 

Factors that have an effect on different destination of LOS are, time indicators, 
year, age, classification, rainfall, temperature and humidity, while age, sex, 
classification, year place treated, rainfall, temp and humidity are associated 
factors for the log platelet count of a dengue patients. This study implies that the 
risk of death is higher for the patients who are at the critical phase rather than 
recovery phase. Also, there was a higher relation with the rainfall for the dead 
patients. Moreover, the patients who are from DHF2 are having higher risk.  

The results of the univariate and joint model for checking the best model, proved 
that the joint model is better than two univariate models.  
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