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Abstract. Joint modeling approaches are often encountered for different outcomes of competing 

risk time to event and count in many biomedical and epidemiology studies in the presence of 

cluster effect. Hospital length of stay (LOS) has been the widely used outcome measure in 

hospital utilization due to the benchmark measurement for measuring multiple terminations such 

as discharge, transferred, dead and patients who have not completed the event of interest at the 

follow up period (censored) during hospitalizations. Competing risk models provide a method of 

addressing such multiple destinations since classical time to event models yield biased results 

when there are multiple events. In this study, the concept of joint modeling has been applied to 

the dengue epidemiology in Sri Lanka, 2006-2008 to assess the relationship between different 

outcomes of LOS and platelet count of dengue patients with the district cluster effect. Two key 

approaches have been applied to build up the joint scenario. In the first approach, modeling each 

competing risk separately using the binary logistic model, treating all other events as censored 

under the multilevel discrete time to event model, while the platelet counts are assumed to follow 

a lognormal regression model. The second approach is based on the endogeneity effect in the 

multilevel competing risks and count model. Model parameters were estimated using maximum 

likelihood based on the Laplace approximation. Moreover, the study reveals that joint modeling 

approach yield more precise results compared to fitting two separate univariate models, in terms 

of AIC (Akaike Information Criterion).  

1. Introduction

Various types of data, including observational data occurring in a wide variety of fields, particularly in 

Medicine, Biology, Education and Social Sciences have hierarchical, nested or clustered structure. These 

types of data hierarchy are neither accidental nor ignorable. But, when analyzing the correlated clustered 

data, methods of analysis should not rely on the assumption of independence, which is a dominant 

assumption in traditional statistical approaches.  Therefore, lately specific statistical models were 

developed for correlated clustered data, such as Multilevel Models [1,2] 

Competing risk is an extension of classical time to event analysis or survival analysis, when 

individuals are under risk of failing from multiple events [3]. A key assumption of a classical time to 

event analysis is that, an event of interest will eventually occur in all individuals in the population 

(Kaplan-Meier assumption), this is violated in the presence of multiple events/ competing event data 

[4,5]. Thus, numerous modeling methodologies [3,4,5] are available for handling competing risk events. 

Also, interest increasingly has been paid to the competing risk in the presence of cluster effects since 

individuals may be correlated within clusters in many applications of competing risks, owing to 
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unobserved shared factors across individuals [6]. These data are referred to as “correlated clustered 

competing risks” or “multilevel competing risk”. Multilevel competing risk can be modeled explicitly 

by using either a discrete time or continuous time competing risk hazard model due to the type of 

duration response. However, this analysis was focused towards discrete time hazard approach which is 

reviewed by Steele, Goldstein and Browne [7]. 

Various researchers have concentrated only on a single response although, many studies measured 

several/multiple responses for each individual, due to the complexity. Joint association is more complex 

for multilevel competing risk data, because it consists not only with multiple events, but also two 

correlations, between measurements on different variables for each cluster and between measurements 

on different individuals/subjects within a cluster [8]. The main approach undertaken here is the joint 

modeling of discrete time multilevel competing risk with count variable which is normally distributed 

after log transformation. i.e. joint association with competing risk response with continuous response. 

Another joint application arises with the endogeneity effect in the model. Typically endogeneity occurs 

when the outcome response is correlated with independent variables [9]. i.e. independent/explanatory 

variable is correlated with error term [10] in the model. As a second approach in this paper,a joint 

relationship was built through the endogeneity effect in the multilevel competing risk data.  

The methodological development is motivated by a study of dengue epidemiology in Sri Lanka, 

2006-2008 to assess the relationship between hospital length of Stay (LOS) (competing risk event 

variable), which is the outcome measurement in hospital utilization with different terminations such as 

discharge, transferred, dead and censored observations, and log of platelet count (continuous variable).  

A comprehensive literature review was carried out which revealed the way to formulate the 

methodology for joint modelling of competing risk with continuous responses to the clustered data 

settings. When the responses are from various families of distributions, this leads to difficulties in 

formulating the joint distribution of those responses due to the lack of natural multivariate scenario. Joint 

modelling of competing risk is a highly active research area with longitudinal, repeated measurement 

responses. When focusing on the joint longitudinal with competing risk which is the well-known joint 

modelling for competing risk, many researchers [11,12,13,14] presented two marginal sub models; 

mixed effect sub models for the longitudinal measurement and cause specific sub model or latent failure 

time model [11,14] to allow for competing risk data to construct the joint structure.. The difference in 

this study when compared to past literature is here competing risks are  modelled via discrete time hazard 

models with the correlated structure at the first approach. When reviewing the second approach, 

endogeniety effect which has been recognized several years ago in the econometric field among 

econometricians  [15,16] have been used in here. The study of simultaneous equation method which 

allow endogeneity,has been extended to the multilevel models recently with the help of panel data theory 

since panel data and multilevel data bear some similarity [17]. But the work carried out here is novel 

since no such study was found in the literature where the joint modelling of multilevel discrete time 

competing risk data and a continuous variable was carried out through simultaneous equation method 

by allowing for the endogeneity effect.  

2. Methodology

In this study, the authors were interested in setting up joint association between a multilevel competing 

risk response with multilevel continuous response. Deriving a  joint distribution with the responses from 

different families of distributions leads to difficulties since competing risks with a survival variable with 

multiple events and censored observations is very  different from a continuous/ normally distributed 

variable. 

2.1.  Model 1: Joint model: Multilevel discrete time competing risk hazard and multilevel normal 

regression 

The first approach is to consider procedures for handling the joint model via two linked sub models: 

multilevel discrete time competing risk model and multilevel normal regression. Here normality of the 

second variable was achieved by applying a log transformation to the count variable. The connection 
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between the two responses is modeled through the association between random effects. Joint modeling 

was carried out via PROC GLIMMIX procedure in SAS 9.4 based on the Laplace approximation of the 

Maximum Likelihood Estimation.   

Although the duration can be modeled explicitly either discrete time or continuous time hazard 

model, discrete time competing risk model was used as a proposed method to handle multiple events 

due to the flexibility of software. In the traditional approach to the competing risks, where the occurrence 

of events of interest removes the individuals from the risk of other events and each event is analyzed 

separately treating all other events as censored known as a binary logit model in discrete time has been 

proposed in here as a one sub model. A multilevel normal distribution is fitted after log transformation 

as the other sub model. PROC GLIMMIX procedure in SAS allows to estimate two sub marginal models 

jointly.  

Suppose that duration are measured in discrete time intervals indexed by t (t=1….,T). for each 

discrete time interval t of cluster i for the jth individuals, two responses are observed as; Y1tij
(r); binary 

outcome which denote whether an event has occur during the interval t or not for the jth individual in ith 

cluster; and second response as Y2tij
(r)(log of count variable); normally distributed outcome in the time 

interval t for the jth individual in ith cluster for the r event type. Structural formulation of the model is 

given by, 

𝑌1𝑡𝑖𝑗
(𝑟)

=  {
1 ; 𝑖𝑓 𝑒𝑣𝑒𝑛𝑡 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑟 𝑖𝑛 𝑡

0; 𝑖𝑓 𝑛𝑜 𝑒𝑣𝑒𝑛𝑡 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑟 𝑖𝑛 𝑡
 ; where, r = 1,2, … . , R  (1) 

The hazard of an event of type r in interval t, denoted by htij
(r), is the probability that an event of type 

r occurs in interval t, given that no event of any type has occurred before the start of interval t. Estimate 

equation for each event type in multilevel discrete time competing risk model using a “logit” link 

function. This can be written as [7], 

 𝑙𝑜𝑔 (
ℎ𝑡𝑖𝑗

(𝑟)

1−ℎ𝑡𝑖𝑗
(𝑟)) =  𝛽0𝑗

(𝑟)
+ ∑ 𝛼𝑡

(𝑟)
𝐷𝑡𝑖𝑗

(𝑟)𝑡
𝑡=1 +  𝛽1

′(𝑟)
𝑋𝑡𝑖𝑗

(𝑟)
(2) 

𝛽0𝑗
(𝑟)

=  𝛽0
(𝑟)

+  𝑢0𝑗
(𝑟)

; 𝑤ℎ𝑒𝑟𝑒 (𝑢0𝑗
(1)

, 𝑢0𝑗
(2)

, … … … , 𝑢𝑜𝑗
(𝑟)

) ~Multivariate Normal (3) 

From, (2) & (3), 

 𝑙𝑜𝑔 (
ℎ𝑡𝑖𝑗

(𝑟)

1−ℎ𝑡𝑖𝑗
(𝑟)) =  𝛽0

(𝑟)
+  ∑ 𝛼𝑡

(𝑟)
𝐷𝑡𝑖𝑗

(𝑟)𝑡
𝑡=1 +  𝛽1

′(𝑟)
𝑋𝑡𝑖𝑗

(𝑟)
+  𝑢0𝑗

(𝑟)
(4) 

And multilevel continuous sub model can be written as, 

𝑌2𝑡𝑖𝑗
(𝑟)

=  𝛽1𝑗
(𝑟)

+  𝛽2
′(𝑟)

𝑋𝑡𝑖𝑗
(𝑟)

+  𝜀𝑖𝑗
(𝑟)

(5) 

𝛽1𝑗
(𝑟)

=  𝛽1
(𝑟)

+  𝑢0𝑗
(𝑟)

; 𝑤ℎ𝑒𝑟𝑒 (𝑢0𝑗
(1)

, 𝑢0𝑗
(2)

, … … … , 𝑢𝑜𝑗
(𝑟)

) ~Multivariate Normal (6) 

From (5) and (6), 

𝑌2𝑡𝑖𝑗
(𝑟)

=  𝛽1
(𝑟)

+  𝛽2
′(𝑟)

𝑋𝑡𝑖𝑗
(𝑟)

+  𝜀𝑖𝑗
(𝑟)

+  𝑢0𝑗
(𝑟)

(7) 

Where, 

β0
(r), β1

(r)– fixed intercept for the event type r, β0
(r), β1

(r)– fixed intercept for the event type r 

u0j
(r) – random effects for the clusters for the event 

type r, u0j
(r) ~ N(0, σ2

u), 

αt
(r) – coefficient of the indicators for the time 

intervals 

Dtij
(r) – Indicators for the time interval, ɛij

(r) – random error for the individual. 

β’
1

(r), β’2
(r)  – Fixed coefficients of the covariates/factors, 

Xij
(r) – Covariates/factors 

As per the model methodology given above, two sub models of competing risk and continuous 

variable are jointly linked separately for each and every event types (r=1,2,3,……,R). For simplicity, 

we assume that both random effects for the clusters (u0j
(r)) are same and both variance (σu

2) are the same 

for the event type r [18,19]. In GLIMMIX procedure the structure of the variance matrix of Y(r) = (Y1tij
(r), 

Y2tij
(r)) as. 

 𝑉𝑎𝑟(𝑌(𝑟)) =  𝐴1/2𝑅 𝐴1/2
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Where, R –user specified 2 x 2 covariance matrix since two responses, A – Diagonal matrix of the 

variance of (Y1tij
(r), Y2tij

(r)).  

2.2.  Model 2: Simultaneous Equation Model (SEM) 

Simultaneity is an observable reason for the endogeneity of explanatory / independent variables. i.e. one 

or more explanatory variables are jointly associated with the dependent variable. These models are 

known as Simultaneous Equations Models (SEM). Also simultaneously determined variables, frequently 

have an equilibrium.  

We can extend earlier (4) & (7) equations into a SEM as, 

𝑙𝑜𝑔 (
ℎ𝑡𝑖𝑗

(𝑟)

1−ℎ𝑡𝑖𝑗
(𝑟)) =  𝛽0

(𝑟)
+  ∑ 𝛼𝑡

(𝑟)
𝐷𝑡𝑖𝑗

(𝑟)𝑡
𝑡=1 +  𝛽1

′(𝑟)
𝑋𝑡𝑖𝑗

(𝑟)
+ 𝛾𝑌2𝑡𝑖𝑗

(𝑟)
+   𝑢0𝑗

(𝑟)
(8) 

𝑌2𝑡𝑖𝑗
(𝑟)

=  𝛽1
(𝑟)

+  𝛽′2
(𝑟)

𝑋𝑡𝑖𝑗
(𝑟)

+  𝜀𝑖𝑗
(𝑟)

+  𝑢1𝑗
(𝑟)

(9) 

Where,γ – Coefficient of the covariate, 𝑌2𝑡𝑖𝑗
(𝑟)

When endogeneity arises, the right hand side of (8) consists with 𝑌2𝑡𝑖𝑗
(𝑟)

since 𝑌1𝑡𝑖𝑗
(𝑟)

  and 𝑌2𝑡𝑖𝑗
(𝑟)

 are jointly

associated with each other. Here, 𝑌2𝑡𝑖𝑗
(𝑟)

  is known as the endogenous variable. Although both random 

effects for the clusters of two sub models are same in the standard joint multilevel scenario, random 

effects for the clusters, 𝑢0𝑗
(𝑟)

and 𝑢1𝑗
(𝑟)

are not the same in SEM. It relies that, endogeniety of 𝑌2𝑡𝑖𝑗
(𝑟)

will lead 

𝑡𝑜 𝑐𝑜𝑟𝑟(𝑢0𝑗
(𝑟)

, 𝑢1𝑗
(𝑟)

)  ≠ 0. In general, we assume that,(𝑢0𝑗
(𝑟)

, 𝑢1𝑗
(𝑟)

) ~ 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙. The suggested

method is illustrated from SAS 9.2. 

3. Analysis, Results and Discussion

The methodological development is illustrated by a study of Dengue patients reported in Sri Lanka in 

the period 2006 – 2008 within 10 districts (recorded as high incidence districts in the period from 2006-

2008) The district is considered as a cluster effect. The variables that had been identified from the 

previous univariate studies without cluster effect by [20,21] , were used in this study by adding cluster 

levels’ variables.   Length of stay (LOS) is a duration variable which can be categorized in to three 

categories; 0-4 days-febrile phase, 4-6 days-critical phase and 6-10 days-recovery phase, according to 

the clinical course of dengue patients [22].Therefore the individuals/dengue patients were studied only 

within 10 days.  The response, duration/LOS consists with multiple destination r which is equal to zero 

if the observation is censored, 1 if the individual is discharged, 2 if the individual transferred into another 

hospital and 3 if the individual dies in the hospital. So, LOS was used as a competing risk variable and 

other response was log of platelet count (Continuous) since there is a relationship in between LOS of 

dengue patients with platelet count [21,23]. 

Initially, data must be expanded to obtain discrete type multilevel competing risk response. 

Restructuring is carried out as follows (Table 1 and Table 2). Two records of individuals with 4 

predefined time interval data record are taken here as an example. According to the Table 1 and Table 

2, each and every individual had to be recorded for each time interval up to the time interval which is 

related to that individual.  

Table 1 : Initial Data set example.                     Table 2: Restructured Data set example. 

Indi

vidu

al 

Durat

ion/T

ime 

Time 

Interv

al 

Type of 

event 

Covariate Indiv

idual 

Time 

Interva

l 

Type 

of 

event 

Covariate 

1 5 2 2 20  1 1 0 20 

2 11 4 0 35 1 2 2 20 

2 1 0 35 

2 2 0 35 

2 3 0 35 

2 4 0 35 

Restructure 
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According to the duration classification in this study, there are 4 predefined interval for 0-4, 4-6, 6-

10 and >10 and 3 indicator variables (T1, T2 and T3) were used for the analysis.Two univariate model 

and a joint model were fitted for the two responses to compare the joint model with the univariate models 

in each and every approach. The Akaike Information Criteria (AIC) was used for model comparison.   

Initially, all the explanatory variables were introduced to the model and the most insignificant 

variables were removed step by step. The parameter estimates of the obtained final joint models for the 

two different approaches are shown in Table 3 and Table 4. Due to the space limitation, estimated 

parameters for the event types: discharge and dead, are only shown in here. The same procedure can be 

applied for the transfer event also. 

Table 3: Estimated Parameter for the model 1 & Model 2 for the Discharge Event. 

Table 4: Estimated Parameter for the model 1 & Model 2 for the Dead Event. 

Model 1 Model 2 

Competing risk Log_platelet Competing risk Log_platelet 

Variable Estimate  

(P value) 

Variable Estimate  

(P value) 

Variable Estimate  

(P value) 

Variable Estimate  

(P value) 

Intercept -2.7470 

(<0.001) 

Intercept 4.7171 

(<0.001) 

Intercept -0.5188 

(0.001) 

Intercept 4.7359 

(<0.001) 

T1 3.0594 

(<0.001) 

Age -0.0029 

(<0.001) 

Log_platelet 0.1684 

(<0.001) 

Age -0.0026 

(<0.001) 

T2 3.0787 

(<0.001) 

Sex_male 0.04475 

(<0.001) 

T1 5.9568 

(0.0324) 

Sex_male 0.04098 

(<0.001) 

T3 3.8047 

(<0.001) 

Classificatio

n_DF 

0.1325 

(<0.001) 

T2 0.2076 

(<0.001) 

Classificatio

n_DF 

0.0977 

(<0.001) 

Age 0..00419 

(0.006) 

Classificatio

n_DHF1 

0.08629 

(<0.001) 

T3 0.4669 

(0.1023) 

Classificatio

n_DHF1 

0.0662 

(<0.001) 

Sex_male 0.09175 

(0.029) 

Rainfall 0.00001 

(<0.001)) 

Age 0.02051 

(0.002) 

Placetreated

_goverment 

0.05136 

(<0.001) 

Classificatio

n_DF 

0.4089 

(<0.001) 

Sex_male 0.0489 

(0.025) 

Placetreated

_private 

-0.1224 

(<0.001) 

Classificatio

n_DHF1 

0.2911 

(0.0008) 

Classificatio

n_DF 

0.1025 

(<0.001) 

Rainfall 0.00028 

(0.0112) 

Classificatio

n_DHF1 

0.1285 

(0.002) 

Rainfall 0.000179 

(0.015) 

Model 1 Model 2 

Competing risk Log_platelet Competing risk Log_platelet 

Variable Estimate  

(P value) 

Variable Estimate  

(P value) 

Variable Estimate  

(P value) 

Variable Estimate  

(P value) 

intercept -3.1369 

(0.059) 

intercept 4.3785 

(<0.001) 

Intercept -0.6389 

(0.125) 

intercept 4.3255 

(<0.001) 

T1 0.0532 

(0.055) 

Log_WBC 0.029 

(0.0134) 

Log_platelet -1.5704 

(0.125) 

Log_WBC 0.0006 

(0.1896) 

T2 0.0424 

(0.014) 

Age 0.0028 

(<0.001) 

T1 3.3062 

(0.052) 

Age 0.0026 

(<0.001) 

T3 0.1611 

(0.010) 

Sex_male -0.0433 

(<0.001) 

T2 0.0775 

(0.025) 

Sex_male -0.0262 

(<0.001) 

Age 0.0088 

(0.054) 

Classification_ 

DF 

0.1466 

(<0.001) 

T3 0.0128 

(0.0154) 

Classification_ 

DF 

0.1547 

(0.0021) 

Classification_ 

DHF1 

0.1213 

(<0.001) 

Age 0.0057 

(0.102) 

Classification_ 

DHF1 

0.1388 

(<0.001) 

PCV 0.0017 

(<0.001) 

PCV 0.0012 

(0.0011) 
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Table 5: Covariance parameter estimates. 

According to the Table 3 and Table 4, significant variables differ in competing risks and log_platelet. 

A single covariate, namely, classification will be interpreted here since it can be classified as a risk 

variable. The rest of the covariates in the model can be similarly interpreted. The results from the model 

1 for the discharge event, the odds of discharging a patient with DF is 1.12 (exp 0.4089) times the odds 

of discharging a patient with DHF2, while the platelet count is higher among the patients who were with 

DF by an amount 1.35 (10^0.1325) than those had DHF2 for the discharge patients.  The Wald test 

statistics (p=0. 7824) for the model 2 indicated that null hypothesis can not be rejected. Thefore, 

exogeniety exist in the model. So, model 2 procedure can be applied to these data. When focusing on 

model 2 for both events; discharge and dead, showed that the direction of the estimated effects remains 

the same as the model 1. The odds of discharging a patient with DF is 1.108  times higher than the patient 

who were with DHF2, while the platelet count is higher in DF patients than the patients who were with 

DHF2 when the endogeneity effect exist in the model. When comparing model 1 and model 2, model 2 

estimates’ value (Table 3 and Table 4) are lower than model 1. 

 Table 5 showed that, covariance for the competing event and log_plateletis 0.04 in model 1 and 

random effect for the individual is 0.09 in model 1. When comparing model 1 with model 2, model 2 

covariance is lower than model 1 in discharge event. Also, residual variance is similar in both models. 

The results for the dead event can be interpreted in the same way. 

This example was mainly drawn for illustrating the methodology for the joint modelling of competing 

risks and continuous variable which was expected to provide improved performances rather than two 

univariate models. Therefore, finally fitted joint model was compared with the univariate models by the 

Akaike Information Criteria (AIC). The fitted model for the discharge event, shows that AIC for the 

joint model 1 is 21816.85 and joint model 2 is 20528, while the two univariate models had an AIC of 

13674.39 for competing risk model and 9394.91 for log_platelet model, which resulted 23069.3 

(13674.39 +9394.91). AIC of both joint models (model 1 and model 2) is smaller than the total AIC’s 

of the two univariate models, suggested that joint model is more efficient than two univariate models. 

The results obtained from the dead event also tallies with these results.  

4. Conclusion

The main objective of the study was to formulate joint models for the competing risk and count 

(continuous variable) with the effect of cluster. The methodology was developed by fitting two sub 

marginal models; multilevel discrete time competing risk and multilevel normal models, with and 

without exogeneity effect. The results proved that the joint models are better than the two univariate 

models that can be fitted separately for the two responses. Also, it was emphasized that simultaneous 

equation model gives better performance among two joint models, while the directions of the estimated 

parameters remains same in both joint models.  

Extension to the study can be suggested to build up a joint relation of competing risk model with 

continuous or discrete type with another response for a correlated clustered data. 
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