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Abstract 

Multilevel data structures are known as consisting of multiple units of analysis, one clustered 

within the other. The concept of multilevel data modelling has been developed for several years 

mainly because the researchers have realized the disadvantages of ignoring such multilevel data 

structures. This study aims to find out factors affecting the General Certificate of Education 

Ordinary Level (G.C.E. O/L) pass rate at schools located in civil war affected provinces in Sri 

Lanka. The study also extends to observe the multilevel data structure by schools, districts and 

provinces, and determine how these levels have an impact on the G.C.E. O/L pass rate. The 

above has been undertaken by the application of advanced analysis focused on developing 

Generalized Linear Multilevel Model for ordered categorical response using the Bayesian 

Markov Chain Monte Carlo estimation method employing MLwiN 2.10 software. Finally, the 

partial non-proportional odds model was selected as the most appropriate model for the 

Educational data used in this study based on account of its simplicity and accuracy.     

 

Keywords: Bayesian Method, Education, Multilevel data modelling, Ordinal categorical 
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1. Introduction 

Multilevel data structures are commonly observed phenomena in many fields. The importance 

of multilevel data structures had been well identified prior to application of powerful analytical 

tools for multilevel modelling. Most developments of this type of modelling have been focused 

on a continuous response variable rather than categorical response variables. Hence, Multilevel 

modelling for an ordered categorical response is somewhat of a novel application [1]. Also, the 

interest in modelling for ordinal categorical response is often encountered in Educational, Social 

and Medical data [2]. The advanced analysis of this study is based on multilevel modelling for 

ordered categorical response with Educational data. And the focused area of this study is on 
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G.C.E. O/L performance of schools in conflict affected areas, namely, the Northern and Eastern 

provinces in Sri Lanka during the war period and the post-war period. 

Sri Lanka experienced a devastating armed civil conflict over a period of 30 years ending in 

May 2009. The Northern and Eastern Provinces were the most affected by this civil war. In 

times of conflict, children were adversely affected through them being recruited as child 

soldiers, disrupting of their education and losing their homes and other properties. After the war, 

the Government of Sri Lanka (GOSL) as well as different Organizations of the UN and Non-

Government Organizations implemented diverse projects for economic and social uplift of the 

Northern and Eastern Provinces. The GOSL launched two large projects named Uthuru 

Wasanthaya and Negenahira Navodaya aimed at resettlement of people and rehabilitation of 

economic infrastructure to re-establish people’s livelihoods and provide basic needs such as 

transport, water, sanitation, health and education in the above two Provinces [3]. 

Moreover, Education is an essential factor in the socio-economic transformation of a country. 

Also, it is generally expected that the exposure to armed civil conflict mostly affects the 

educational attainment of affected children [4]. As many researchers have observed, it is 

difficult to alleviate poverty without imparting education at least up to the G.C.E. O/L standard 

[5].  

1.1 Literature Review 

1.1.1 Multilevel Modelling: Revisited 

Subsequent to researchers engaging in developing systematic approaches for statistical 

modelling and analysis of hierarchically structured data, the concept of hierarchical data 

modelling commenced in the mid 1980s [6]. Accordingly, there was a consistent development 

for hierarchical data modelling as a result of the early work of Aitkin et al. (1986) on teaching 

styles data and Aitkin’s continuous classic work with Longford (1986) [7,8]. By the early 1990s, 

an important set of techniques, experiences and software packages that could be applied 

consistently, had been developed.  

1.1.2 Importance of Multilevel Modelling  

Researchers have developed elaborate procedures for statistical multilevel modelling 

considering different types of response variables. Mainly, analysis of multilevel modelling has 

several benefits. Firstly, it helps to provide statistically efficient estimates of regression 

coefficients and also using clustering information, it provides accurate standard errors, 
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confidence intervals as well as significant tests. Secondly, it allows the use of covariates at any 

level of a hierarchy. An example for this fact is to help the researcher to discover the extent to 

which differences in average of students’ performance between schools is accounted for by 

factors such as characteristics of students. Also, it helps the researcher to find out whether the 

variation between schools is greater for students who have initially high marks than for students 

who have initially low marks. Finally, it enables to rank individual schools by considering 

performance of students after adjusting for intake achievements [9].  

1.1.3 MLwiN Software used for Multilevel Models 

Multilevel modelling had been initially focused on a continuous variables. Further, multilevel 

theory and its implementation in software for binary, nominal and ordinal data were developed 

in the early 1990s. The outcome of this was the MLwiN software package that has been 

developed as the most sophisticated software to accommodate the new applications of multilevel 

modelling [1]. In this software package, there are some advanced features which are not seen in 

other statistical packages. Especially, MLwiN facilitates Markov Chain Monte Carlo (MCMC) 

estimation for a range of statistical models. It provides many user friendly facilities when fitting 

multilevel models. Further, MLwiN 2.10 version contains enhanced features like estimation, 

exploring, importing and exporting data as well as with other improvements for ease of use [10]. 

In this study, therefore, MLwiN 2.10 has been employed to fit multilevel models. 

1.2 Objective  

The objectives of the present study are to find out factors affecting G.C.E. O/L pass rate of 

Schools in Northern and Eastern Provinces of Sri Lanka while observing multilevel data 

structure into Schools, Districts and Provinces levels, and determining how these levels impact 

on the G.C.E. O/L pass rate. Accordingly, it is attempted to observe whether there is a significant 

improvement of the G.C.E. O/L pass rate of schools during the post-war period compared with 

the war period in the Northern and Eastern Provinces of Sri Lanka, and how the G.C.E. O/L 

pass rate of schools varies among districts in the Northern and Eastern Provinces.  

2. Materials & Method  

2.1 Data 

The study is primarily based on the secondary data from two sources; the Department of 

Examinations and the Data Management Branch of the Ministry of Education. The former 
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provided the G.C.E. O/L pass rates of schools and the latter furnished the Annual School Census 

data. Data was collected based on accessibility from these two data sources. The data set 

consisted of G.C.E. O/L pass rates of schools from 2005 to 2014 by district, province, year (from 

the former source) and characteristics of schools which are covered by school size (measured 

by total number of students), grade, gender and race (from the latter source). Furthermore, 

students who attempted first time in a school have been considered for calculating the G.C.E 

O/L pass rate of that school. Samples were made by connecting the above mentioned G.C.E. 

O/L pass rates of schools data with characteristics of schools data, considering all schools in the 

Northern and Eastern provinces from 2005 to 2014. Accordingly, the sample size was made as 

8,455 school records after cleaning of the data. The G.C.E O/L pass rate of schools is the 

response variable which is followed by a three level hierarchical data structure. Here, schools 

are geographically clustered within eight districts while districts are again clustered within the 

two provinces. In the three-level hierarchical structure, school is represented at level 1, district 

at level 2 and province at level 3. Table 1 in Appendix I presents variables used in detail of this 

study for the univariate analysis and advanced analysis.    

In the advanced analysis of this study, the Generalized Linear Multilevel Ordinal Model has 

been developed. This type of multilevel model has the response in the form of an ordered 

category scale. However, we can see natural ordering and these types of categories can be 

allocated scores which are treated as if they are measurements of a continuous scale. On some 

occasions, the distribution of the continuous response variable is skewed. One alternative in 

such a situation is to discretize the variable into categories using an appropriate method and then 

assign scores for these categories. In this study, the response variable is continuous and its 

distribution violates the assumption of a normal distribution. Hence, the response variable 

G.C.E. O/L pass rate at schools has been categorized using equal width discretization method 

and then scores were assigned to each category according to Table 1 in Appendix I.     

Also, Time period is one of the important factors in this study and it has been divided into two 

time periods, namely, war period and post-war period. It is important to justify that the 

individuals are independent between the two time periods. Since the G.C.E O/L pass rate of 

schools was taken by considering pass rates of students at first attempt in each school, students 

represented by each school are independent during the two time periods. Accordingly, it is clear 

that the G.C.E O/L pass rates of schools are independent during war period and post-war period.  
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2.2 Methodology for Univariate Analysis   

The main essence of univariate analysis is to identify whether there is a relationship between 

each explanatory variable and response variable. It helps to provide a preface to advanced 

modelling by selecting significant variables among several explanatory variables.  

Zhang and Boos [11] introduced a new testing method for the use of correlated categorical data 

named as the Generalized Cochran Mantel-Haenszel (GCMH) Test. This test provides three 

different test statistics called TEL, Tp and Tu. According to a simulation study done by Zhang 

and Boos [11], Tp is considered to be the most appropriate Test Statistics among TEL and Tu for 

application in multilevel data structures. Zhang and Boos [11] introduced the theory and 

algorithm for correlated categorical data with repeated measures. Further, the algorithm 

proposed by Zhang and Boos [11] was modified using the R function by De Silva and 

Sooriyarachchi [12], in order to apply the test on a two dimensional multilevel dataset without 

repeated measures. Hence, the most suitable test for univariate analysis for this study is 

identified as GCMH test which is executed using the developed R function. This function 

provides output as the value of Tp, the value of GCMH Statistic and the corresponding p values 

with the degrees of freedom. According to the p value, conclusion can be made as to whether 

there is a significant association between the response variable and the explanatory variable.    

2.3 Methodology for Advanced analysis 

Since data used in this study follow a multilevel data structure with a type of ordered categorical 

response, a Generalized Linear Multilevel Ordinal Model was decided on to develop. 

Accordingly, this section mentions the theory and methodology behind multilevel model for 

ordered categorical response described by Rasbash et al. [10]. At the beginning, a single level 

model with an ordered categorical response variable has been explained as it is generally 

recommended to begin model building with the simple model. Thereafter, generalization of the 

two level model by the single level model has been explained.   

 2.3.1 A Single Level Model with an ordered categorical response variable   

According to Rasbash et. al.[10], the following theory for the Single Level Model with an 

ordered categorical response has been explained.   

Suppose yi  response variable which is ordered categorical for individual i and it has t categories 

which is indexed by s, s = 1, 2,.…, t   where t is selected as reference category 
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Here, models with Cumulative Probabilities is considered instead of using response probabilities 

for each category in order to exploit the ordering. 

𝑬(𝒚𝒊
(𝒔)

) =  𝜸𝒊
(𝒔)

=  ∑ 𝝅𝒊
(𝒉)𝒔

𝒉=𝟏  where, s = 1,2, ……., t-1 ; πi
(s) = Probability of ith individual 

having a response variable of s ; 𝛾𝑖
(𝑠)

= The observed Cumulative Proportions (out of the total ni 

observations) for the ith individual   

Multinomial logistic model is used and one of the response category is chosen as reference 

category which is normally taken as the lowest category level in an ordered categorical response 

model. It is estimated t-1 set of equations for each different response category with the chosen 

reference category. The proportional odds model with a logit link function is commonly used. 

Multinomial regression model with explanatory variable Xi can be written in the form of logit 

link as follows. 

 𝒍𝒐𝒈𝒊𝒕 𝜸𝒊
(𝒔)

=  𝜶(𝒔) +  𝑿𝒊𝜷   or     𝜸𝒊
(𝒔)

= { 𝟏 + 𝐞𝐱𝐩 −[𝜶(𝒔) +  𝑿𝒊𝜷]}−𝟏 

It is estimated that a separate intercept and slope exists for each response category. However, a 

common slope for each response category can be estimated. This indicates that increasing values 

of the linear component are associated with increasing probabilities as s increases.  

     2.3.2 A Two-Level Model with an ordered categorical response variable   

According to Rasbash et. al. [10] and Fielding et. al. [13], theory for Two-Level Proportional 

Odds Model with an ordered categorical response and Non-Proportional Odds Model have been 

explained below.       

The two level ordered category response model is a generalization of the single level model.  

Similar to the single level model, a two level model is considered with Cumulative Probabilities 

as given below.  

𝑬(𝒚𝒊𝒋
(𝒔)

) =  𝜸𝒊𝒋
(𝒔)

=  ∑ 𝝅𝒊𝒋
(𝒉)

𝒔

𝒉=𝟏

;  𝒔 = 𝟏, 𝟐, … … . , 𝒕 − 𝟏 

Here, yij is categorical response of individual i in second level j, probability of having category 

s for ith individual in second level j is denoted by 𝜋𝑖𝑗
(𝑠)

.  

Cumulative proportions have covariance matrix as follows. 

𝒄𝒐𝒗 (𝒚𝒊𝒋
(𝒔)

,  𝒚𝒊𝒋
(𝒓)

) =
𝜸𝒊𝒋

(𝒔)
(𝟏 − 𝜸𝒊𝒋

(𝒓)
)

𝒏𝒊𝒋
 ; 𝒔 ≤ 𝒓 
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Generalized Multilevel Ordinal Proportional Odds Model for a single random effect and no 

covariates/factors are mentioned below.  

𝒍𝒐𝒈𝒊𝒕 (𝜸𝒊𝒋
(𝒔)

) =  𝒍𝒐𝒈 (
𝜸𝒊𝒋

(𝒔)

𝟏−𝜸𝒊𝒋
(𝒔)) = 𝜶(𝒔) +  𝒖𝟎𝒋  ; 𝒔 = 𝟏, 𝟐, … … . , 𝒕 − 𝟏 

It is assumed that the random effect is 𝑢0𝑗~ 𝑁(0, 𝜎𝑢0
2 ). 

The above model can be extended to fixed or random covariates/factors and several random 

components as follows.   

𝒍𝒐𝒈𝒊𝒕 (𝜸𝒊𝒋
(𝒔)

) = 𝜶(𝒔) + X𝒊𝒋𝜷 +  𝒁𝒊𝒋𝒖𝒋  ; 𝒔 = 𝟏, 𝟐, … … . , 𝒕 − 𝟏       or 

𝜸𝒊𝒋
(𝒔)

= {𝟏 + 𝐞𝐱𝐩 −[𝜶(𝒔) + X𝒊𝒋𝜷 + 𝒁𝒊𝒋𝒖𝒋]}−𝟏                           

Where, X𝑖𝑗 = {1, 𝑥1𝑖𝑗 , 𝑥2𝑖𝑗 ,……..} and Z𝑖𝑗 = {1, 𝑧1𝑖𝑗, 𝑧2𝑖𝑗 ,……..} while 𝛽𝑇 = {𝛽0, 𝛽1,………} 

𝑈𝑗
𝑇 = {𝑢0𝑗, 𝑢1𝑗 ,………}   

Generally, Z variables are a subset of X variables. 𝛽 is a vector of fixed effects coefficients 

associated with the covariates/factors in the data vector X𝑖𝑗. uj  is a second level random effect 

which is assumed to be normally distributed with mean zero and variance 𝜎𝑢
2. The subjects of 

𝑈𝑗
𝑇 are random variables at second level 𝑗. It is assumed that the individuals of 𝑈𝑗

𝑇 are of 

dependent multivariate normal distribution with mean zero.   

Here, the category probabilities can be written in terms of cumulative probabilities as follows. 

𝝅𝒊𝒋
(𝒉)

= 𝜸𝒊𝒋
(𝒉)

− 𝜸𝒊𝒋
(𝒉−𝟏)

 ; 𝟏 < 𝒉 < 𝒕   ,    𝝅𝒊𝒋
(𝟏)

= 𝜸𝒊𝒋
(𝟏)

 ;  𝜸𝒊𝒋
(𝒕)

= 𝟏  

The theory explained above is based on the most basic multilevel model identified for ordinal 

categorical response. Further, many extensions to this basic model by Fielding et al. [13], 

Hedeker and Gibbons [14], Raman and Hedeker [15] have been proposed. Accordingly, the 

extension for the proportional odds model is the generalized multilevel ordinal non-proportional 

odds model which is generally used when there are substantial reasons to suggest that the effect 

of explanatory variables do not behave proportionally across response categories.   

The following illustrates how the generalized multilevel ordinal non-proportional odds model 

behaves. 

𝒍𝒐𝒈𝒊𝒕 (𝜸𝒊𝒋
(𝒔)

) = 𝜶(𝒔) + (𝒔)𝒕𝒊𝒋 + X𝒊𝒋𝜷 +  𝒖𝟎𝒋  ; 𝒔 = 𝟏, 𝟐, … … . , 𝒕 − 𝟏 

Here,  𝑡𝑖𝑗 indicates variables supposed to vary non-proportionally across logits. The terms (𝑠) 

indicates the estimated coefficients that vary across the logits. Further, Fielding et al. [13] have 

described these models and their application to educational data.  
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2.3.3 Variable Selection and Model Comparison 

To select significant variables which need to be included into the model, the forward selection 

procedure was used along with Wald Statistic and Deviance Information Criteria (DIC). The P 

value corresponding to Wald Statistics was used to find out the most significant variable that 

needed to be included into the model while DIC was used to evaluate the model fit at each stage 

of the forward selection procedure. 

2.3.4 Deviance Information Criteria (DIC) 

The deviance statistic is known as a measure of how well a developed model fits the data [16]. 

Here, deviance is calculated by running MCMC to derive a diagnostic which is known as 

Deviance Information Criteria. This DIC diagnostic is a generalization of the Akaike’s 

Information Criteria (AIC) [17]. Consider 𝑃𝐷 is an effective number of parameters, 𝐷(𝜃̅) is 

deviance at the expected value of the unknown parameters 𝜃 and 𝐷̅ is the average deviance from 

the complete set of iterations. Then, DIC =  𝐷̅ + 𝑃𝐷  where 𝑃𝐷 =  𝐷̅ −  𝐷(𝜃̅) . 

Since the DIC diagnostic has two terms which explain fits of a model and its complexity, DIC 

helps to compare models.  Generally, the smaller DIC value represented model is considered as 

a better model.  

2.3.5 Parameter Estimation Procedure  

Since maximum likelihood estimation is not applicable to the discrete multilevel response 

model, Quasi-likelihood methods are executed in MLwiN 2.10. These Quasi-likelihood 

methods use a linearization method which is based on Taylor Series Expansion. The Taylor 

Series Expansion transforms a discrete response model into a continuous response model.  Also, 

there are two types of approximation methods available in MLwiN 2.10 to transform a model 

into a linear model. These types of methods are known as Marginal Quasi Likelihood (MQL) 

and Predictive (or Penalized) Quasi-likelihood (PQL) and they are used with 1st order or 2nd 

order terms in the Taylor series expansion. After linearization, estimation can be executed using 

IGLS or Reweighted IGLS (RIGLS) in MLwiN software.  

The IGLS and RIGSL methods can be identified as likelihood based frequentist methods and 

they are founded on iterative procedures. These iterations happen between two deterministic 

steps till two consecutive estimates for each parameter are provided as sufficiently close 

together. However, estimates produced through these methods tend to be biased.  
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Hence, instead of the above mentioned two methods for parameter estimation, recently the 

MCMC method based on simulation procedures has been implemented and it has several 

advantages compared to IGLS and RIGLS methods. Instead of providing point estimates for 

unknown parameters, these methods are used to run many iterations and to create estimate for 

each parameter at each iteration. Also, these estimates are not independent since at each 

iteration, the estimates at the last iteration are used to create new estimates. MCMC estimation 

creates sample values from the posterior distribution of the unknown parameters and this helps 

to provide accurate estimates for the unknown parameters of the model. Also, it allows to 

calculate point and interval estimates for each level considered in the multilevel model [1]. 

However, MCMC estimation is computationally intensive and it takes a far longer time to run 

than likelihood based IGLS and RIGLS methods using MLwiN. 

In this study, the IGLS method with either PQL 1st order or PQL 2nd order method is firstly used 

to find starting estimates for model parameters. Thereafter, the MCMC method which is known 

as a good estimation method for parameter estimation is executed to find out better estimates 

for each parameter in the model.  

2.4 Residual Analysis and Model Adequacy 

After fitting a model to a set of data, it is important to check whether model fitting is adequate 

or not. The general way of finding the model adequacy is based on residuals analysis which is 

aimed to find out whether the underlining distributional assumptions of error terms are validated 

by the fitted model. If it is true, then the fitted model can be used to make valid inferences. It 

could be recognized that the researchers have not addressed up to now, the area of the residual 

analysis and diagnostic tests for multilevel modelling thoroughly. Hence, the available methods 

have been used to validate the fitted model.  

Even though the multilevel ordered categorical response model has been developed in this study, 

diagnostic methods used for model adequacy are the same as other types of multilevel models. 

Accordingly, the theory applied for evaluation of a model adequacy under a multilevel model 

with continuous response by Rasbash et al. [10] has been used in this study.    

Generally, it is found that the residual analysis using higher level aggregation rather than 

observing individual data points is more useful. Reasons for this choice is that most often 

researchers prefer to take higher level aggregation as they normally tend to be started at this 

level and when differences at the higher level exists, higher level indication is clearer than 

observing a few individual points at a lower level [10]. 
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2.4.1 Methods used in Checking Model Adequacy  

Generally, once estimated residuals are produced at any level, the residuals at any level follow 

a normal distribution and can be checked using a normal probability plot. Further, the Anderson 

Darling test is used to check the normality using Minitab 16.   

In multilevel modelling, caterpillar plot can be used to illustrate and compare random effects 

parameters. It can be drawn by plotting residuals at any level in ascending order with their 95% 

confidence interval using MLwiN 2.10. This plot is displayed as a caterpillar as its name implies. 

Here, individuals of the considered level are generally shown at the lower and upper sides of 

the plot and the confidence interval of their residuals do not overlap zero. These residuals shows 

that the deviation of individuals at any level from the overall mean predicted by the fixed 

parameter in the model. That means these are individuals that indicate significant changes from 

overall mean at 5 % level of significance [10].  

3. Results 

3.1 Results of Univariate Analysis based on the Generalized Cochran Mantel-Haenszel test 

Mainly, univariate analysis was conducted to identify whether there is an association between 

each explanatory variable and response variable the G.C.E. O/L pass rate. Also, significant 

variables obtained in the univariate analysis would be helpful to make a comparison with 

significant variables obtained in the final model under the advanced analysis. In this study, data 

used follow a three level hierarchical structure and initially there are five explanatory variables 

which are types of categorical variables except the school size variable. As mentioned in the 

methodology for univariate analysis, the GCMH test used under the univariate analysis requires 

categorical data in a two level hierarchical data structure. Therefore, district level 2 and province 

level 3 were combined to make a single variable prior to running the R function. Also, initially 

explanatory variable school size is a type of continuous variable and it was categorized 

meaningfully by referring to the Sri Lanka Education Information 2013 report [18]. The 

following table illustrates output of the GCMH test which was executed using the developed R 

function by De Silva & Sooriyarachchi [12]. 
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Table 2: Generalized Cochran Mantel-Haenszel test results on Explanatory Variables with 

G.C.E. O/L Pass Rate   

Explanatory Variable   Tp Degrees of Freedom P-Value 

Time Period 128.294 3 1.261E-27* 

Grade 1190.920 6 4.418E-254* 

Race 246.450 6 2.352E-50* 

Gender 359.037 6 1.771E-74* 

School Size 1026.244 27 6.447E-199* 

* Significant at 0.01% Level 

Ho: There is no association between G.C.E. O/L Pass Rate and Explanatory Variable Vs.  

H1: There is an association between G.C.E. O/L Pass Rate and Explanatory Variable   

According to results of GCMH test presented in Table 2, since P value for each explanatory 

variable is less than 0.0001, Ho is rejected at 0.01% level of significance. It would imply that all 

variables are significantly associated with G.C.E. O/L Pass Rate. Moreover, the highest 

significance has been indicated from variable Grade.     

3.2 Model Building Procedure for Generalized Linear Multilevel Ordinal Model for G.C.E 

O/L Pass Rate   

3.2.1 Generalized Linear Multilevel Ordinal Model with three levels  

This section describes advanced modelling of response G.C.E. O/L pass rate with explanatory 

variables using MLwiN 2.10 software. All explanatory variables have been taken into account 

for model building based on results of the GCMH test under univariate analysis.   

The useful strategy in multilevel model similar to other statistical models, is to start by fitting a 

simple model and gradually increasing the complexity. Initially, a generalized linear multilevel 

model for ordered categorical response with three levels (i.e., level 1 is School, level 2 is District 

and level 3 is Province) was developed under two approaches named as the proportional odds 

model and the non-proportional odds model. The forward selection method was adopted for the 

model building procedure and it was started from the basic variance component model. 

Accordingly, each explanatory variable was added to the basic model one at a time in order to 

fit the final main effects model. It is important to mention, that in the forward selection 

procedure, once a variable is selected to the model, the selected variable should not be ignored 

throughout the process even when that variable is insignificant at proceeding stages. When 

fitting the model at each stage, either the 1st order or 2nd order PQL method was used based on 

convergence. Thereafter the MCMC method was used by running up to 5,000 iterations to find 

out better estimate for each parameter in the model.  
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A better model at each stage was selected considering a model with minimum DIC value 

together with identifying significant categories of a variable included into the model using p 

value of the Wald statistics. Accordingly, both proportional and non-proportional odds models 

were built separately in order to find the most appropriate final main effects odds model. Here, 

DIC value obtained for the main effects Propotional odds model was 19,614.00 while DIC value 

for the main effects Non-propotional odds model was 19,363.35. Since the minimum DIC value 

is represented by the final main effects on the non-proportional odds model, it was selected as 

the most appropriate final main effects odds model.   

After fitting a multilevel model, it is essential to justify whether the fitted multilevel model is 

adequate or not. To test the availability of multilevel for the selected model, province and district 

level variations were checked using 95% confidence interval. If zero is included within the 95% 

confidence interval, H0 is not rejected. If H0 is not rejected at both levels, it would imply that 

multilevel is not applicable since it is the same as a single level data analysis. 

Table 3: Estimate of province and district levels variances for fitted Main Effects                     

Non-Proportional Odds Model 

Parameter Estimate (95% Confidence Interval) 

Unexplained Province Level Variance 0.055 (0.000,0.471) 

Unexplained District Level Variance 0.332 (0.110,0.916) 

The following hypothesis is used for testing the Province level (or District Level) variations. 

H0: Unexplained Province Level (or District Level) variance is zero Vs.        

H1: Unexplained Province Level (or District Level) variance is not zero  

According to results of Table 3, it is revealed that the estimated value for variance of the third 

level province for the selected model is not significant at 5% level of significance while the 

estimated value for variance of the second level District for the selected model is significant at 

5% level of significance. Hence, it was decided to remove the third level Province from the 

model and to develop a Generalized Linear Multilevel Model with only two levels (i.e., level 1 

is School, level 2 is District).   

3.2.2 Generalized Linear Multilevel Ordinal Model with two levels  

Similar to the above mentioned model building procedure, a Generalized Linear Multilevel 

Ordinal Model with two levels (i.e., level 1 is School, level 2 is District) was developed under 

two approaches, namely, the proportional odds model and the non-proportional odds model 

using the forward selection method. However, under the non-proportional odds model approach, 



13 
 

when School size was included as a separate coefficient into the model, MLwiN 2.10 crashed.  

Hence, the only school size variable had to be added to the model as a common coefficient at 

each step of the forward selection procedure. Accordingly, a proportional odds model and a 

partial non-proportional odds model were developed separately. The DIC value obtained for the 

propotional odds model was 19,614.29 while DIC value for the partial non-propotional odds 

model was 19,397.27. Since the minimum DIC value was shown by the final main effects partial 

non-proportional odds model, it was identified as the better main effects model than the 

propotional odds model.  

In order to justify whether the selected final main effects partial non-proportional odds model 

is adequate for multilevel analysis, the district level variation was checked using 95% 

confidence interval as previously described in section 3.2.1. According to the 2.5th percentile 

value of 0.098 and 97.5th percentile value of 0.894 for the district level variance, it concludes 

that the above interval does not include zero and therefore the null hypothesis (H0) is rejected at 

5 % level of significance. It would imply that the district level variation is present in the selected 

final main effects partial non-proportional odds model.    

3.3 Results for Residual Analysis and Model Adequacy 

It is important to check adequacy of the fitted final model in order to make accurate and valid 

inferences from the model. Hence, as mentioned in section 2.4.1, two graphical techniques 

named the Caterpillar plot and Normal probability plot were used to check the adequacy of the 

fitted final main effects partial non-proportional odds model. 

 

 

 

 

 

 

 

 

 

Fig 1: Normal Probability Plot for final Main Effects Partial Non-Proportional Odds Model  

Table 4: Anderson Darling Test for Final Main effects Partial Non-Proportional Odds Model  

AD Statistic 0.092 

P-Value 0.995 
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According to Fig 1: Normal Probability Plot, most of the points lie on the line angle at 450. 

Hence, it can be reasonably concluded that the residuals satisfy the normality assumption by 

eye inspection. However, the Anderson Darling Test was carried out to obtain a precise 

conclusion for adequacy of this fitted Model. The Hypothesis for the Anderson Darling Test is 

as follows. 

𝐻0 : The residuals follow normal distribution Vs.  

𝐻1 : The residuals do not follow normal distribution 

According to test results of table 4, since p-value for Anderson Darling Test statistic is 0.995 

and it is greater than 0.05, it is not feasible to reject  𝐻0  at 5 % level of significance. That means 

the residuals are distributed normally.   

  

 

 

 

 

 

 

 

Fig 2: Caterpillar Plot for final Main Effects Partial Non-Proportional Odds Model  

According to Fig 2: Caterpillar Plot, it clearly indicates that the 95% confidence intervals for 

five districts Vavuniya, Mannar, Kilinochchi, Mullativu and Trincomalee have not included 

zero while 95% confidence intervals for three districts Ampara, Batticaloa and Jaffna have 

included zero. Accordingly, it implies that the performance at G.C.E. O/L in Vavuniya and 

Mannar districts is worse than the overall mean performance at G.C.E. O/L while performance 

at G.C.E. O/L in Kilinochchi, Mullativu and Trincomalee districts is better than the overall mean 

performance at G.C.E. O/L.   

3.4 Interaction Model 

After selecting the most appropriate main effects odds model, it was decided to proceed with 

model building by adding interaction terms into the selected main effects model because it is 

known that adding interactions between main effects to a model would result in a better model. 

Here, the forward selection method was adopted to select the most significant interactions for 

the main effects model while interaction terms were included into the model as a separate 

7 

5 

4 6 2 

0 3 1 

Abbreviation used for Districts;  

0 = Ampara  

1 = Batticaloa 

2 = Trincomalee 

3 = Jaffna,  

4 = Killinochchi 

5 = Mannar 

6 = Mullativu 

7 = Vavuniya 
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coefficient or common coefficient according to appropriateness. Accordingly, DIC value of the 

final Interaction Model was obtained as 19,315.96 which is the lowest DIC value when 

compared to DIC values of the other fitted models. However, when considering the final 

interaction model, it has twenty five significant categories of variables and eleven significant 

interaction terms.  

Generally, simplicity is an important feature of a model since it is easy to understand and make 

inferences from the model. This is known as the Parsimony Principal. Also, a parsimonious 

model provides better predictions than one which is very complicated. Accordingly, when 

considering the final interaction model, it is a complicated and complex model to do the 

interpretations. On the other hand, DIC value of the selected final main effects partial non-

proportional odds Model was 19,397.27 and the difference between DIC values of the final main 

effects partial non-proportional odds model and final interaction model is 81.31. Also, this 

difference can be considered as smaller when compared to the difference between DIC values 

of the proportional odds model and final main effects partial non-proportional odds model with 

two levels, which is 217.02. Based on these reasons, it was decided to select the final main 

effects partial non-proportional odds model with two levels (i.e., level 1 is School, level 2 is 

District) as the most appropriate model for response, G.C.E O/L pass rate.  

Final Main Effects Partial Non-Proportional Odds Model 

𝑟𝑒𝑠𝑝𝑖𝑗𝑘 ~  Ordered Multinomial (𝑐𝑜𝑛𝑠𝑗𝑘 , 𝜋𝑖𝑗𝑘) 

𝛾1𝑗𝑘  =  𝜋1𝑗𝑘  , 𝛾2𝑗𝑘  =  𝜋1𝑗𝑘 + 𝜋2𝑗𝑘  , 𝛾3𝑗𝑘  =  𝜋1𝑗𝑘 + 𝜋2𝑗𝑘 +𝜋3𝑗𝑘 , 𝛾4𝑗𝑘  =  1 

𝑙𝑜𝑔𝑖𝑡 (𝛾1𝑗𝑘) = −3.313 (0.258) 𝑐𝑜𝑛𝑠. (<= 0 − 25.00)𝑖𝑗𝑘 – 2.648(0.277)  1𝐴𝐵 𝑠𝑐ℎ𝑜𝑜𝑙. (<=

0 − 25.00)𝑖𝑗𝑘 − 1.115(0.092)1𝐶 𝑠𝑐ℎ𝑜𝑜𝑙. (<= 0 − 25.00)𝑖𝑗𝑘 −2.068(0.466) 𝐺𝑖𝑟𝑙𝑠′𝑠𝑐ℎ𝑜𝑜𝑙. (<

= 0 − 25.00)𝑖𝑗𝑘 −   0.561(0.067)𝑃𝑜𝑠𝑡 − 𝑤𝑎𝑟𝑝𝑒𝑟𝑖𝑜𝑑. (<= 0 − 25.00)𝑖𝑗𝑘 +ℎ𝑗𝑘    

 

𝑙𝑜𝑔𝑖𝑡 (𝛾2𝑗𝑘) = −1.202(0.254) 𝑐𝑜𝑛𝑠. (<= 25.01 − 50.00)𝑖𝑗𝑘 −1.454(0.094)1𝐴𝐵 𝑠𝑐ℎ𝑜𝑜𝑙. (<=

25.01 − 50.00)𝑖𝑗𝑘 − 0.411(0.059)1𝐶 𝑠𝑐ℎ𝑜𝑜𝑙. (<= 25.01 −  50.00)𝑖𝑗𝑘 −  

1.160(0.142)𝐺𝑖𝑟𝑙𝑠′ 𝑠𝑐ℎ𝑜𝑜𝑙. (<= 25.01 − 50.00)𝑖𝑗𝑘 − 0.558(0.049)𝑃𝑜𝑠𝑡 − 𝑤𝑎𝑟𝑝𝑒𝑟𝑖𝑜𝑑. (≤

25.01 − 50.00)𝑖𝑗𝑘 − 0.310(0.094) 𝑀𝑢𝑠𝑙𝑖𝑚 𝑠𝑐ℎ𝑜𝑜𝑙. (<= 25.01 − 50.00)𝑖𝑗𝑘 + ℎ𝑗𝑘  

  

𝑙𝑜𝑔𝑖𝑡 (𝛾3𝑗𝑘)  = 0.623(0.258) 𝑐𝑜𝑛𝑠. (<= 50.01 − 75.00)𝑖𝑗𝑘 − 0.558(0.104) 1𝐴𝐵 𝑠𝑐ℎ𝑜𝑜𝑙. (<=

50.01 − 75.00)𝑖𝑗𝑘 − 1.332(0.113)𝐺𝑖𝑟𝑙𝑠′ 𝑠𝑐ℎ𝑜𝑜𝑙. (<= 50.01 − 75.00)𝑖𝑗𝑘 − 0.494(0.064) 

𝑃𝑜𝑠𝑡 − 𝑤𝑎𝑟𝑝𝑒𝑟𝑖𝑜𝑑. (≤ 50.01 − 75.00)𝑖𝑗𝑘 − 0.865(0.113)𝑀𝑢𝑠𝑙𝑖𝑚 𝑠𝑐ℎ𝑜𝑜𝑙. (<= 50.01 −

75.00)𝑖𝑗𝑘 +ℎ𝑗𝑘  

 

ℎ𝑗𝑘 = 1.364(0.485) 1 − 50. 123𝑗𝑘+ 2.182(0.282) 51 − 100. 123𝑗𝑘 + 2.282(0.267) 101 −

200. 123𝑗𝑘 + 2.161(0.267) 201 − 500. 123𝑗𝑘 + 1.832(0.273) 501 − 1000. 123𝑗𝑘 + 

1.530(0.287)1001 − 1500. 123𝑗𝑘+0.899(0.303)1501 − 2000. 123𝑗𝑘 + 𝑣4𝑘𝑐𝑜𝑛𝑠. 123     



16 
 

𝑣4𝑘 ~ 𝑁 (0,𝑣) ∶ 𝑣 = [0.308(0.220)] 

𝑐𝑜𝑣 ( 𝑦𝑠𝑗𝑘 , 𝑦𝑟𝑗𝑘  ) = 𝛾𝑠𝑗𝑘 (1 − 𝛾𝑟𝑗𝑘  )/ 𝑐𝑜𝑛𝑠𝑗𝑘  ;    s ≤ r  

𝛾1𝑗𝑘 = Probability that school j clustered within district k, having at most 25.00 % G.C.E. O/L 

pass rate 

𝛾2𝑗𝑘 = Probability that school j clustered within district k, having at most 50.00 % G.C.E. O/L 

pass rate 

𝛾3𝑗𝑘 = Probability that school j clustered within district k, having at most 75.00 % G.C.E. O/L 

pass rate 

The above illustrates the final main effects partial non-proportional odds model for G.C.E O/L 

pass rates with only significant categories of variables. It is followed by three response variable 

equations, one for each cumulative category. The model consists of unique coefficients for every 

response category as well as a common coefficient. Here, significant categories of school size 

variable are represented as common coefficient for each logits while significant categories for 

other explanatory variables named as Grade, Gender, Time period and Race indicate unique 

coefficients for each logit. The first explanatory variable in each category of response variable 

is a constant. The other explanatory variable, 𝑐𝑜𝑛𝑠. 123 is also constant which is equal to one, 

whose sole distribution to the model through its random coefficients is to add the same random 

error term to each of the three categories equations. Here, term ℎ𝑗𝑘 indicates terms common to 

the set of equations for each G.C.E. O/L Pass Rate response category. Also, 𝑐𝑜𝑛𝑠. 123 is used 

as coefficient of the common variable to specify as a common between district level variability. 

Table 5: Final Main Effects Odds Model with separate coefficients of varaibles 

Variable Category 
 

 
 

𝜷̂ SE(𝜷̂) P-Value 𝜷̂ SE(𝜷̂) P-Value 𝜷̂ SE(𝜷̂) P-Value 

Grade 

1 AB 

School 
-2.648 0.277 1.183E-21* -1.454 0.094 5.697E-54* -0.558 0.104 8.079E-08* 

1 C 

School 
-1.115 0.092 8.319E-34* -0.411 0.059 3.258E-12* 0.133 0.085 0.118 

Gender 

Boys’ 

School 
0.385 0.229 0.093 -0.139 0.158 0.379 -0.273 0.166 0.100 

Girls’ 

School 
-2.068 0.466 9.089E-06* -1.160 0.142 3.109E-16* -1.322 0.113 1.288E-31* 

Time 

Period 

Post-war 

Period 
-0.561 0.067 5.612E-17* -0.558 0.049 4.812E-30* -0.494 0.064 1.175E-14* 

 

Race 

 

 

 

Tamil 

School 
0.08 0.1 0.424 0.075 0.082 0.360 -0.156 0.106 0.141 

Muslim 

School 
0.077 0.129 0.551 -0.310 0.094 9.742E-04* -0.865 0.113 1.935E-14* 

 * Significant at 5% Level 

≤  (0 - 25.00) 

 

≤  (25.01 - 50.00) ≤  (50.01 - 75.00) 
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Table 6: Final Main Effects Odds Model with common coefficients of varaible 

Variable Category 𝜷̂ SE(𝜷̂) P-Value 

 

 

 

 

School Size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-50 1.364 0.485 4.92E-03* 

51-100 2.182 0.282 1.013E-14* 

101-200 2.282 0.267 1.265E-17* 

201-500 2.161 0.267 5.791E-16* 

501-1000 1.832 0.273 1.94E-11* 

1001-1500 1.530 0.287 9.77E-08* 

1501-2000 0.899 0.303 3.01E-03* 

2001-2500 0.259 0.332 0.435 

2501-3000 0.244 0.394 0.535 

   * Significant at 5% Level, DIC Value = 19,397.27    

Table 5 and Table 6 illustrate p-values of Wald statistics for each category of variables in the 

selected final main effects odds model. According to Table 5, all categories of the variable Grade 

in all three logits except 1C school category in (≤ 50.01 - 75.00) logit, are significant at 5% 

level. Also, the variable Time Period for all three logits are significant at 5% level. In the 

variable Gender, Boys’ school category for all three logits are not significant at 5% level while 

Girls’ school category for all three logits are significant at 5% level. In the variable Race, Tamil 

school category for all three logits and Muslim school category for only (≤ 0-25.00) logit are 

not significant at 5% level while Muslim school category for the other two logits are significant 

at 5% level. Moreover, table 6 shows that all categories other than (2001-2500) and (2501-3000) 

categories of the variable school size are significant at 5% level.   

          3.5 Results of final main effects partial non-propotional odds model 

It is essential to interpret the parameter estimates of a model, once a model is fitted and its 

adequacy is verified. Hence, the following tables 7 and 8 illustrate the odds ratios of significant 

categories of each variable of the final main effects odds model for the response, G.C.E. O/L 

pass rate.  

Table 7: Odds ratios of significant categories of each variable as separate coefficients in the 

Final Main Effects Odds Model  

Variable Category 
Odds ratio 

  

 

Grade 
1 AB  School [Type 2 School b] 0.071 0.234 0.572 

1 C School [Type 2 School b] 0.328 0.663 - 

Gender Girls’ School [Mixed School b]   0.126 0.313 0.264 

Time 

Period 
Post-war Period [War Periodb] 0.571 0.572 0.610 

Race Muslim School [Sinhala School b] - 0.733 0.421 
   b  = Base Category 

≤ (0 - 25.00) 

 

≤ (25.01 - 50.00) ≤ (50.01 - 75.00) 
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Table 8: Odds ratios of significant categories of each variable as common coefficients in the 

Final Main Effects Odds Model   

Variable Category Odds ratio 

 

 

School Size 

 

 

 

 

1-50 3.911 
51-100 8.864 
101-200 9.796 
201-500 8.680 
501-1000 6.246 
1001-1500 4.618 
1501-2000 2.457 

 Base Category = [3001-3500] 

In Table 7, odds ratios are calculated and presented for each significant category of variables 

Grade, Gender, Time Period and Race since these variables have been fitted as separate 

coefficients in the final main effects odds model. Also, table 8 shows common odds ratio for 

each significant category of variable school size since school size has been fitted as common 

coefficient in the final main effects odds model. Following sections will discuss the impact of 

all significant terms of the final main effects odds model for response of G.C.E. O/L pass rate. 

According to the results in table 7, odds ratio of having a pass rate ≤ 25.00 % as opposed to a 

pass rate > 25.00 % for 1 AB Schools is 0.07 times compared to Type 2 schools while 1C 

Schools are 0.33 times these odds. Therefore, a significant difference can be noticed between 

the odds ratios of 1 AB schools and 1C schools with respect to the pass rate category ≤ (0-25.00) 

%. The odds ratio of having a pass rate ≤ 50.00 % as opposed to a pass rate > 50.00% for 1 AB 

Schools is 0.23 times compared to Type 2 Schools while it is 0.66 times for 1 C schools. 

Accordingly, 1 AB schools have the lowest odds of having a G.C.E. O/L pass rate  ≤  50.00 % 

as opposed to a G.C.E. O/L pass rate > 50.00 % when compared to 1C schools and Type 2 

schools.  

Also, the odds ratio of School having a pass rate ≤ 25.00 % as opposed to pass rate > 25.00 % 

for Girls’ schools is approximately 0.13 times compared to Mixed schools while odds ratio of 

having a pass rate ≤ 50.00 % as opposed to a pass rate > 50.00 % for Girls’ Schools is 0.31 times 

compared to Mixed Schools. The odds ratio of having a pass rate ≤ 75.00 % as opposed to pass 

rate > 75.00 % for Girls’ schools is 0.26 times compared to Mixed schools. Accordingly, odds 

ratio of having a pass rate ≤ 50.00 % as opposed to a pass rate > 50.00 % for Girls’ schools is 

slightly equal to odds of having a pass rate ≤ 75.00 % as opposed to a pass rate > 75.00 % for 

Girls’ schools.  

The odds ratio of school having a pass rate ≤ 25.00 % as opposed to a pass rate > 25.00 % during       

the post-war period is approximately half times higher compared to the war period. The odds 
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ratio of a school having a pass rate ≤ 50.00 % as opposed to a pass rate > 50.00 % during the 

post-war period is approximately half times higher compared to the war period. Also, the odds 

of schools having a pass rate ≤ 75.00 % as opposed to a pass rate > 75.00 % during the post-war 

period is approximately 0.6 times compared to the war period. Accordingly, it indicates that 

odds of schools having a less than or equal G.C.E O/L pass rate category as opposed to a greater 

G.C.E O/L pass rate category during the post-war period is significantly lower compared to the 

war period.   

Moreover, the odds ratio of schools having a pass rate ≤ 50.00 % opposed to a pass rate > 50.00 

% for Muslim schools is 0.73 times compared to Sinhala schools. Also, the odds of schools 

having a pass rate ≤ 75.00 % as opposed to a pass rate > 75.00 % for Muslim schools is 

approximately 0.42 times compared to Sinhala schools. Accordingly, it would imply that odds 

of schools having a less than or equal G.C.E O/L pass rate category as opposed to a greater 

G.C.E O/L pass rate category for Muslim schools is lower compared to Sinhala schools.  

According to table 8, the odds ratio of having less than or equal pass rate category as opposed 

to a greater pass rate category (when considering all three logits) for schools with size (1-50) 

range is nearly 4.0 times compared to schools with size (3001-3500) range. Similarly, school 

sizes within ranges (51-100), (101-200), (201-500), (501-1000), (1001-1500) and (1501–2000) 

have shown approximately 8.9, 9.8, 8.7, 6.2, 4.6 and 2.5 times these odds respectively. 

Accordingly, the noticeable difference of corresponding odds ratios of schools sizes with ranges 

(101-200) and (1501-2000) can be observed. Moreover, when school size is increased from 

(101-200) range to (1501-2000) range, their corresponding odds ratios have decreased. 

4. Discussion 

Multilevel modelling is a widely used area for hierarchical data structures. The analysis of 

ordered categorical response followed by multilevel data structure is an interesting approach as 

well as a new application for the study area. Also, multilevel modelling for Educational data has 

been hardly applied in Sri Lanka when compared to other countries. Hence, this study would be 

a novel statistical application based on Education and conflict in Sri Lanka.  

MLwiN 2.10 software is a powerful statistical software for developing multilevel models as it 

facilitates easy method for inclusion of variables and interaction terms into a model at any levels 

of the hierarchy. The importance of considering a multilevel structure for G.C.E. O/L pass rate 

is that it eliminates misleading results such as obtaining biased estimates and large standard 
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errors. Also, the multilevel modelling technique explains how the response variable behaves 

with the multiple levels simultaneously.  

An acceptable method for the advanced analysis has been followed in this study. MLwiN 2.10 

has been used for fitting the Generalized Linear Multilevel Model for ordered categorical 

response. The MCMC estimation method was used up to 5000 iterations after running the 1st 

order or 2nd order PQL method for parameter estimation in the models. Initially, a multilevel 

model with three levels (i.e., level 1 is School, level 2 is District and level 3 is Province) could 

be developed under two approaches, namely, the proportional odds model and the non-

proportional odds model. Further, it is proved that the province level is not adequate for fitting 

the model with a three level hierarchical structure. Accordingly, a Generalized linear multilevel 

model with two levels (i.e., level 1 is School, level 2 is District) could be developed similar to 

the model with three levels. At many instances, MLwiN 2.10 crashed while running the non-

proportional odds model with adding the school size variable as a separate coefficient into that 

model using MCMC estimation. Accordingly, the partial non-proportional odds model with two 

levels could be developed instead of building the non-proportional odds model. Although the 

interaction model was built after fitting the final main effects odds model and its DIC value was 

minimum, the interaction model was a complex model to do the interpretations. Accordingly, 

there is a tradeoff between accuracy and simplicity when selecting the most appropriate final 

model. Ultimately, the partial non-proportional odds model with two levels was selected as the 

most appropriate final main effects odds model for the response, G.C.E. O/L pass rate based on 

its simplicity and accuracy. A sound multilevel goodness of fit test has not been recommended 

for the multilevel models. Hence, adequacy of the final main effects odds model has been 

checked using the Caterpillar plot and the Normal probability plot.   

This paper is mainly focused on how conflict affects the G.C.E. O/L pass rate of schools in the 

Northern and Eastern provinces of Sri Lanka. Through this study, it was possible to obtain good 

results based on the developed final main effects odds model. A careful interpretation for odds 

ratios in the final main effects partial non-proportional odds model is important since these are 

somewhat difficult to interpret. As explained under the results section, the variable time period 

was significant at 5% level of significance while not all categories of other variables Grade, 

Gender, Race and school size were significant at 5% level of significance in the final main 

effects odds model. Also, it is proved that the odds of schools having a less than or equal pass 

rate as opposed to a greater pass rate during the post-war period is significantly lower compared 

to the war period. Accordingly, it is concluded that there is a significant improvement of G.C.E. 
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O/L pass rate of schools during the post-war period compared to the war period in the Northern 

and Eastern provinces of Sri Lanka. Moreover, 1 AB schools indicate the highest G.C.E. O/L 

performance when compared to the 1C and Type 2 schools. Also, the G.C.E. O/L performance 

of Girls’ schools is higher than that of Mixed schools while the G.C.E. O/L performance of 

Muslim schools is higher than that of Sinhala schools in Northern and Eastern provinces of Sri 

Lanka.  

Moreover, it is proved that the performances at the G.C.E. O/L Examination in Vavuniya and 

Mannar Districts are worse than the overall performance at the G.C.E. O/L while performances 

at the G.C.E. O/L in Kilinochchi, Mullativu and Trincomalee Districts are better than the overall 

performance at the G.C.E. O/L. Also, Ampara, Batticaloa and Jaffna performances at the G.C.E. 

O/L are similar to the level of overall performance at the G.C.E. O/L.     

4.1 Further Study 

The data used in this study was limited to the Northern and Eastern provinces based on the main 

objective of this study. It is recommended to apply the technique used here to a sample of 

schools drawn from all provinces in Sri Lanka. It would be useful to find out how the progress 

of the G.C.E. O/L pass rates are in the most affected provinces compared to the other provinces 

in Sri Lanka. In a statistical context, there may be some multi-collinearity variables in the data 

set. However, it was not considered in this study. Hence, an appropriate test can be applied to 

find multi-collinearity between variables. 
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Appendix I  

Table 1: Description of the data used for Univariate analysis and Advanced analysis  

Variable Description Category Code 

Cluster Levels 

Province Level 3 – Province 
Eastern 0 

Northern 1 

District 

 

Level 2 – District 

 

Ampara 0 

Batticaloa 1 

Trincomalee 2 

Jaffna 3 

Kilinochchi 4 

Mannar 5 

Mullativu 6 

Vavuniya 7 

Response Variable 

G.C.E. 

O/L Pass 

Rate  

G.C.E. O/L Pass Rate of School is calculated as 

(number of qualified student / number of sat 

student) *100 

0-25.00 1 

25.01-50.00 2 

50.01-75.00 3 

75.01-100.00 4 

Explanatory Variables at School Level 

Race School categorized based on Race 

Sinhala School 1 

Tamil School 2 

Muslim School 3 

Gender School categorized based on Gender 

Boys’ School 1 

Girls’ School 2 

Mixed School 3 

Grade 

1 AB: Schools having Grade 1 to 13 with the 

addition of a Science stream in Grades 12-13 
1 AB School 1 

Type 1C: Schools having Grade 1 to Grade 13, 

with Arts and Commerce stream in Grades 12-13 

 

1 C School 2 

Type 2: Schools having class up to Grade 11 Type 2 School 3 

Time 

Period 

 

Year range as 2005-2014 

 

War Period (2005-2009) 0 

Post-war Period (2010-2014)  1  

 

School 

Size 

 

 

 

Total number of students in a School 

 

1-50 1 

51-100 2 

101-200 3 

201-500 4 

501-1000 5 

1001-1500 6 

1501-2000 7 

2001-2500 8 

2501-3000 9 

3001-3500 10 

 


