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Abstract 

The linear Gaussian mixed model is a tool box for analyzing experimental as well as non 

experimental designs in a flexible way elaborately. It is the model that contains mixtures of fixed 

effects as well as random effects. There are several ways to estimate fixed effects and variance 

components of the random effects. The most commonly used methods are  Iterative Generalized 

Least Squares (IGLS) Estimation, Maximum Likelihood (ML) Estimation and Residual 

Maximum Likelihood (REML) Estimation. Of these methods many researchers prefer the REML 

method. This method is an iterative method thus its properties cannot be studied analytically. In 

the past simulation studies have been used only to study the properties of unbiasedness and 

efficiency of these REML estimators. These simulation studies have been  of a small scale and 

usually have examined estimation of only either fixed or random effects but not both. Also the 

affect of varying sample size on the properties of the estimators have not been studied.   

Therefore the aim of this paper is to study the major desirable properties of estimators, namely, 

unbiasedness, consistency, sufficiency and efficiency for the REML method of estimation for 

both fixed and random effects for varying sample sizes and for varying ratios of variance of 

random effect to error variance. This was achieved by using an extensive Monte Carlo 

Simulation study. Code for this simulation study was developed using Java programming 

language. The results indicate that the  Residual Maximum Likelihood estimation (REML) 

method  holds all the desired properties for fixed effects. However for  variance components of 

random effects and errors it does not hold the property of sufficiency and also though when the 

ratio of variance of  random effects to error variance is small  it holds the property of efficiency 

it is not so efficient when this ratio is large. 

Keywords : Residual Maximum Likelihood (REML) Estimation, Mixed Models, Monte Carlo 
Simulation, Properties of Estimators, Minimum Variance Quadratic Unbiased Estimators 
(MIVQUE) 

 

1.Introduction  

The  linear Gaussian mixed model (Brown and Prescott, 2001) is widely used in a number of 

areas including Biology, Medicine and Social Sciences. This model encompasses methodology 

to relax the assumption of independence and variance homogeneity. The key distinguishing 
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feature of mixed models compared with fixed effects models is that they are able to model data 

in which the observations are not independent. A Mixed model consists of fixed (non-random) 

effects as well as random effects. Each random effect in the model gives rise to a variance 

component. The theory behind mixed models and the advantages of mixed models over the 

traditional fixed effects models have been discussed by Littell et al. (1996), Verbeke and 

Molenberghs (1997,2000), and Brown and Prescott (2001). There are several ways to estimate fixed 

effects and variance components of the random effects such as Maximum Likelihood Estimation 

(ML), Residual Maximum Likelihood Estimation (REML), Iterative Generalized Least Squares 

Estimation (IGLS) and Least Squares Estimation (LSE). Hartley and Rao 1967; Patterson and 

Thompson 1971; Harville 1977; Laird and Ware 1982; Jennrich and Schluchter 1986 have found 

that in many situations, the best approach for the estimation of fixed effects and random 

components is to use likelihood-based methods, exploiting the assumption that the random 

components are normally distributed. Of the two commonly used likelihood-based methods, 

maximum likelihood (ML) and restricted/residual maximum likelihood (REML), REML has 

been found to be the more desirable. As REML estimation is based on an iterative process the 

properties of the REML estimators cannot be studied analytically thus in the past researchers 

such as Swallow and Monahan (1984), McGilchrist (1988), Zhang, Zhang, Liu, Haussmann 

(1995), Kenward, Roger (1997) have used Monte-Carlo simulation for this purpose.  All these 

studies have been comparative studies where REML estimators have been compared with other 

estimators and the authors have only examined the properties of unbiasedness or/and efficiency 

in estimators of fixed or random effects. Also no study has been carried out to examine the effect 

of sample size on these estimators.  

The superiority of REML estimators has already been established by the previously mentioned 

simulation studies. Thus  in this paper the objective was to examine the properties unbiasedness, 

efficiency, sufficiency and consistency of  REML estimators of both fixed and random effects in 

the general linear Gaussian mixed model by using Monte Carlo simulation over a range of 

sample sizes. In this simulation study balance data is considered and  special forms  of  variance 

covariance matrices for the errors and random effects are assumed. To achieve this objective 

Java programs were developed by the authors.   



3 
 

Section 2 consists of methodology and comes in three parts. The first part explains the REML 

estimation procedure for the estimation of fixed effects and variance components of the random 

effects, the second part discusses the properties of unbiasedness, efficiency, sufficiency and 

consistency of an estimator and the third part illustrates the simulation procedure used in the 

study. Section 3 consists of the results of the simulation study and the conclusions drawn from 

these results. A discussion of the findings is given in section 4.   

 

2. Methodology 

Section 2.1 describes the REML estimation method for mixed models, section 2.2 defines the 

main desirable properties of estimators and section 2.3 illustrates the simulation procedure. In 

order to set the stage for the description of material for sections 2.1-2.3 some notation and 

definitions are necessary and are given below.    

The general linear Gaussian mixed model is defined as :    y = Xα + Zb + ε  where,  y is an n × 1 

vector of observations, X is an n × p matrix of known constants of rank p, α is a p × 1 vector of 

fixed effects parameters, Z is an n × r matrix of known constants of rank r and b is a r × 1 vector 

of random variables. It is assumed that the errors   ε follow a normal distribution with mean 0 

and variance-covariance matrix R  ( ઽ ~ N (0,R)), the random effects  b follow a normal 

distribution with mean 0 and variance-covariance matrix G ( b ~ N (0,G)) and ઽ and b are 

uncorrelated. This implies that the mean of  y  is Xα and V, the variance of y, is  ZGZ' + R. 

 

2.1  REML method of estimation of fixed effects and variance components in Mixed models 

In this approach (Liao and Lipsitz, 2002), the parameter α is eliminated from the log likelihood 

so that it is defined only in terms of the variance parameters. Here, the likelihood function is 

obtained based on the residual terms which are known as full residuals, y - Xαෝ. Therefore the 

joint log likelihood for α and the variance parameter, γ, can be expressed as a product of the 

likelihoods based on y - Xαෝ and αෝ:  

 L(γ, α; y) = L(γ; y - Xαෝ) L(α; હෝ, γ)………(1) 
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. Thus, the likelihood for γ based on y - Xαෝ is given by : 

           L(γ; y - Xαෝ) = L(γ, α; y) / L(α; હෝ, γ)…….. (2)   

For fixed α and γ the likelihood of y, L(γ, α; y) ן |V|-1/2 eି
భ
మሺYିX஑ሻᇱV

షభሺYିX஑ሻ …….(3) 

Equation (3) gives the maximum likelihood estimates for α and γ  to be 1 1ˆ ˆˆ ( )X V X X V yα − − −′ ′=  

and  1ˆ ˆˆ ˆ( )GZ V y Xγ α−′= − .  

Assuming V is known,  αෝ has a multivariate normal distribution with mean α  and variance 

1 1( )X V X− −′ . Hence,  
11 ˆ ˆ(( ) ( ))1 1/ 2 2ˆ( ; ; ) | | e

X V X
L X V X

α α α α
α α γ

−′ ′− − −− −′∝  

This can be reduced to : 

11 ˆ(( ) ( ))1 1/ 2 2ˆ( ; ; ) | | e
y X V X X

L X V X
α α α

α α γ
−′− − −− −′∝ …………….(4) 

Substituting equations (3) and (4) in (2) and taking ˆα α=  the  residual maximum likelihood is 

obtained as 
11 1 1 ˆ ˆ[( ) ( )]12 2 2ˆ( ; ) | | | |

y X V y X
L y X V X V X e

α α
γ α

−′− − − −−′− ∝  and thus  the  residual maximum 

log likelihood is  

1 11ˆ ˆ ˆlog ( ; ) [log| | | | ( ) ( )]
2

L y X k V X V X y X V y Xγ α α α− −′ ′− = − − + − − …………(5) 

The difference between the residual maximum log likelihood and the ordinary log likelihood is 

caused by an extra term log |XԢVିଵX|ିଵ which is the log of the determinant of var(αෝ). The 

residual maximum likelihood is equivalent to having integrated α out of the likelihood for α and 

γ, and for this reason residual maximum likelihood is sometimes referred to as a ‘marginal’ 

method. Because, the residual maximum likelihood takes account of the fact that α is a parameter 

and not a constant, the resulting variance parameter estimates are unbiased. As with maximum 

likelihood, α is then estimated by treating the variance parameters as fixed, and finding the 

values of α which maximize the residual maximum log likelihood. 

Maximum likelihood and Residual Maximum likelihood methods work by obtaining variance 

parameter estimates that maximize a likelihood function. A solution cannot be specified by a 
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single equation as it was for the fixed and random effects because the derivatives of the log 

likelihood with respect to the variance parameters are non-linear. An iterative process such as the 

widely applied Newton- Raphson algorithm is therefore required. This works by repeatedly 

solving a quadratic approximation to the log likelihood function. Although the function will not, 

in general, be quadratic, in the region of the Maximum likelihood solution the quadratic 

approximation is usually quite good, and the Newton- Raphson iterative procedure will usually 

converge appropriately. The iterative process can be defined by 1
1 ( ) ( )i i i if fθ θ θ θ−
+ ′′ ′= −  

where ( )if θ′   and ( )if θ′′  are the actual derivatives of ( )if θ  evaluated at θi. The matrix of 

second derivatives, ( )if θ′′  is often referred to as the Hessian matrix. In mixed models f(θ) is 

taken to be the log likelihood expressed in terms of the variance parameters. The need to 

evaluate the derivatives at each iteration can make the Newton- Raphson algorithm 

computationally intensive. Computation can be made easier by using a matrix known as the 

information matrix in place of ( )if θ′′   in the iterative process. The information matrix is the 

expected value of the Hessian matrix and it is easier to compute than the Hessian matrix because 

some of the correlation terms are zero. When it is used the process can be referred to as the 

method of scoring or Fisher scoring. This method has been shown to be more robust to poor 

starting values than the Newton- Raphson algorithm. An indication of the precision of the 

variance parameters can be obtained from an estimate of their variance and their degree of 

correlation from the covariances. However, this estimate is based on standard asymptotic (large 

sample) theory. The asymptotic covariances of the variance parameters are given by the negative 

of the expected values of second partial derivatives of the log likelihood. Since the resulting 

covariances are based on asymptotic theory and are related to the estimated variance parameter 

values themselves, they should be interpreted cautiously. 

 

2.2 Desirable Properties of Estimators 

There are several desirable properties that an estimator of  a population parameter can possess. 

These properties are described in Mood, Graybill and Boes (1963) and are explained in this 

section. 



6 
 

 1.Unbiasedness 

Suppose  θ̂  is  an  estimator  of  parameter θ . Then  the    bias of this  estimator is  defined to be  

Bias (θ̂ ) = E[θ̂ ]-θ = E[θ̂ -θ ]. An estimator is said to be unbiased if its bias is equal to zero for 

all values of parameter θ. This property intuitively means that on average, the estimator will be 

equivalent to the  population parameter.  

 

2.Consistency  

Let X1, X2,… be a sequence of identical and independent random variables with common density 

function Fx(θ), θ Є Θ. A sequence of point estimators Tn (X1, X2, …, Xn) =  Tn  will be called 

consistent for Ψ(θ) if  

  Tn 
௉
՜ Ψ(θ)    as n ՜∞ for each fixed θ Є Θ. 

Remark: Tn 
௉
՜ Ψ(θ)  if and only if P{| Tn - Ψ(θ) | > ε }      0 as n      ∞ for every ε > 0.  

Property of consistency intuitively means that  estimators taken far enough in the sequence are more 

likely to be in the vicinity of the parameter being estimated, and in the limit they will be arbitrarily close 

to  θ  with probability one. 

 Mean Square Consistency 

If lim୬՜ஶ E ሾT୬ሺXሻ െ  θሿଶ = 0, then the sequence Tn(X), the estimator for θ, is said to be 

consistent in quadratic mean. 

Result 

Consistent in quadratic in mean implies consistency of an estimator in general. But, it is not 

necessarily other way around. 
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3.Sufficiency 

Let X = (X1, X2, …, Xn) be a random sample from { Fθ: θ Є Θ }. A statistic T = T(X) is 

sufficient for θ or for the family of distributions { Fθ: θ Є Θ } if and only if the conditional 

distribution of X, given T = t, does not depend on θ (except perhaps for a null set A, Pθ{ T ЄA } 

= 0 for all θ). 

Pr ( X = x | T(X) = t, θ ) = Pr ( X = x | T(X) = t ), Or in shorthand Pr ( x | t, θ ) = Pr ( x | t ) 

 

A statistic is sufficient for a family of probability distributions if the sample from which it is 

calculated gives no additional information than does that statistic, as to which of those 

probability distributions is that of the population from which the sample was taken. 

It is often hard to verify or disprove sufficiency of a statistic directly because we need to find the 

distribution of the sufficient statistic.  The following theorem is often helpful. 

Factorization Theorem 

Let X1, X2, …, Xn denote the a random sample of size n from a distribution that has probability 

distribution function or probability mass function ( ; )f x θ ,θ ∈ Ω .  A statistic Y = u (X1, 

X2, …, Xn ) is sufficient for θ if and only if we can find two nonnegative functions, k1 and k2 

such that for all sample points (X1, X2, …, Xn) ,  

f (x1; θ) … f (xn; θ) = k1[u (x1, x2, …, xn ); θ] k2 (x1, x2, …, xn ) 

where k2 (x1, x2, …, xn ) does not depend upon θ. 

 

4.Efficiency 

Assume that the regularity conditions of the FCR inequality are satisfied by the family of density 

functions { Fθ: θ Є Θ }, Θ C Ը. We say that an unbiased estimator T for parameter θ is most 

efficient for the family { Fθ } if 
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   varθ (T) = ൜E஘ ቂ
ப ୪୭୥ ୤ಐሺXሻ

ப஘
ቃ
ଶ
ൠ
ିଵ

= In(θ). 

 

The relative efficiency of two procedures is the ratio of their efficiencies, although often this term 

is used where the comparison is made between a given procedure and a notional "best possible" 

procedure. Efficiencies are often defined using the variance or mean square error as the 

measure of desirability. 

In this study the  efficiency of  the REML estimators relative to the Minimum Variance 

Quadratic Unbiased Estimators (MIVQUE) are examined for the random components.  

 

MIVQUE and its variance 

Swallow and Searle (1978) summarize Rao's (1971b) derivation of MIVQUE. To compute the 

MIVQUE's the user must supply a priori values for the variance components. The estimators are 

then functions of the data and of the a priori values, and are only locally minimum variance; that 

is, they are minimum variance only when each a priori value equals the true value of the 

corresponding variance component. Realistically, the user cannot provide perfect a priori values, 

so, in application, the estimators will not be minimum variance. Equations (17) and (18) of 

Swallow and Searle (1978)  explains how to determine the variance of the MIVQUE. 

 

2.3 Simulation Study for Properties of REML Estimators in Mixed Models 

In order to study the properties of Residual Maximum Likelihood (REML) estimators a 

simulation study was used. In this simulation study the  model considered is y = Xα + Zβ + e 

where  e ~ N (0, ߪ௘ଶI) and β ~ N (0, ߪ௕ଶI) and e and β are uncorrelated.  In this simulation study 

balance data is considered. The special case of  R=ߪ௘ଶI and G= ߪ௕ଶI is assumed. 

Here α, ߪ௕ଶand ߪ௘ଶare the parameters to be estimated through simulation. The fixed effect 

component was taken as α' = (1 2 3 4). Several values of  ߪ௕ଶ (0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0)  

were considered and ߪ௘ଶ was fixed at 1.0. The sample sizes of 20, 60, 100, and 200 were 
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examined. For each combination 10,000 simulation runs were made. Errors and random effect 

components were generated from normal distributions with corresponding parameters. 

According to the model defined in this study, design matrices were set.  

Using the simulation study, estimates of fixed effects components, bias values, its true and 

estimated variance and estimates of variance components of random effects, bias values, and its 

true and estimated variance are calculated for each combination. The coding was done using Java 

and is available on request.  

 

3. Results and Conclusions 

Table 1 gives for the fixed effects (α ), the parameter estimate (α̂ ), Bias (B(α̂ )), estimated 

variance (EV(α̂ )) and percentage difference in variance (P(α̂ )) obtained under REML method of 

estimation, for different values of  sample size (n). 

Table 1 should come here 

The results in table 1 illustrate the following.  

When the sample size and the fixed effect is held constant the parameter estimates of the fixed 

effects  do not depend on the values of ߪ௕ଶ. This implies that, the assumption of “random effects 

being independent of error terms” is valid.  

The bias values are between -0.015 to 0.02 for all the values ߪ௕ଶ for sample size of 20. It is 

obvious from the bias values that the fixed effect components are unbiased even for small sample 

sizes. As sample size increases, bias values lie between -0.03 to 0.03. This implies that 

irrespective of the sample size, the fixed effects component parameter estimator is unbiased for 

the population parameter of fixed effects component. 

In order to verify the property of consistency, variance estimates are needed. Table 1 gives the 

estimated variance of fixed effects components. According to table 1, estimated variance reduces 

and tends to zero as sample size increases for all the fixed effects components and for all the 

values ߪ௕ଶ. Therefore it can be concluded that the fixed effect component estimator is consistent 

for the population parameter α . 
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Sufficiency is another property to be looked at. For that percentage difference between estimated 

and true variance of fixed effects components estimates is  needed. Table 1 gives the percentage 

values of difference between estimated and true variance of fixed effects components estimates 

in REML. According to table 1, the percentage of difference between the true and estimated 

variance estimates are between -6% and 6% for all the sample sizes. For small ߪ௕ଶ values, the true 

and estimated variance estimates are quite similar. As ߪ௕ଶ value increases, the percentage of 

difference between the true and estimated variance estimates also increase. But that increment 

does not affect the property of sufficiency as those values can be assumed as small. That is, the 

sample explains the population well for fixed effects. Therefore it can be concluded that the fixed 

effect component estimator is sufficient for the population parameter α . 

When G and R are known (when V is known), Searle (1971), Harville : (1988), (1990),  

Robinson (1991) ,McLean, Sanders, and Stroup (1991) have shown that α̂  is the best linear 

unbiased estimator (BLUE) of α . Here, "best" means minimum mean squared error. However in 

practice V is rarely known. Further simulations carried out but not reported in this paper indicate 

that the REML estimator of  α  is more efficient than its corresponding  Iterative Generalized 

Least Squares (IGLS) estimator and the Maximum Likelihood estimator.  

 

 Table 2 gives for the random effects,  the parameter estimates, Bias, estimated variance(EV), 

percentage difference in variance(PDV) obtained under REML method of estimation and ratio of 

MIVQUE lower bound  to the variance of  REML  estimator (Ratio) obtained for  the random 

effects for different combinations of sample   size (n). 

Table 2 should come here 

The results in table 2 illustrate the following. 

With respect to table 2, bias values are very small  for all the values of ߪ௕ଶ for sample size of 20. 

It is obvious from the bias values that the random effect components are unbiased even for small 

sample sizes. As sample size increases, bias values decrease and they tend to zero. That implies 

that irrespective of the sample size, the random effects components parameter estimators  

 .௘ଶ respectivelyߪ ݀݊ܽ ௕ଶߪ ො௘ଶ are unbiased for the population parametersߪ  ො௕ଶ andߪ
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In order to verify the property of consistency, variance estimates are needed. Table 2 gives the 

estimated variance of  random effects components. According to table 2, though the estimates of 

the variance of variance component of random effects decrease with sample size, they do tend to 

zero for small ߪ௕ଶ. But for higher values of ߪ௕ଶ, variance of variance component of random effects 

decreases. With this nature of variance of variance component of random effects, it can be 

concluded that the estimator ߪො௕  ଶ of the variance component of errors is consistent for the 

population parameter ߪ௕ଶ. Estimates of the variance of variance component of error terms also 

decrease with sample size and tend to zero. That is, the estimator, ߪො௘ଶ of the variance component 

of error terms is consistent for the population parameter ߪ௘ଶ. 

 

According to table 2, for both random effects and errors true variance is higher than the 

estimated variance. The percentage difference for random components is between -84% to -7% 

and the percentage difference for errors is between -1% to -98% and this does not depend on ߪ௕ଶ  

nor sample size. For both components, the difference is quite high. That is, it fails to include all 

the information of the population. Therefore, it can be concluded that the estimators of the 

variance component of random effects and errors are not sufficient on its own for the population 

parameters ߪ௕ଶ and ߪ௘ଶ respectively for any value of ߪ௕ଶ. 

In order to examine the efficiency of REML method, the ratio between MIVQUE  lower bound 

and the variances of variance estimates of random components under REML method is 

considered. For small σୠଶ values, the ratios are very close to one. But, for higher values of σୠଶ, the 

ratio is away from 1 (less than 1). So it can be concluded that REML method is very efficient for 

small σୠଶ values and less efficient for higher values of σୠଶ. 

 

Table 3 gives a summary of the results obtained from tables 1 and 2. 

Table 3 should come here 
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4. Discussion 

The  linear Gaussian mixed model is highly used in the description and analysis of data from 

varied fields. The great versatility of this models has only relatively recently been generally 

accessible to users. The key advantage of this mixed model over its fixed effects counterpart is 

that it can cope with the situation when the data does not satisfy the assumptions of 

independence and variance homogeneity. The mixed model extends the fixed effects model by 

including random effects, random coefficients and / or covariance terms in the residual variance 

matrix. There are several estimation procedures available for estimating the fixed effects 

components and variance components of the random effects. Many studies provide for parameter 

estimation based on Maximum Likelihood and Residual Maximum Likelihood with different 

algorithms available. Literature indicates that Least Squares Estimation method is not 

appropriate. And for normal data, Iterative Generalized Least Squares and Maximum Likelihood 

Estimation methods provide the same estimates. Residual Maximum Likelihood Estimation 

(REML) method is said to be the best procedure for estimating parameters in mixed models. 

As the REML estimation procedure is an iterative one the properties of REML estimators cannot 

be checked analytically. Past simulation studies have only examined the properties of 

unbiasedness and efficiency of REML estimators and many of these studies concentrate only on 

either fixed or random effects. This research was aimed at studying the properties of REML 

estimators for both fixed and random effects. Here, the properties, unbiasedness, consistency, 

sufficiency, and efficiency of these estimators are checked via a comprehensive simulation study.   

The results indicate that the  Residual Maximum Likelihood estimation (REML) method  holds 

all the desired properties for fixed effects. However for  variance components of random effects 

and errors it does not hold the property of sufficiency and also though when the ratio of variance 

of  random effects to error variance is small  it holds the property of efficiency it is not so 

efficient when this ratio is large. 

 

 

 



13 
 

References 

1.Brown, H. and Prescott, R. (2001), Applied Mixed Models in Medicine, New York: John Wiley 
and  Sons, Inc.  

2.Hartley, H.O. and Rao, J.N.K. (1967), ‘Maximum-Likelihood Estimation for the Mixed 
Analysis of Variance Model’ Biometrika, 54 : 93 -108. 

3.Harville, D.A. (1977), ‘Maximum Likelihood Approaches to Variance Component Estimation 
and to Related Problems’ Journal of the American Statistical Association, 72 : 320 -338. 

4. Harville, D.A. (1988), ‘Mixed-Model Methodology: Theoretical Justifications and Future 
Directions,’ Proceedings of the Statistical Computing Section, American Statistical Association, 
New Orleans, 41 -49.  

5.Harville, D.A. (1990), ‘BLUP (Best Linear Unbiased Prediction), and Beyond,’ in Advances in 
Statistical Methods for Genetic Improvement of Livestock, Springer-Verlag, 239 -276.  

6.Kenward, M.G. and Roger, J.H. 1997. ‘Small Sample Inference for Fixed Effects from 
Restricted Maximum Likelihood’ .. Biometrics,  53(3) : 983-997. 

7.Jennrich, R.I. and Schluchter, M.D. (1986), ‘Unbalanced Repeated-Measures Models with 
Structured Covariance Matrices,’ Biometrics, 42, 805 -820.  

8.Laird, N.M. and Ware, J.H. (1982), ‘Random-Effects Models for Longitudinal Data’ 
Biometrics, 38, 963 -974.  

9.Liao, J.G. and Lipsitz, S.R. (2002) ‘A type of restricted maximum likelihood estimator for 
variance components in generalized linear mixed models’ Biometrika 89, 401-409 

10.Littell, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996), SAS System for 
Mixed Models, Cary, NC: SAS Institute Inc. 

11. McGilchrist, C.A.  1988. ‘Bias of ML and REML estimators in regression models with 
ARMA errors’.  Journal of Statistical Computation and Simulation, 32(3) 127 – 136. 

12.McLean, R.A. and Sanders, W.L. (1988), ‘Approximating Degrees of Freedom for Standard 
Errors in Mixed Linear Models,’ Proceedings of the Statistical Computing Section, American 
Statistical Association, New Orleans, 50 -59.  

13.Mood, A.M., Graybill, F.A and Boes, D.C. (1963) ‘Introduction to the Theory of Statistics’ 
McGraw-Hill Series in Probability and Statistics.  
 

14.Patterson, H.D. and Thompson, R. (1971), ‘Recovery of Inter-Block Information when Block 

Sizes are Unequal’ Biometrika, 58, 545 -554 



14 
 

15.Searle, S. R. (1971), Linear Models, New York: John Wiley & Sons, Inc.  

16. Swallow, W. H. and  Monahan, J. F. 1984. ‘Monte Carlo Comparison of ANOVA, 

MIVQUE, REML, and ML Estimators of Variance Components’. Journal of American 

Statistical Association and American Society for Quality 26(1) : 47-57. 

17.Swallow, W.H., Searle, S.R. ‘Minimum Variance Quadratic Unbiased Estimation (MIVQUE) 

of Variance Components’ Technometrics 20(3) : 265-272 

18.Rao,C.R. (1971b), ‘Minimum Variance Quadratic Unbiased Estimation  of Variance 
omponents’ Journal of Multivariate Analysis 1, 445-446 

19.Robinson, G.K. (1991), ‘That BLUP is a Good Thing: The Estimation of Random Effects,’ 
Statistical Science, 6, 15 -51.  

20.Verbeke, G. and Molenberghs, G., eds. (1997), Linear Mixed Models in Practice: A SAS-
Oriented Approach, New York: Springer.  

21.Verbeke, G. and Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, New 
York: Springer. 

22. Zhang, Q., Zhang, Y., Liu, Z., Haussmann, H. 1995. ‘Comparison of MIVQUE and REML 

with Monte Carlo simulation’ Thesis, College of Animal Science and Technology, Beijing 

Agricultural University (PMID : 8900839). 



15 
 

Table 1 – Parameter estimate (α̂ ), Bias (B(α̂ )), estimated variance (EV(α̂ )) and percentage difference in variance (P(α̂ ))  under REML 
estimation of  Fixed effect(α ) for different  sample sizes (n) 
  

Case(2) - for  2
bσ =0.1 

Case(1) - for 2
bσ =0.0 

α  n=20 n=60 n=100 n=200 
α̂  B(α̂ ) EV(α̂ )  P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) 

1 1.010 0.010 0.00000 0.667 1.004 0.004 0.00001 1.020 0.999 -0.001 0.00001 -2.976 0.996 -0.004 0.000001 1.493 

2 2.010 0.010 0.00008 -2.50 2.010 0.010 0.00007 1.449 1.998 -0.002 0.00001 0.000 2.003 0.003 0.000002 -0.641 

3 2.999 -0.001 0.00005 0.882 3.006 0.006 0.00004 0.943 2.999 -0.001 0.00002 0.000 2.990 -0.010 0.000004 0.000 

4 4.003 0.003 0.00000 0.000 3.997 -0.003 0.00000 -1.613 3.983 -0.017 0.00001 -4.546 3.988 -0.012 0.000000 -2.381 

α  n=20 n=60 n=100 n=200 
α̂  B(α̂ ) EV(α̂ )  P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂

) 
P(α̂ ) 

1 1.009 0.009 4.9E-6 1.04 0.997 -0.003 1.0E-6 0.00 0.997 -0.003 5.6E-6 1.85 1.002 0.002 8.0E-8 0.71 
2 2.000 0.000 2.4E-5 3.47 1.999 -0.001 4.2E-6 2.17 2.006 0.006 7.7E-7 -4.26 2.006 0.006 4.3E-7 -2.27 
3 2.996 -0.004 1.4E-5 -2.63 2.993 -0.007 1.8E-6 -2.78 2.998 -0.002 1.7E-6 -4.45 3.009 0.009 2.4E-7 3.85 

4 4.012 0.012 2.9E-5 -1.67 3.995 -0.005 1.9E-6 -2.50 4.006 0.006 6.4E-6 -0.77 3.999 -0.001 2.0E-8 1.79 
Case(3) - for 2

bσ =0.2 
α  n=20 n=60 n=100 n=200 

α̂  B(α̂ ) EV(α̂ )  P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) 

1 1.017 0.017 1.5E-4 0 1.011 0.011 5.8E-5 0.8772 0.987 -0.013 1.5E-5 0 1.022 0.022 1.5E-05 3.5714 
2 2.017 0.017 1.5E-4 1.4286 1.993 -0.007 7.7E-7 -2.8571 1.973 -0.027 3.3E-7 3.3333 2.019 0.019 1.5E-4 -3.125 
3 3.006 0.006 5.0E-5 -1.087 2.990 -0.010 4.5E-5 2.9412 2.973 -0.027 3.6E-6 0 3.007 0.007 5.0E-5 0 

4 3.992 -0.008 2.1E-4 -2.5 3.983 -0.017 6.4E-6 -4.5 3.973 -0.027 9.5E-7 0 4.002 0.002 2.1E-4 0 
Case(4) - for 2

bσ =0.5 
α  n=20 n=60 n=100 n=200 

α̂  B(α̂ ) EV(α̂ )  P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) 

1 1.007 0.007 1.4E-5 3.57 1.009 0.009 1.1E-5 0.00 1.001 0.001 5.6E-6 0.00 0.993 -0.007 4.5E-6 0.00 
2 2.005 0.005 3.4E-5 0.00 2.002 0.002 3.0E-5 0.00 1.997 -0.003 9.2E-6 -4.00 1.996 -0.004 9.0E-8 -2.94 
3 3.006 0.006 1.3E-4 0.00 3.005 0.005 4.0E-5 -4.49 2.999 -0.001 4.6E-6 0.00 2.998 -0.002 1.7E-6 1.52 

4 3.996 -0.004 5.4E-5 1.92 4.000 0.000 2.2E-5 0.00 3.995 -0.005 1.7E-5 0.00 3.999 -0.001 1.3E-7 0.00 
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Table 1 continued …….. 
Case(5) - for  2

bσ =1 
α  n=20 n=60 n=100 n=200 

α̂  B(α̂ ) EV(α̂ )  P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) 

1 0.989 -0.011 8.3E-5 -4.630 0.999 -0.001 1.9E-5 -1.667 1.009 0.009 4.9E-6 0.610 1.000 0.000 2.9E-6 0.000 
2 1.996 -0.004 8.6E-5 0.000 1.996 -0.004 8.3E-5 0.000 2.006 0.006 6.5E-5 0.862 2.001 0.001 5.9E-5 -0.595 
3 3.003 0.003 6.2E-5 -1.111 2.997 -0.003 4.4E-5 -0.794 3.007 0.007 5.7E-6 1.667 2.999 -0.001 8.0E-8 0.000 

4 4.001 0.001 2.3E-5 -2.326 3.995 -0.005 8.2E-6 -1.125 4.006 0.006 1.9E-6 -4.500 4.002 0.002 6.2E-7 2.778 
Case(6) - for 2

bσ =2 
α  n=20 n=60 n=100 n=200 

α̂  B(α̂ ) EV(α̂ )  P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) 

1 1.017 0.017 3.6E-5 3 1.011 0.011 9.3E-6 2.083 0.987 -0.013 2.5E-6 0 1.022 0.022 2.4E-7 1.667 
2 2.017 0.017 1.6E-4 2.778 1.993 -0.007 1.9E-5 0 1.973 -0.027 1.4E-6 0 2.019 0.019 1.7E-7 -4.95 
3 3.006 0.006 7.2E-5 -0.833 2.990 -0.010 5.9E-5 0 2.973 -0.027 6.6E-6 0 3.007 0.007 4.5E-6 4.878 

4 3.992 -0.008 5.9E-5 0.862 3.983 -0.017 2.4E-5 -2 3.973 -0.027 4.6E-6 -0.660 4.002 0.002 2.8E-6 0.6 
Case(7) - for 2

bσ =5 
α  n=20 n=60 n=100 n=200 

α̂  B(α̂ ) EV(α̂ )  P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) α̂  B(α̂ ) EV(α̂ ) P(α̂ ) 

1 1.002 0.002 1.0E-3 0 0.999 -0.001 2.0E-4 -2.273 0.996 -0.004 1.7E-4 0.000 1.002 0.002 2.1E-5 0.000 
2 1.998 -0.002 6.2E-4 2.381 2.006 0.006 2.2E-4 0.932 1.997 -0.003 1.4E-4 3.846 2.006 0.006 7.0E-7 -0.794 
3 3.003 0.003 1.0E-3 0 3.005 0.005 5.1E-4 2.941 3.006 0.006 3.1E-4 1 2.995 -0.005 1.8E-5 -4.5 

4 4.003 0.003 7.7E-4 0 3.997 -0.003 1.5E-4 3.333 4.002 0.002 8.9E-5 2.976 3.999 -0.001 1.6E-5 0 
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Table 2 – Parameter estimates, Bias, estimated variance(EV), percentage difference in 
variance(PDV) under REML estmation and ratio of variance of  REML to MIVQUE lower 
bound (Ratio) for  the random effects for different combinations of sample    size (n)  

 
Sample 

Size 
Variance 
Component 

Case (1) : 2
bσ =0.0 

Estimate Bias EV PDV Ratio 

n=20 2ˆ bσ  -0.0223 -0.0223 0.0039 -7.0920 0.9291 

2ˆ eσ  1.0790 0.0790 0.1899 -43.5800 0.9342 

n=60 2ˆ bσ  -0.0029 -0.0029 0.0001 -30.0000 0.8800 

2ˆ eσ  1.0706 0.0706 0.0718 -18.4600 0.8670 

n=100 2ˆ bσ  0.0114 0.0114 0.0001 -21.4300 0.8755 

2ˆ eσ  1.0675 0.0675 0.0524 -1.5890 1.0159 

n=200 2ˆ bσ  0.0028 0.0028 0.0000 -66.6700 0.8833 

2ˆ eσ  1.0031 0.0031 0.0033 -21.4550 1.1146 

Sample 
Size 

Variance 
Components 

Case (2) : 2
bσ =0.1 

Estimate Bias EV PDV Ratio 

n=20 2ˆ bσ  0.09406 -0.0059 0.00761 -27.593 0.91407 

2ˆ eσ  1.07412 0.07412 0.18497 -26.976 0.91024 

n=60 2ˆ bσ  0.09399 -0.006 0.00923 -62.214 1.02214 

2ˆ eσ  1.04556 0.04556 0.08534 -50.141 1.02141 

n=100 2ˆ bσ  0.10641 0.00641 0.00754 -10.664 0.89336 

2ˆ eσ  1.00513 0.00513 0.0308 -36.1 0.899 

n=200 2ˆ bσ  0.1002 0.0002 0.0057 -12.308 0.87692 

2ˆ eσ  1.00001 1.00E-05 0.00971 -9.252 0.90748 

Sample 
Size 

Variance 
Components 

Case (3) : 2
bσ =0.2 

Estimate Bias EV PDV Ratio 

n=20 2ˆ bσ  0.20602 0.00602 0.02799 -32.505 1.00495 

2ˆ eσ  1.06046 0.06046 0.18472 -45.305 0.87695 

n=60 2ˆ bσ  0.1981 -0.0019 0.02319 -33.439 0.99561 

2ˆ eσ  1.09861 0.09861 0.0412 -50.175 0.82825 

n=100 2ˆ bσ  0.20384 0.00384 0.01694 -49.372 0.83628 

2ˆ eσ  1.09605 0.09605 0.02814 -43.776 0.89224 

n=200 2ˆ bσ  0.19978 -0.0002 0.00456 -5.241 0.94759 

2ˆ eσ  0.98773 -0.0123 0.01922 -29.156 1.03844 

Sample 
Size 

Variance 
Components 

Case (4) : 2
bσ =0.5 

Estimate Bias EV PDV Ratio 

n=20 2ˆ bσ  0.48495 -0.0151 0.13684 -34.667 0.92333 

2ˆ eσ  1.03329 0.03329 0.18572 -49.761 0.77239 



18 
 

 Table 2 continued………

n=60 2ˆ bσ  0.51801 0.01801 0.12026 -40.377 0.86623 

2ˆ eσ  1.0268 0.0268 0.04474 -51.669 0.75331 

n=100 2ˆ bσ  0.48306 -0.0169 0.11479 -44.889 0.82111 

2ˆ eσ  1.06768 0.06768 0.02633 3.336 1.03336 

n=200 2ˆ bσ  0.50192 0.00192 0.0925 -83.682 0.85318 

2ˆ eσ  1.00754 0.00754 0.00881 -56.68 1.2668 

Sample 
Size 

Variance 
Components 

Case (5) : 2
bσ =1.0 

Estimate Bias EV PDV Ratio 

n=20 2ˆ bσ  1.07306 0.07306 0.6643 -12.286 0.87714 

2ˆ eσ  1.00215 0.00215 0.20143 -52.266 0.87734 

n=60 2ˆ bσ  0.95338 -0.0466 0.57593 -46.471 0.93529 

2ˆ eσ  1.00316 0.00316 0.05733 -63.561 0.76439 

n=100 2ˆ bσ  0.96683 -0.0332 0.3999 -40.826 0.99174 

2ˆ eσ  1.00282 0.00282 0.04335 -49.593 0.90407 

n=200 2ˆ bσ  0.98747 -0.0125 0.16649 -55.727 0.84273 

2ˆ eσ  1.00164 0.00164 0.00207 -89.492 1.09508 

Sample 
Size 

Variance 
Components 

Case (6) : 2
bσ =2.0 

Estimate Bias EV PDV Ratio 

n=20 2ˆ bσ  2.00435 0.00435 1.18922 -21.639 0.77373 

2ˆ eσ  0.96643 -0.0336 0.40641 -42.588 0.92412 

n=60 2ˆ bσ  1.91065 -0.0894 1.10964 -32.639 1.02361 

2ˆ eσ  0.9962 -0.0038 0.18322 -41.818 0.93182 

n=100 2ˆ bσ  1.94213 -0.0579 1.09933 -33.622 1.01378 

2ˆ eσ  0.97522 -0.0248 0.19376 -33.689 1.01311 

n=200 2ˆ bσ  2.03756 0.03756 1.71431 -23.103 1.11897 

2ˆ eσ  1.00533 0.00533 0.09758 -97.546 0.79454 

Sample 
Size 

Variance 
Components 

Case (7) : 2
bσ =5.0 

Estimate Bias EV PDV Ratio 

n=20 2ˆ bσ  5.05548 0.05548 4.31253 -55.708 0.78571 

2ˆ eσ  0.97856 -0.0214 1.38453 -91.245 0.88754 

n=60 2ˆ bσ  5.06444 0.06444 4.12172 -52.226 0.89774 

2ˆ eσ  1.04054 0.04054 1.36587 -77.809 0.82191 

n=100 2ˆ bσ  4.93899 -0.061 3.98542 -25.149 0.74851 

2ˆ eσ  0.98875 -0.0113 1.2175 -48.975 0.84025 

n=200 2ˆ bσ  5.06578 0.06578 3.4337 -13.303 0.81545 

2ˆ eσ  0.99928 -0.0007 0.87393 -69.576 0.81424 
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Table 3 – Properties of Fixed and Random effect estimators under REML method of estimation 

Effect Unbiasedness Consistency Sufficiency Efficiency 

Fixed Effects 
√ √ √ 

More efficient than IGLS and 

ML estimators 

Random Effects 
√ √ 

X Efficient when ratio of  ߪ௕ଶ to 

 ௘ଶ is small but less efficientߪ

when this ratio is large. 

 

 

 

 

 

 

 

 

 

 

 

 

 


