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ABSTRACT
Before making inferences about a population using a fitted model, it
is necessary to determine whether the fitted model describes the
data well. A poorly fitted model may lead to biased and invalid con-
clusions, resulting in incorrect inferences. Recent studies show the
necessity of goodness-of-fit tests for high level binary multilevel
models. The focus here was to develop a goodness-of-fit test to use
in the model adequacy testing of high level binary multilevel models
and to examine, whether the type I error and power hold for the
newly developed goodness-of-fit test considering a three-level ran-
dom intercept model.
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1. Introduction

1.1. Background

Before a model is trusted for drawing conclusions or in predicting future outcomes
about a population of interest, it is crucial to show that the fitted model suits the scen-
ario under consideration. This is where a goodness-of-fit test will show its importance.
A goodness-of-fit test determines the model adequacy of a fitted model. Else in simple
terms, a goodness-of-fit test shows how well the fitted values of a response variable
under the model compared with the observed values. If a model is ill-fitted, this may
lead to biased and invalid conclusions which will mislead the person fitting the model
to make incorrect inferences. Therefore, it is essential to carry out a goodness-of-fit test
to determine the model adequacy before making inferences from the fitted model. For
single-level data structures, there are many accepted goodness-of-fit tests for binary and
other response data types, as the concepts are well developed (Hosmer et al. 1997). In
modeling clustered or hierarchical data, two-level models are most common, but three
and higher levels are not frequently examined. Also, there are goodness-of-fit tests
developed to test the adequacy of two-level multilevel models (Perera et al. 2016;
Epasinghe and Sooriyarachchi 2017). However, when considering the higher level scen-
arios, it is seen that no satisfactory goodness-of-fit tests are available (Cool et al. 2015)
and this may lead to problems, as high level scenarios can occur, though not that fre-
quently. It should be studied whether the same techniques that are used in the case of
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two-level situations can be used to assess the higher level scenarios as well as if separate
concerns need to be made. Thus, the development of a goodness-of-fit test for high
dimensional multilevel data may be considered as a novel development.

1.2. Objectives

The main concern under this research study is to develop a suitable goodness-of-fit test
for high level binary multilevel models. The secondary objectives of this study is to
determine the properties of the developed goodness-of-fit test for varying cluster sizes
and intracluster correlation (ICC) values with the use of simulations and to assess the
model adequacy by applying the developed goodness-of-fit test to a real-life dataset.
What is new in this research study, compared to Perera et al. (2016) test for a two-level
binary logistic model, is the introduction and adoption of the concepts of limited-infor-
mation goodness-of-fit testing, introduced by Maydeu-Olivares and Joe (2006); Maydeu-
Olivares and Garcı�A-Forero (2010) and Maydeu-Olivares et al. (2011) to the high level
binary multilevel models. It should be noted that these concepts have not previously
been used in the context of multilevel modeling.

1.3. Literature review

In this section, the research work required for building up the new goodness-of-fit test
for high level multilevel models is discussed.
The goodness-of-fit of a statistical model describes how well the statistical model of

interest fits into a set of observations (Maydeu-Olivares and Garcı�A-Forero 2010). A
person may conclude that a model fits the data well if the differences between the
observed and fitted values from the model are small and if there is no systematic contri-
bution of these differences to the error structure of the model (Archer and Lemeshow
2006). When it comes to the goodness-of-fit statistics, a variety of goodness-of-fit tests
are available. Most of them are full information goodness-of-fit tests. However, limited-
information goodness-of-fit testing, piecewise goodness-of-fit testing and assessing
model fit using goodness-of-fit indices have become much more common in the last
decade (Maydeu-Olivares and Garcı�A-Forero 2010). The proposed goodness-of-fit test is
developed under the consideration of the limited-information goodness-of-fit testing.

1.3.1. Full information goodness-of-fit testing

Full information goodness-of-fit tests use all the information available in coming up
with the test statistic, and are defined as the goodness-of-fit tests that utilize all the
information in the contingency tables (Cai et al. 2006). These are the most commonly
occurring goodness-of-fit tests for assessing the model fit. As information regarding this
type of testing (i.e., for single-level binary responses and for two-level hierarchical struc-
tures when the response is binary) is well documented (Perera et al. 2016) no further
discussion of this will be made here.
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1.3.2. Limited-information goodness-of-fit testing

Recently, limited-information goodness-of-fit testing has received increased attention in
the psychometric literature. In contrast to full information test statistics like Pearson’s
chi-square or the likelihood ratio, instead of using the information in the full contin-
gency table these limited-information tests utilize lower order marginal tables (Joe and
Maydeu-Olivares 2010; Cai and Hansen 2013). The Theory of limited-information
goodness-of-fit tests has been well developed in recent years, thanks to a theoretical
breakthrough made by Maydeu-Olivares and Joe (2006).

(i) Limited-information goodness-of-fit for discrete observed data for a single-level. In the
case of limited-information goodness-of-fit tests, the information contained in the high-
order margins of the contingency table are ignored and only information low-order mar-
gins are used. Maydeu-Olivares and Joe (2006) recommended testing at the highest level of
margins for which the model is specified disregarding the higher order margins. Joe and
Maydeu-Olivares (2010) then suggest a family of goodness-of-fit tests. Their theory is
based on unifying limited-information and full information goodness-of-fit statistics. This
statistic is denoted by Mr and is obtained by integrating the residual proportions up to
order r, their asymptotic covariance matrix, the matrix of derivatives of the marginal prob-
abilities up to order r and the number of observations. The asymptotic distribution of any
statistic of the above family is shown to be chi-square with degrees of freedom equal to
the number of residuals used – the number of model parameters to be estimated. Though
now the higher order margins are ignored, Joe and Maydeu-Olivares (2010) have shown
that the asymptotic p-values are accurate, even for large models fitted to small samples for
the developed limited-information goodness-of-fit test. They have also demonstrated that
within this framework more power is obtained compared to the case of using all available
information regarding the data (Maydeu-Olivares and Garcı�A-Forero 2010).

(ii).Limited-information goodness-of-fit for discrete observed data for hierarchical model-
ing. The limited-information goodness-of-fit testing concept has been extended to hier-
archical item factor models. In this case, Cai and Hansen (2013) have proposed a
dimension reduction method that can take advantage of the hierarchical factor structure
so that the integrals can be approximated far more efficiently. This statistic is best
understood as a further reduction of the univariate and bivariate marginal tables. The
residuals used in the quadratic form are linear functions of the multinomial cell resid-
uals, but they are not marginal probabilities as these proposed by Maydeu-Olivares and
Joe (2006). Maydeu-Olivares et al. (2011) have also suggested a similar statistic in the
context of unidimensional graded Item Response Theory (IRT) models. However, this
idea of limited-information goodness-of-fit has not been used in any other hierarchical
modeling concept (for binary, ordinal, survival, etc.) yet. Under the current research, to
develop goodness-of-fit test for higher level multilevel models, the ideas of limited-
information goodness-of-fit testing introduced by Maydeu-Olivares and Garcı�A-Forero
(2010), Cai et al. (2006), and Cai and Hansen (2013) have been incorporated in coming
up with the novel method. What is characteristically different among the aforemen-
tioned tests and the current test is that these previous tests depend on the complicated
approximation of integrals and there is no available statistical package for the user to
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try out these models. Therefore, most of these tests remain in the theoretical realm. The
current test is developed within the framework of MLwiN which is a very versatile
package for multilevel modeling. Moreover, the suggested test statistic is very simple
and is based on the Hosmer and Lemeshow (2000) test statistic.
The rest of this article is organized as follows. In Sec. 2, the fundamental statistical

theories on which this work is based are discussed, and the statistical methodologies
used in the development of the goodness-of-fit test are presented. In Sec. 3 extensive
simulations are carried out in order to determine the properties of the developed good-
ness-of-fit test. In Sec. 4, an application of the developed goodness-of-fit test to a real-
life dataset is presented to assess the model adequacy. In Sec. 5, some concluding
remarks are made, and the research issues involved in this article are discussed.

2. Theory and methodology

2.1. A three-level random intercept model

Similar to that of the model for the two-level scenario (Perera et al. 2016), the logistic
model can be extended for the three-level multilevel model with binary response varia-
bles. Let yijk be the response variable for the ith individual (level 1 observation) lying in
the jth second level cluster which in turn lies within the kth third level cluster. As the
response of interest is binary,

yijk ¼ 1 if a success occurs for the ith individual in the jth cluster that is within the kth cluster
0 if a failure occurs for the ith individual in the jth cluster that is within the kth cluster

(

For the three-level multilevel model, the random intercept-only, functional model
considering a single explanatory variable measured at the lowest level of the hierarchy
can be written as

logit ðpijkÞ ¼ b0jk þ b1xijk (1)

where b0jk ¼ b0 þ v0k þ u0jk and v0k � N 0, r2v0
� �

, u0jk � Nð0, r2u0Þ:
As in the case of the two-level model, pijk is the probability that yijk ¼ 1: In the case

of the three-level model the intercept consists of three components, a fixed component
b0, and two random components for the two higher levels; that is, for the second level
and third level. These random components are now independent of each other and are
distributed normally with mean zero and variances as shown in Eq. (1) It should be
noted that v0k is the random component for the third level and u0jk is the random com-
ponent for the second level. Similarly, the higher dimensional multilevel models can
also be defined. The model fitting and simulations are done based on a three-level ran-
dom intercept-only model under the current research. As now there are two cluster lev-
els (2nd level and 3rd level), the combined ICC will suggest how strongly the
observations within a considered 2nd level cluster and a 3rd level cluster are correlated.
The formula for calculating the combined ICC is described as follows.

Combined ICC ¼ r2u0 þ r2v0
r2u0 þ r2v0 þ r2e

ðGregorich 2013Þ: (2)
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r2e is the variance of the residuals at the 1st level. r2e can be estimated by p2
3 � 3:29

for binary data.

2.2. The main theories used in developing the goodness-of-fit test

Perera et al. (2016) discuss theories regarding the building up of the goodness-of-fit test
for the two-level multilevel case.
The main new theory incorporated in coming up with the proposed goodness-of-fit

test is the limited-information goodness-of-fit testing concepts for discrete observed
data developed by Maydeu-Olivares et al. (Maydeu-Olivares and Joe 2006; Maydeu-
Olivares and Garcı�A-Forero 2010; Maydeu-Olivares et al. 2011) which is adapted to the
proposed test. Under the current study, the three-level multilevel model can be consid-
ered as a contingency table. Let i, j, and k denote the first, second and third levels
respectively. That is simply the ith individual (1st level) that belongs to the jth small clus-
ter (2nd level) that in turn lies in the kth big cluster (3rd level). Here, let i ¼ 1, 2, :::I or
i ¼ 1 1ð Þ I where i corresponds to the ith first level unit. Let X1 be the value (0 or 1)
which is the response given by the unit. Here j ¼ 1 1ð Þ J where J is the number of
small clusters and X2 corresponds to the jth 2nd level cluster. Here k ¼ 1 1ð Þ K where
K is the number of large clusters and X3 corresponds to the kth 3rd level cluster. For
the kth cluster at the 3rd level, (k ¼ 1 1ð Þ K), the obtained probabilities (fitted values)
can be represented in a two-way contingency table as given in Table 1. If the K number
of contingency tables is drawn considering each 3rd level cluster, the multilevel structure
will correspond to a three-way contingency table.
Here, X3 denotes the third cluster level. The three-way contingency table that can be

created using a K number of two-way contingency tables considering all the clusters of
the third level can now be represented using all the cell probabilities as follows.

p ¼ ðp111, p112, :::, p11k, :::, p121, p122, :::, p12k, :::, pijk, :::, pIJKÞ
Alternatively, it can be expressed using the univariate, bivariate, and trivariate proba-

bilities; pi
(l) ¼ Pr(Xi.¼ l) and similarly pj

(m) and pk
(n), pij

(l,m) ¼ Pr(Xi¼l and Xj¼m) and
similarly, pjk

(m,n) and pik
(l,n), and pijk

(l,m,n) ¼ Pr(Xi¼l and Xj¼m and Xk¼n) respectively,
as shown in Maydeu-Olivares and Garcı�A-Forero (2010). Both expressions are equiva-
lent, and the equivalence is valid for contingency tables of any dimension. In the case
of the newly proposed goodness-of-fit test statistic, instead of the Mr statistic introduced
by Maydeu-Olivares and Joe (2006), the Hosmer and Lemeshow (2000) statistic has
been used. The Hosmer and Lemeshow test statistic here is based on ordering the fitted

Table 1. Multilevel model for the kth level of the large cluster (level 3) as a contingency table.

First level (i)

Second Cluster Level (X2)

1 2 . . . . j . . . J

1 p11k p12k . . . p1jk . . . p1Jk
2 p21k p22k . . . p2jk p2Jk
. . . . . . . . . . . . . . . . . . . . .
i pi1k pi2k . . . pijk . . . piJk
. . . . . . . . . . . . . . . . . . . . .
I pI1k pI2k . . . pIjk . . . pIJk
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values cpijk at the highest level margin under the fitted model. Maydeu-Olivares et al.
(2011) developed a goodness-of-fit test for Item Response theory and Factor Analysis
Models using univariate and bivariate covariances. Their work was based on Samejima
(1969) and computing the model-implied variances and covariances under the graded
logistic model. Limited-information goodness-of-fit methods disregard information con-
tained in the high-order margins of the table. Thus, quadratic forms of univariate and
bivariate residuals are used instead of using all marginal residuals up to order n (if n
levels) as suggested by Maydeu-Olivares and Joe (2006) and Joe and Maydeu-Olivares
(2010) in calculating fitted values. Based on Maydeu-Olivares and Garcı�A-Forero (2010)
and Maydeu-Olivares et al. (2011) the fitted probability values in this article are com-
puted using the univariate (third level variance V0k) and bivariate (second level variance
U0jk) residuals. In the Hosmer and Lemeshow statistic, applied to the 2-level binary
multilevel model by Perera et al. (2016), indicator variables are given within the lowest
level (1st level) in ranking the sorted probabilities. This is extended for the three-level
case, following Maydeu-Olivares and Garcı�A-Forero (2010) where indicator variables
are given at the highest margin (pijkÞ: This corresponds to the lowest level (1st level)
which is within the 2nd level cluster and the 3rd level cluster. The fitted values are cal-
culated using univariate and bivariate residuals of the higher levels as suggested by
Maydeu-Olivares and Garcı�A-Forero (2010). This now clarifies the two phrases in the
limited-information goodness-of-fit testing that states, (i) “testing is done at the higher
order margins”, where the pijk’s are tested and (ii) “ignoring information at the higher
order margins” and using only the quadratic forms of univariate and bivariate residuals,
in calculating fitted values that correspond to the two lower level marginals.

2.3. Proposed goodness-of-fit test for high dimensional binary multilevel models

Incorporating the theories discussed above, the following steps are carried out in devel-
oping the proposed goodness-of-fit statistic.

Step 1: The three-level binary random intercept-only model as specified in Section
2.1. is initially fitted and the model parameters are estimated using the 1st order
Marginal Quasi-Likelihood (MQL1) method. The MQL1 procedure of estimation is
used here as all other methods of estimation result in non-convergence problems.
The model fitted as suggested in Sec. 2.1 is as follows and the definitions are as in
Sec. 3.1. (three-level random intercept model)

logit ðpijkÞ ¼ b0jk þ b1xijk

where

b0jk ¼ b0 þ v0k þ u0jk

and v0k � Nð0, r2v0Þ and u0jk � N 0, r2u0
� �

Step 2: The predicted probabilities, pijk based on the estimated parameters are calcu-
lated for the ith first level units (observations) residing within the jth small cluster
(2nd level), which in turn lies within the kth large cluster (3rd level) considering the
quadratic forms of univariate (v0k) and bivariate (u0jk) residuals as suggested by
Maydeu-Olivares and Garcı�A-Forero (2010).
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Step 3: Then the estimated predicted probabilities are sorted in ascending order,
within each second level cluster which resides within each third level cluster as sug-
gested by Maydeu-Olivares and Garcı�A-Forero (2010) such that the information at
the higher order margins are discarded. Sorting follows the method of Rosner
et al. (2003).
Step 4: The sorted probabilities are then ranked within the first level.

In the Hosmer and Lemeshow statistic applied to multilevel data by Perera et al. (2016),
for ranking the sorted probabilities, indicator variables were specified within the lowest
level. Now, for the three-level binary multilevel model, this is further extended using
limited-information goodness-of-fit as suggested by Maydeu-Olivares and Garcı�A-Forero
(2010). Then, the sorted probabilities are ranked again within the lowest level (i.e., the
highest margin) by assigning indicator variables (This is repeated within levels 2 and 3).

The sorted probabilities are grouped into G groups as suggested in the Hosmer and
Lemeshow test from ranking and assigning indicator variables as suggested in Lipsitz et al.
(1996), for each level one, sorted unit.

As an example, in creating ten groups, they are created such that the 1st group contains
observations with the smallest predicted probabilities (i.e., the observations are ranked as I_1), and
the last group includes observations with the largest estimated probabilities (these observations are
ranked as I_10), where Hosmer and Lemeshow (2000) suggested 10 as a suitable value for the
number of groups). The 1st grouping strategy, under Section 2.2. is proposed here. The ten groups,
however, may not always be of the same size (roughly of equal size).

Step 5: After ranking the probabilities, pijk (allocation of indicator variables), the
dataset is re-arranged in the way it originally was (originally, as before it was sorted).
Step 6: A pooled indicator variable is now created across the third level for the whole
dataset, for each of the created indicators under step 4. The observations within any
third level cluster are independent of another observation within any other third level
cluster. Therefore, all indicator variables that pertain to a specific group created
under Hosmer and Lemeshow method, are pooled into a single indicator variable.
(i.e., now a single indicator variable is used to represent all probabilities). These were
ranked earlier using indicator variables within each second and third level cluster, for
all units over all clusters. Likewise G – 1¼ 10 – 1¼ 9 pooled indicator variables will
be created to represent all the groups holding the group that contains the smallest
probabilities as the reference group. This can be justified because now, as at the third
level the observations are independent of each other.

The pooled indicator variable can now be interpreted as follows.

Igijk
1; if pijk is in region g
0; otherwise

�
With g ¼ 2, 3, :::, 10

Step 7: An alternative model is now fitted by incorporating the pooled indicator vari-
ables, and the parameters are estimated using the 1st order MQL method. The fitted
alternative model takes the form given in equation (3).
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log
pijk

1� pijk

� �
¼ b0jk þ b1xijk þ

X10
g¼2

cgIgijk (3)

Where
P10

g¼2 cgIgijk ¼ c2I2ijk þ c3I3ijk þ :::þ c10Igijk
With i, j, and k as in the usual notation.

Step 8: The joint Wald statistic is now calculated (Liao 2004) for the model in Eq.
(3) to determine whether the coefficients of the indicator variables are simultaneously
equal to zero, using MLwiN (at the a% significance level.). The hypothesis of interest
can be written as

H0 : c2 ¼ c3 ¼ ::: ¼ c10 ¼ 0 and H1 : Not all coefficients of the model are zero:

Step 9: The calculated joint Wald statistic value is compared to the v2ðG�1Þ distribu-
tion at an a% significance level.

If the calculated joint Wald statistic value is less than the v2ðG�1Þ at a% value, then the null
hypothesis is not rejected at an a% level. (all the indicator variables are simultaneously
equal to zero). That is, in this case, the model 3 reduces to the model 1. Hence, it can be
said that the model 1 fits the data well. If, however, the calculated joint Wald statistic value
is greater than v2ðG�1Þ at an a% level, then the model 1 has a questionable fit. Hence, it
does not fit the data well (all indicator variables are not simultaneously equal to zero).

These steps can be summarized in the following flow diagram.
These are the steps to be followed in determining the goodness-of-fit of a fitted

model for 3-level binary multilevel models.
The sorting can now be generalized. As the highest possible dimension in MLwiN is

five, the extension to four and five dimensions can be discussed. Based on Maydeu-
Olivares and Garcı�A-Forero (2010), Maydeu-Olivares and Joe (2006) for the four level
model the fitted probabilities in the first level will be sorted and ranked within the 2nd,
3rd, and 4th levels. To calculate the fitted values the univariate (w0l) and bivariate (v0kl)
variance components will be used. Similarly, for the five level model, the fitted probabil-
ities in the first level will be sorted and ranked within the 2nd, 3rd, 4th, and 5th levels.
To calculate the fitted values the univariate (z0m) and bivariate (w0lm) variance compo-
nents will be used. Then the same procedure may be followed in coming up with a
goodness-of-fit statistic.

3. A simulation study

To justify the proposed goodness-of-fit test for high level multilevel models, the stipu-
lated type I error needs to hold and power should be reasonable for this test. Therefore,
these properties need to be checked and this can be used in assessing the model fit and
hence, making inferences. The simulations were done using macros for varying number
of individuals (observations) at the lowest level of the hierarchy, varying cluster sizes
for the higher levels and also for the different variances of random effects at the higher
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levels of the hierarchy. It should be noted that in this study far more extensive simula-
tions have been carried out comparatively to the formerly developed goodness-of-fit test
by Perera et al. (2016) for both type I error and power. Whereas, in the former case
only a few (12 simulations each) have been carried out. However, in the current situ-
ation, as it deals with three levels, substantial amounts of simulations have been carried
out in justifying the developed goodness-of-fit test. Under each of the determined prop-
erties (type I error and power), the simulations carried out are discussed in detail, and
the necessary techniques to be used for differing cluster sizes and ICC values are
recommended.

3.1. Considerations used under the simulation study

For the simulations of both type I error and power, 1000 datasets were generated under
several specified conditions depending on both cluster sizes and standard deviation of
random effects (ICC combinations) considering each level of the three-level hierarchy.
The description of the combinations is provided in the following sections. As mentioned
in Sec. 2.1, selection of the model (random intercept with a single explanatory variable)
was due to the simplicity. The explanatory variable is defined at the lowest level of the
hierarchy. The simulation of the explanatory variable is done based on a normal distri-
bution as suggested by Perera et al. (2016), and the simulation of the random effects is
also done based on the normal distribution.

(i) Incorporating sample size for simulations. Based on the suggestions in the literature
and taking into account practical considerations the number of clusters and the individ-
uals to be used within the clusters were decided. Two cluster sizes for each of the three
levels were taken such that the sizes can be justified for real-life scenarios, as very large
cluster sizes are unlikely to occur. Also, it should be noted that when the total sample
size is considerable, MLwiN is unable to handle these heavy simulations due to non-
convergence. Considering all these aspects, the cluster sizes used in the simulation
study, to determine the properties of the proposed goodness-of-fit test are as follows.

� 1st level (individual observations) – 30 and 50
� 2nd level (small clusters) – 15 and 30
� 3rd level (large clusters) – 10 and 15

These three specifications result in 8 combinations of cluster sizes to be used in the
case of simulations.The sample sizes that result from the above cluster sizes range from
4500 to 22,500.

(ii) Incorporating standard deviations. The variances for the random effects of the two
levels were chosen according to the guidelines set out in the literature. A constraint had
to be met in coming up with the selected values for the standard deviations. That is, the
variance of the random effect pertaining to the third level should be less than or equal
to the variance of the random effect pertaining to the second level (Gregorich 2013).
The standard deviation values chosen for the random effects of the two levels are
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� 1, 1.5, and 2 for the second level (Perera et al. 2016)
� 0.4, 0.5, and 1 for the third level (Fotouhi 2003).

The eight cluster combinations together with nine standard deviation combinations
result in 9� 8 ¼ 72 extensive simulations to be carried out.

3.1.1. Combined ICC

As discussed under Sec. 2.1 it is clear that the interest now lies in the combined ICC
and not on individual ICCs at the two higher levels. Therefore, for each identified
standard deviation combination the combined ICC values can be calculated using the
formula of Gregorich (2013).
The ICC values can be calculated for each of the identified cluster combinations. As

an example, for the first standard deviation combination considered, which is 0.4 at the
third level and one at the second level, r2u0 ¼ 1:0 and r2v0 ¼ 0:16 the combined ICC
can be calculated as ¼ 1:0þ0:16

1:0þ0:16þ
22
7ð Þ2
3

¼ 0:2605

Similarly, for each identified standard deviation combination, the combined ICC can
be calculated as given in the above case.

3.2. Simulation studies to determine the type I error (TOE)

The probability of rejecting the null hypothesis given that it is true is the type I error
rate or significance level, and it is denoted by a (alpha) and is also called the alpha
level. Often the significance level is set at 5% (0.05). It is of interest to determine the
probability interval for the type I error in the case of simulating 1000 datasets in deter-
mining the properties of the suggested goodness-of-fit test.
A 100 (1- b) % probability Interval for a significance level of size a is given by the

formula a 6zb=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1�að Þ

n

q
: (4)

For a 95% probability interval for an a of 5% ¼ 0.05 substitution to the above for-

mula gives 0:0561:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05ð1�0:05Þ

1000

q
¼ (0.036491, 0.063508) � (0.036, 0.064)(5)

Hence, in order to see whether the developed goodness-of-fit test achieves the type I
error, it is necessary to simulate the proposed 1000 datasets under each of the identified
72 combinations in accordance with the null hypothesis.

3.2.1. Data generation procedure under the null hypothesis

In determining the type I error, the data were generated under the null hypothesis. The
simulations were done so that the resultant data are all random. Macros under the
MLwiN version 2.19 were used throughout the simulations carried out. During the data
generation procedure, first, the explanatory variable was generated from the normal dis-
tribution with mean 2 and standard deviation 1 (xijk � Nð2, 1ÞÞ as suggested by Perera
et al. (2016) and Archer et al. (2007). Then the random effects of the two higher levels
were generated according to the values of standard deviations specified earlier, also
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from the normal distribution according to the definition of multilevel mod-
eling V0k � Nð0, r2v0Þ and U0jk � Nð0, r2u0Þ: Once the explanatory variable and the ran-
dom effects have been generated, to determine the estimated probabilities ðpijkÞ, from
trial and error method b0 and b1 were selected as in Perera et al. (2016) so that b0 ¼
�0:125 and b1 ¼ 0:50: Then from the fitted model under data generation, the probabil-
ities were estimated such as follows.

pijk ¼
exp �0:125þ V0k þ U0jk þ 0:50� xijkð Þð Þ

1þ exp �0:125þ V0k þ U0jk þ 0:50� xijkð Þð Þ (6)

The binary response variable, yijk was then created based on the Bernoulli distribu-
tion, by considering the above-estimated probabilities as the probabilities of success. If
the TOE holds for the developed goodness-of-fit test, then out of the 1000 datasets, the
rejection proportion should lie within the calculated 95% probability limits of the TOE.

3.3. Simulation studies to determine the power

The power of any considered test of statistical significance is the probability that it
will reject the null hypothesis if it is false. Statistical power is inversely related to b
which is the probability of making a Type II error. Very high power will indicate
the ability to detect the deviation specified under the alternative hypothesis, from the
null hypothesis. Section 3.3 will mainly look at the power of the developed good-
ness-of-fit test when the ICC values change and the cluster sizes at the three levels
of the hierarchy change.

3.3.1. Data generation procedure for power

In determining the power of the developed goodness-of-fit test, data were generated
under the alternative hypothesis. In this, the model fitted to data are mis-specified by
incorporating an incorrect form for the explanatory variable. Several suggestions have
been made in the literature for the selection of an alternative model (Archer et al. 2007)
and the model fitted here was one with a single explanatory variable X, and it has been
transformed to generate data as LogX2 as suggested by Perera et al. (2016). The simu-
lations are done so that the resultant data are all random.
All xijk, V0k and U0jk are simulated as stated under Sec. 3.2 as was done for the null

hypothesis. The model fitted in generating data can be given as follows.

log
Pijk

1� Pijk

� 	
¼ b0jk þ 0:50� log xijk � xijkð Þ (7)

Where b0jk ¼ �0:125þ V0k þ U0jk and V0k � Nð0, r2v0Þ and U0jk � N 0, r2u0
� �

: The
same estimates for b0 and b1 have been used here as done in the null hypothesis. From
the fitted model the probabilities can now be estimated using the following.

pijk ¼
exp



� 0:125þ V0k þ U0jk þ 0:50� logðxijk � xijkÞ

� ��
1þ exp



� 0:125þ V0k þ U0jk þ 0:50� logðxijk � xijkÞ

� �� (8)
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3.4. Simulation results

This section provides the results obtained under the simulation study for determining
the type I error and power. Under each of the identified standard deviation combina-
tions in the second and third levels, the rejection proportion for the nine cluster combi-
nations are presented and discussed in Tables 2(a–i).

Case 1: Level 3 standard deviation ¼ 0.4, Level 2 standard deviation ¼ 1.0, combined
ICC ¼ 0.2605.

Case 2: Level 3 standard deviation ¼ 0.4, Level 2 standard deviation ¼ 1.5, combined
ICC over ¼0.4226.

Case 3: Level 3 standard deviation ¼ 0.4, Level 2 standard deviation ¼ 2.0, The com-
bined ICC ¼ 0.5582.

Table 2 (a). Rejection proportions for case 1.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1 Status under Ho

1 15 30 50 0.046 1.0 Within limits
2 15 30 30 0.049 1.0 Within limits
3 15 15 50 0.054 1.0 Within limits
4 15 15 30 0.041 0.998 Within limits
5 10 30 50 0.040 1.0 Within limits
6 10 30 30 0.049 1.0 Within limits
7 10 15 50 0.054 1.0 Within limits
8 10 15 30 0.055 0.981 Within limits

Table 2 (b). Rejection proportions for case 2.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1 Status under Ho

c 15 30 50 0.054 1.0 Within limits
2 15 30 30 0.054 1.0 Within limits
3 15 15 50 0.053 1.0 Within limits
4 15 15 30 0.043 0.997 Within limits
5 10 30 50 0.062 1.0 Within limits
6 10 30 30 0.045 0.999 Within limits
7 10 15 50 0.060 1.0 Within limits
8 10 15 30 0.073 Outside limits

Table 2 (c). Rejection proportions for case 3.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1 Status under Ho

1 15 30 50 0.059 1.0 Within limits
2 15 30 30 0.056 1.0 Within limits
3 15 15 50 0.056 1.0 Within limits
4 15 15 30 0.045 0.989 Within limits
5 10 30 50 0.053 1.0 Within limits
6 10 30 30 0.048 0.999 Within limits
7 10 15 50 0.059 0.996 Within limits
8 10 15 30 0.101 0.970 Outside limits
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Case 4: Level 3 standard deviation ¼ 0.5, Level 2 standard deviation ¼ 1.0, The com-
bined ICC ¼0.2752.

Table 2 (d). Rejection proportions for case 4.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1 Status under Ho

1 15 30 50 0.045 1.0 Within limits
2 15 30 30 0.048 1.0 Within limits
3 15 15 50 0.052 1.0 Within limits
4 15 15 30 0.035 0.998 Just outside limits
5 10 30 50 0.051 1.0 Within limits
6 10 30 30 0.046 1.0 Within limits
7 10 15 50 0.055 1.0 Within limits
8 10 15 30 0.069 0.974 Outside limits

Table 2 (e). Rejection proportions for case 5.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1 Status under Ho

1 15 30 50 0.047 1.0 Within limits
2 15 30 30 0.060 1.0 Within limits
3 15 15 50 0.055 1.0 Within limits
4 15 15 30 0.038 0.997 Within limits
5 10 30 50 0.045 1.0 Within limits
6 10 30 30 0.043 0.999 Within limits
7 10 15 50 0.056 1.0 Within limits
8 10 15 30 0.081 0.970 Outside limits

Table 2 (f). Rejection proportions for case 6.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection proportion
under H1 Status under Ho

1 15 30 50 0.057 1.0 Within limits
2 15 30 30 0.065 1.0 Just outside limits
3 15 15 50 0.055 1.0 Within limits
4 15 15 30 0.037 0.988 Within limits
5 10 30 50 0.054 1.0 Within limits
6 10 30 30 0.048 0.999 Within limits
7 10 15 50 0.050 0.995 Within limits
8 10 15 30 0.094 0.962 Outside limits

Table 2 (g). Rejection proportions for case 7.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1 Status

1 15 30 50 0.057 1.0 Within limits
2 15 30 30 0.050 1.0 Within limits
3 15 15 50 0.054 1.0 Within limits
4 15 15 30 0.038 0.999 Within limits
5 10 30 50 0.053 1.0 Within limits
6 10 30 30 0.049 0.999 Within limits
7 10 15 50 0.056 1.0 Within limits
8 10 15 30 0.078 0.971 Outside limits
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Case 5: Level 3 standard deviation ¼ 0.5, Level 2 standard deviation ¼ 1.5, The com-
bined ICC ¼0.4316.

Case 6: Level 3 standard deviation ¼ 0.5, Level 2 standard deviation ¼ 2.0, The com-
bined ICC ¼0.5635.

Case 7: Level 3 standard deviation ¼ 1.0, Level 2 standard deviation ¼ 1.0, The com-
bined ICC ¼0.3779.

Case 8: Level 3 standard deviation ¼ 1.0, Level 2 standard deviation ¼ 1.5, The com-
bined ICC ¼0.4968.

Case 9: Level 3 standard deviation ¼ 1.0, Level 2 standard deviation ¼ 2.0, The com-
bined ICC ¼0.6029.

3.5. Interpretation of results

The previous sub-sections extensively discussed the simulation study carried out in
determining the properties of the new goodness-of-fit test. The properties studied were
the power and the type I error. Under each property, extensive simulations (72 each)
were carried out by varying cluster sizes at the three levels of the hierarchy and for the
differing combined ICC values with different standard deviations at the two higher lev-
els. The results were presented in tabular form. Overall, it is seen that for the developed

Table 2 (h). Rejection proportions for case 8.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1 Status

1 15 30 50 0.057 1.0 Within limits
2 15 30 30 0.054 1.0 Within limits
3 15 15 50 0.049 0.998 Within limits
4 15 15 30 0.041 0.999 Within limits
5 10 30 50 0.046 1.0 Within limits
6 10 30 30 0.047 0.999 Within limits
7 10 15 50 0.041 0.999 Within limits
8 10 15 30 0.096 0.970 Outside limits

Table 2 (i). Rejection proportions for case 9.

Cluster
combination Level 3 size Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportionUnder

H1 Status

1 15 30 50 0.063 1.0 Within limits
2 15 30 30 0.057 0.996 Within limits
3 15 15 50 0.050 0.998 Within limits
4 15 15 30 0.046 0.993 Within limits
5 10 30 50 0.036 1.0 Within limits
6 10 30 30 0.046 0.999 Within limits
7 10 15 50 0.051 0.998 Within limits
8 10 15 30 0.115 0.965 Outside limits
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goodness-of-fit test the type I error holds for moderate to large samples (total cells ¼
6750, 7500, 9000, 11250, 13500, 15000, 22500) and is somewhat inflated for small sam-
ples (total cells ¼ 4500).
Except in case 1, the type I error in cluster combination eight (which is the smallest

cluster size (4500)) is inflated in the other cases. In all other combinations of all other
cases the type I error holds. Cai et al. (2006) have looked at limited-information good-
ness-of-fit testing of item response theory models for sparse 2p tables. Though they
have not used the Hosmer and Lemeshow test followed by the joint Wald statistic, they
have tested many other statistics which are considered to be more modern for this small
sample case. These are YBL1-YBL3 the first, second and third-moment adjustments to
the quadratic form in the bivariate residuals; YCL1-YCL3 the first, second and third-
moment adjustments to ours using corrected moments that take Maximum Likelihood
(ML) estimation into account; Y2CL1-Y2CL3 first, second and third-moment adjust-
ments to the quadratic form in univariate and bivariate residuals. They have also used
two full information statistics, G2 and X2. They have performed simulations for a total
sample size of 4000 which is close to our smallest sample case of 4500. These results are
given in Table 3 of their article. For a¼ 5% ¼ 0.05 YBL1-YBL3 and G2 gives, conserva-
tive type I errors and YCL1-YCL3, Y2CL1-Y2CL3 and X2 gives inflated type I errors.
Our statistic uses univariate and binary residuals so it is somewhat similar to the
Y2CL’s. So it seems that this explains the failure of type I error for the small sam-
ple size.

Table 3. The TOE and power for the unbalanced cases.
Level 3
Standard
Deviation

Level 2
Standard
Deviation

Level 3 size and
break down Level 2 size Level 1 size

Rejection
proportion
under Ho

Rejection
proportion
under H1

Status
under Ho

0.4 1.0 10 1… 3 50 50 0.049 1.000 Within
limits4… 6 30 50

7… 10 50 30
0.4 1.0 15 1… 5 15 30 0.058 0.987 Within

limits4… 6 10 30
7… 10 15 20

0.4 1.0 10 1… 3 15 30 0.043 0.921 Within
limits4… 6 15 20

7… 10 20 30
0.4 2.0 10 1… 3 15 30 0.057 0.933 Within

limits4… 6 15 20
7… 10 20 30

0.4 2.0 10 1… 3 20 20 0.064 0.646 Within
limits4… 6 15 20

7… 10 20 10
0.5 2.0 10 1… 3 15 30 0.063 0.934 Within

limits4… 6 15 20
7… 10 20 30

0.5 2.0 10 1… 3 20 20 0.069 0.662 Outside
limits4… 6 15 20

7… 10 20 10
1.0 1.5 10 1… 3 15 30 0.043 0.945 Within

limits4… 6 15 20
7… 10 20 30

1.0 1.5 10 1… 3 20 20 0.059 0.655 Within
limits4… 6 15 20

7… 10 20 10
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For the alternative hypothesis considered, all combinations give very high power. The
method of estimation used was Marginal Quasi-Likelihood with first-order Taylor series
approximation (MQL1), as the other methods of estimation provide convergence prob-
lems. Though MQL 1 gives biased estimates in small samples our samples are assumed
to be large enough for this bias to be minimal.
As the total sample size used in our simulations is rather large, the reader may specu-

late whether it is practically useful. We have come across the following studies which
have a very large sample size. There is sure to be a lot more cases in practice.
In de Jong, Moerbeek, and van der Leeden (2010), where real multidimensional

research data sets are discussed, a study total sample size of 13,112 has been used. Also,
Lipsitz et al. (1996) in her book on “Changes in reading comprehension across cultures
and over time” (Section 10.4) discusses two examples of a three-level study where the
total sample sizes are 25,611 and 24,505 respectively. Three-level data examples also
appear in “Big Data”. (https://www.crowdflower.com/three-levels-of-big-data/. Retrieved
on 10th June 2017). Here level 3 is up to 20,000 rows, level two is up to 200,000 rows,
and level one is up to 2,000,000 rows. Therefore, very large sample sizes have been used
in the past for 3-level data structures. Thus, our approach does have its advantages even
though the sample sizes used are reasonably large.

3.6. The unbalanced case

Another speculation on the part of the reader would be whether our test statistic would
work well in the unbalanced data scenario, though we have shown that it works well for
the balanced scenario when the sample size is reasonably large. Why we initially tried
out only the balanced case was because unlike in the balanced case, the unbalanced case
cannot be automated for simulation. Thus, it is a very tedious task to carry out 1000
simulations at a time manually. However, for completeness purposes we selected a few
combinations of some cases and performed the type I error and power simulations
manually for the unbalanced case. This is given in Tables 2(a–i).
These tables show that the unbalanced case gives a better type I error, and slightly

less power as the balanced case for similar sample sizes and the type I error is tolerable
even for smaller sample sizes. Chatterjee, Chakraborty, and Chowdhury (2019) show in
their results reported in Table 5 of their article that the properties of the unbalanced
case can be better than in the balanced case when the unbalanced Bayesian D-optimal
in the design exceeds that of the balanced design. Also, the relaxing of the balance con-
straint allows the Bayesian D-optimal in the design to improve on the “E(s2)-optimal”
value and this is also addressed in Jones, Lin, and Nachtsheim (2008).

4. Application to a practical example

4.1. Description

Under this section a real-life dataset was analyzed, using the MLwiN software version
2.19. Due to the lack of binary response datasets that are freely available on higher level
models, and also as the available datasets are not given on the internet by the owners, it
was not possible to obtain a dataset satisfying the conditions at hand. Thus, a dataset
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from a research study by an undergraduate in the year 2015 has been used in for the
application of the goodness-of-fit test. It has to be noted that this dataset has been used
only for illustration purposes.
The data set consisted of information regarding water quality data collected from all

over Sri Lanka. The response variable in the original dataset was the chemical compo-
nent of water quality, which was initially of continuous scale, and was coded under this
study into a binary variable such that the values less than the median (0.66795) are
coded 0 and those that are greater than the median are coded 1. Then the developed
test was applied to this dataset. The three levels were the location in which the data
were collected which is the 1st level, the district into which the location belongs is the
2nd level, and the province into which the district belongs is the 3rd level that composes
of the hierarchy. There are four provinces, nine districts and 1448 locations from which
the samples have been collected. All the explanatory variables have been measured at
the lowest level of the hierarchy. Table 4 represents the explanatory variables under
consideration in the dataset.

4.2. Fitting the model

For fitting the model, it is necessary to identify which of the explanatory variables affect
the response of interest. Forward selection was used for variable selection, initially start-
ing with the constant term only. A significance level of 5% is used throughout the
model fitting stage. For determining the variables that significantly affect the response,
Wald statistic and the corresponding p-values are used. It should be noted under this
case that, Wald statistic calculated for each parameter has a chi-square distribution with
a degree of freedom equal to 1. Parameter estimation was done using the 1st order
MQL method using MLwiN version 2.19.
The final model fitted, considering parsimony is as follows.

logit pijkð Þ ¼ b0jkconst � 0:415ð0:175Þsource2ijk (9)

where b0jk ¼ 0:634 0:736ð Þ þ v0k þ u0jk

4.3. Carrying out the goodness-of-fit test

The hypothesis of interest can be denoted as H0: The model Eq. (9) fits the data well,
and the alternative hypothesis can be denoted as H1: The model Eq. (9) does not fit the
data well.

Table 4. Description of variable.

Variable name Description Type
Reference
category

year Year in which the data was collected for a particular location categorical Year_1
month Year in which the data was collected for a particular location categorical Month_1
Source Source type of water denoting where the samples are

obtained from (coded 1 to represent running water and 2
to represent standing water)

categorical Source_1

Rain Mean monthly rainfall continuous –
Temp Mean monthly air temperature continuous –
Humidity Mean monthly humidity continuous –
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For checking whether the model fits the data well, a model is created using pooled
indicator variables and this can be denoted as follows.

logit pijkð Þ ¼ b0jkconst � b1source2ijk þ
X10
g¼2

cgIgijk : (10)

For the new model with pooled indicators, the joint Wald statistic is calculated to
determine the fit of the model. The joint Wald statistic obtained for the model is 10.062
on 9 degrees of freedom. This test corresponds to a p-value of 0.345. Thus the coeffi-
cients of the indicator variables are simultaneously zero, and the original model fits the
data well. Hence the fitted model adequately describes the data according to the good-
ness-of-fit test.

4.4. A comparative study considering the same example using a a two-
level model

For the same example, a two-level model was fitted for comparison purposes. Forward
selection of variables was used, initially starting with the constant term only for fitting
the model at a significance level of 5%. To determine the variables that significantly
affect the response, Wald statistic and the corresponding p-values were used. The 1st

order MQL method was used for parameter estimation.
The final model fitted, considering parsimony is as follows.

logit pijð Þ ¼ b0jconst � 1:335 0:147ð Þsource2ij þ 0:057ð0:014ÞHumidity is (11)

Where b0j ¼ �4:348 1:316ð Þ þ U0j

Comparing Eq. (9) with Eq. (11) suggests that if the same data is considered as a
two-level study, for simplicity, with the first level as location and the second level as
province ignoring the district, the fitted model would be a different one.
A goodness-of-fit test was carried out for the model denoted by Eq. (11), considering

a two-level model with the null hypothesis as H0: The model Eq. (11) fits the data well,
and the alternative hypothesis can be denoted as H1: The model Eq. (11) does not fit
the data well. Similar to the case in the three-level model to check whether the model
fits the data well, a model was created using pooled indicator variables as follows.

logit pijð Þ ¼ b0jconst � b1source2ij þ b2Humidityij þ
X10
g¼2

cgIgij : (12)

The joint Wald statistic obtained for the model was 23.845 on 9 degrees of freedom.
This test corresponds to a p-value of 0.0046. Hence the coefficient of the indicator vari-
ables are not simultaneously zero, and indicates that the fitted model given in Eq. (11)
should be rejected and concluded that it does not fit the data well according to the
goodness-of-fit test. These results are contrast with the conclusion under Sec. 5.3. This
indicates that when the intermediary levels are ignored a wrong model which does not
fit the data is obtained. Further, this shows the importance of using limited-information
methods instead of ignoring intermediary levels.
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5. Discussion and conclusion

5.1. General discussion

The main objective of this research was to develop a new goodness-of-fit test based on
the Hosmer and Lemeshow goodness-of-fit test for the single-level binary model. For
achieving the stated objective, the theory behind the goodness-of-fit testing for ordinal
data for a single-level by Lipsitz et al. (1996), the goodness of the fit testing method
developed by Perera et al. (2016), and limited fit testing concepts for goodness-of-fit
testing introduced by Maydeu-Olivares and Joe (2006), Maydeu-Olivares and GarciA-
Forero (2010) and Maydeu-Olivares et al. (2011) were incorporated and extended for
high level binary multilevel data. As the secondary objective, the properties of the new
goodness-of-fit test were studied using simulations. What is new in the current study is
the introduction and adoption of the concepts of limited-information goodness-of-fit
which were introduced by Maydeu-Olivares and Joe (2006), Maydeu-Olivares and
Garcı�A-Forero (2010) and Maydeu-Olivares et al. (2011). No previous study has incor-
porated the theories of limited-information goodness-of-fit testing in multi-
level modeling.

5.2. Comparison of the newly proposed goodness-of-fit test and the previously
developed goodness-of-fit test of Perera et al. (2016)

For the topic of multilevel modeling, due to unavailability of a satisfactory goodness-of-
fit test for assessing the model adequacy of binary response models, Perera et al. (2016)
extended the theory behind the Hosmer and Lemeshow test for the single-level data to
multilevel hierarchies. However, this test has been developed considering only a two-
level scenario and not thinking about higher level scenarios. Cool et al. (2015) stressed
the need for goodness-of-fit tests for such high level multilevel models. Under this
research study, the test developed by Perera et al. (2016) has been extended to high level
binary multilevel models. For demonstrating this case, a three-level model was used. It
should be noted now that the structure of the data is different from a two-level multi-
level model. Hence a new approach had to be thought of, to extend the theory of
Hosmer and Lemeshow test for the study at hand. It should now be taken into consid-
eration that the highest level units (big clusters) in this case, the third level units are
independent of or non-correlated to each other. However, the small clusters (second
level units) which are inside the big clusters are correlated, and so are the first level
units that in turn lie inside the small clusters. The main difference of the previously
developed goodness-of-fittest for the two-level study and the current study for a higher
level multilevel model is that the goodness-of-fit statistic suggested under the former
research uses full information at both levels in coming up with the goodness-of-fit test.
The current research suggests a method based on the limited-information goodness-of-
fit testing according to the suggestions made by Maydeu-Olivares et al. The way of
calculating the fitted probabilities, the method of sorting the fitted probabilities and
ranking these by giving indicator variables are different from what has been proposed
by the former research study. Several major changes have been incorporated to that of
the previous research.
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5.3. Computational complexity and the stability of the proposed goodness-
of-fit test

Regarding the computational complexity of the proposed test for the balanced case, it
should be noted that the results from simulations for a very large number of 3rd level
clusters, are computationally intensive and not so stable as some non-converging prob-
lems were found. Also when the cluster combinations are unbalanced, the simulation
study was computationally very tedious, and the automation of this type of simulations
is very difficult. Both balanced and unbalanced case involves heavy computations; how-
ever, powerful computers will find it not so time-consuming.

5.4. Conclusions from the study

The developed test is simple and not difficult to understand. The type I error holds for
the developed goodness-of-fit test under the considered cluster combinations, except for
the case when the cluster sizes for all the three levels are at their minimum. The power
of the developed test is very high under the alternative model considered for data gener-
ation. The sample sizes being higher may be an added advantage for the power to be
very high. It is important to maintain a higher number of cluster sizes at all levels of
the hierarchy to obtain precise results from the novel goodness-of-fit test. The devel-
oped test can be used for datasets with unequal cluster sizes without a problem. The
explanatory variables used can be either continuous or discrete, and also these can be
measured at any level of the hierarchy. Suggestions are given for applying the developed
test for high level binary multilevel model.
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