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ABSTRACT
No satisfactory goodness of fit test is available for multilevel survival
data which occur when survival data are clustered or hierarchical in
nature. Hence the aim of this research is to develop a new goodness of
fit test for multilevel survival data and to examine the properties of the
newly developed test. Simulation studies were carried out to evaluate
the type І error and the power. The results showed that the type I error
holds for every combination tested and that the test is powerful against
the alternative hypothesis of nonproportional hazards for all combina-
tions tested.

1. Introduction

1.1. Background

Survival data correspond to time to event data. Survival data structures may consist of data
measured at multiple levels, resulting in hierarchical data. There are many applications of
multilevel survival data in medicine and engineering, among other areas. For example, in
medicine, survival time after cardiac surgery in different hospitals and in engineering, time
to the malfunction of electronic calculators among students of different streams in a school.
Many statistical techniques assume that the observations are independent. However, this
assumption is violated with nested data as the correlation between observations within a
cluster will be higher than the correlation of observations between units because individu-
als within groups are often more similar to one another than to individuals in other groups.
If this correlation is not taken into account the uncertainty of causal effects from pooled esti-
mates will be underestimated.

1.2. Objectives

Theprimary objective of this study is to develop a goodness of fit test for themultilevel survival
model based on techniques used in Perera et al. (2016). Secondary objectives of this study are
to identify the properties of the developed test using simulation and apply the developed test
to real life data with multilevel survival responses.
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1.3. Motivation for the study

The finest and themost convenient model formultilevel survival data is the discrete time haz-
ard model (Yang and Goldstein, 2003). To describe how well it fits the survival data structure,
a goodness of fit test is required. A goodness of fit test for multilevel Discrete Time Hazards
model has not been developed yet (Browne, 2004). The lack of a goodness of fit test for this
model is a serious drawback. This is the motivation behind the development of this test.

1.4. Outline

Section 2 provides a review of the literature associated with multilevel survival models and
model checking. The methodology used for this research is described in the third section.
Section 4 presents the simulation study for determining the properties of the newly developed
goodness of fit test for the multilevel survival model and illustration of the algorithm of the
newly developed goodness of fit test for this model. In Section 5, the goodness of fit test is
applied to a real life multilevel survival data set and the goodness of the fitted discrete time
hazard model assessed. A summary of the findings of this study and suggestions for further
improvement of this study is given in Section 6 together with conclusions drawn from the
findings of this research study.

2. Literature review

2.1. Multilevel discrete time hazardmodel

In medical research, it is common for continuous measures to be grouped into categories in
order to simplify a covariate’s relationship with survival and to simplify interpretation. For
the multilevel discrete time hazard model also the survival time span needs to be divided
into some predetermined intervals. By considering the probability that an individual dies in
the current period, given that the person survived from the last period, a multilevel discrete-
time model, assuming a piecewise constant baseline hazard can be fitted as a standard logistic
model.

There is a considerable amount of literature, especially on the analysis based on discrete
time hazard model. Kravdal (2007) fitted multilevel discrete-time hazard models to analyze a
Norwegian dataset consisting of 98,992 individuals. The follow-up time of 10 years was split
into 6 month intervals which the author considered reasonable having compared the results
to a similar analysis where time was grouped into intervals of 3 months.

Stewart (2010) conducted a research based onMultilevelmodeling of event history data, on
a dataset taken from Sweden and it was used to test the effectiveness of alternative methods.
The data set was used to investigate three possible alternatives to fitting themultilevel propor-
tional hazardsmodel inMLwiN. The adequacy of the alternativemethods was assessed which
involved defining discrete-time risk sets and then estimating discrete-time hazard models via
multilevel logistic regression models fitted to a person-period data set.

Methodological findings of Stewart (2010)were that the discrete-time method leads to
a successful reduction in the continuous-time person-period data set. In addition to that
Stewart (2010) pointed out that the grouping according to covariates method works best
when there were, larger number of observations per cluster on average.

The proportional hazards assumption was checked by including an interaction term
between each variable of interest and the variable for time. A nonsignificant interaction sig-
nifies that the proportional hazards assumption is satisfied (Stewart, 2010).
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32 K. BALAKRISHNAN ANDM. R. SOORIYARACHCHI

Allison (1982) mentioned that for an event-history data which contain information only
on the fact that events fell within certain intervals of time, it was desirable to use discrete-time
methods and in practice, these methods have considerable intuitive appeal and are relatively
easy to apply.

Singer andWillett (1993) carried out a study on an empirical example usingmathematical
argumentation. They demonstrated how the methods of discrete time survival analysis
provide educational statisticians with an ideal framework for studying event occurrence
using longitudinal data on the career paths of 3,941 special educators as a springboard. They
derived maximum likelihood estimates of the parameters of a discrete time hazard model,
and showed how the model can be fitted using the standard logistic regression model. Also,
several types of main effects and interactions that can be included as predictors in the model
were distinguished.

2.2. A two-level random interceptmodel for survival data

In multilevel modeling terminology, for a random intercept model the form of the hazard is
assumed to be the same across individuals, but is shifted up or down by an amount uj on the
logit scale. The duration and covariate effects are assumed to be the same for each individual.

Some better techniques tomodel event duration data are a proportional hazardmodel, dis-
crete time hazardmodel and accelerated life timemodel etc.(Yang andGoldstein, 2003).More
commonly used survival models to handle multilevel data structures are proportional hazard
models in continuous time and discrete time (piecewise) proportional hazard model. Even
though survival data are continuously distributed many types of statistical modeling, how-
ever, deals with categorized responses, in the simplest case with proportions. Before select-
ing the discrete time hazard model, several models such as a proportional hazard model, log
duration model and semi parametric Cox model were fitted but these models led to several
complications. According to the MLwiN manuals and author Kelvyn Jones’s personal advice,
the discrete time hazard model is chosen for this study. The reason being that this model is
more flexible and can simply be fitted as a binary logit model.

2.3. Goodness of fit test

... Goodness of fit test for single level binary data—Hosmer and Lemeshow () test
Hosmer and Lemeshow (1980) and Lemeshow and Hosmer (1982) proposed grouping based
on the values of the estimated probabilities for logistic regression models.

They have proposed two new grouping strategies as follows:
(1) Collapse the table based on the percentiles of the estimated probabilities.
(2) Collapse the table based on fixed values of the estimated probabilities.
Additional research by Hosmer et al. (1988) have shown that the grouping method based

onpercentiles of the estimated probabilities is preferable to the one based onfixed cut points in
the sense of better adherence to theχ 2

(m−2) distribution, especially whenmany of the estimated
probabilities are small (i.e less than 0.2).Herem is the number of groups. Thus the firstmethod
is used in this study.

There is a range of values that can be used to define m. The most popular choice is m =
10 groups. Hosmer and Lemeshow (2000) recommended to select m = 6 as the minimum,
since a test statistic calculated from fewer than six groupswill usually have very low power and
thus indicates that themodel fitswell. As a general rule, they proposed thatm should be chosen
as 6 ≤ m < n/5rwhere n is the total number of subjects and r is the number of response levels
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(r= 2 in this case since the response variable is binary). In our study, however a value ofm = 5
was selected as all cluster sizes selected can be divisible by 5. This proved to be a satisfactory
choice as the power of the test for the chosen alternativewas high.Under thismethod, suppose
we have n number of subjects in total, then grouping this into 5 groups (i.e. m = 5) so that
the first group contains the n/5 subjects having the smallest estimated probabilities and the
last group contains the n/5 subjects having the largest estimated probabilities.

The details of the goodness of fit test developed byHosmer and Lemeshow (2000) for single
level binary data are clearly explained in Perera et al. (2016).

... Goodness of fit test for single-level survival data
A goodness of fit test for the single level Cox proportional hazards survival model has been
explored by Abeysekera & Sooriyarachchi (2009). It is based on an illustration of the useful-
ness of a global goodness of fit test proposed by Schoenfeld (1980) for testing the proportional
hazard assumption. Abeysekera and Sooriyarachchi (2009) apply the methods of Schoenfeld
(1980) to a real large scale data set that involves several covariates in order to determine the
feasibility of using this goodness of fit test in practice.

May and Hosmer (2004a) examine GrØnnesby and Borgan goodness of fit test for the Cox
proportional hazards model. This test is based on grouping the subjects according to their
estimated risk score. They use added group indicator variables and test whether the coeffi-
cients of these indicator variables are equivalent to zero. This is similar to the Parzen and
Lipsitz (1998) test. May and Hosmer (2004a) use simulations to examine the effect of sample
size and the number of groups on type I error and power. They show that for all group sizes
examined the type I error holds only when the sample size exceeds 200. The power is reported
to be comparable to competing tests. Their recommendation for the number of groups is to
have the number of groups corresponding to at least 50 events per group.

May and Hosmer (2004b) examine the test proposed by Moreau, O’Quigley, and Mesbah
(1985) for the Cox proportional hazards model. May and Hosmer (2004b) show that this test
is algebraically equivalent to a test derived by adding group variables and testing whether the
coefficients of these group variables are zero based on the score test. There are no simulations
performed in this paper andMay and Hosmer (2004b) apply their test to a practical example.

... Goodness of fit tests for correlated clustered data
There are several approaches to the analysis of correlated clustered data. Apart from the
approach we take which is Multilevel modeling, there are two other popular approaches,
namely Models with estimation via Generalized Estimating Equations (GEE) methodology
and Generalized Linear Mixed Models (GLMM).

For multilevel data, goodness of fit tests are only available for Normal data (Browne, 2004)
and binary data (Perera et al, 2016). According to MLwiN survival manual there is no good-
ness of fit test available for multilevel survival data. Thus, this study will be a significant
endeavor for developing the analysis of multilevel survival data, since multilevel event his-
tory models are important in public health.

Evans andHosmer (2004a)consists of a simulation study for evaluating the use of the Pear-
son statistic and the unweighted sums of square statistic for clustered binary data and estima-
tion via GEE. The type I error varies a lot as only an inadequately small number of simulations
have been carried out. No power simulations have been done. The authors recommend their
tests only when there are over 50 clusters.

Evans andHosmer (2004b) develop a goodness of fit test based on themean and variance of
the Pearson’s statistic and the unweighted sums of square statistic for themixed effects logistic
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34 K. BALAKRISHNAN ANDM. R. SOORIYARACHCHI

model. They considered several covariate types. Their simulations of type I error indicate that
for some covert types considered, their type I error is outside the stipulated limits. They have
not done simulations to examine power in their study. Also, for each combination only 500
simulations have been done. They recommend their method only for large clusters of size 100
or more.

3. Methodology

3.1. The novel goodness of fit test

In order to determine the adequacy of a fitted model, goodness of fit tests are designed. The
goodness of fit of amodel explains howwell the fitted values of the response variable under the
model is compared with the observed values. A poorly fitted model leads to biased or invalid
conclusions drawn from the statistical inference based on the fitted model. For that reason, it
is vital to test the goodness of fit of a model before it is used to make statistical inferences.

According to the literature, there is no goodness of fit tests for checking the adequacy of
multilevel survival models. Accordingly the main concern of this research is to develop a
goodness of fit test for multilevel survival data based on similar methodology as the goodness
of fit test for multilevel models with binary responses developed by Perera et al. (2016).

Development of the new goodness of fit test

Multilevel data have a clear nesting of “lower level” units (i) within “higher level” (second
level) units (j).

Let,
�gij = the probability that the ith individual within the jth second level dies in the current

period (g), given that he/she survived from the last period (g-1)

�gi j = P(dgi j = 1|d(g − 1)ij = 0)

Themultilevel discrete time hazard model has the following form when there is only a sin-
gle explanatory variable, xij which is measured at the lower level. Then the multilevel discrete
time hazard model can be represented as below (Yang and Goldstein, 2003).

log
(

�gij
1 − �gij

)
= β0 j +

3∑
g=2

αgTgi j + βXij whereβ0 j = β0 + u0 j and u0 j ∼ N(0, σ 2
u0)

(3.1)

Here i = 1, 2, . . . , nj , j = 1, 2, . . . , k , k is the number of clusters andTg denotes indicators
for the time intervals.

The novel goodness of fit test is developed using the following steps.
Step 1: The multilevel discrete time hazard model for multilevel survival data as in

Equation (3.1) is initially fitted and the model parameters estimated by using 1st
orderMarginalQuasi Likelihood (MQL)method. Though the penalized quasi like-
lihood (PQL)method of order 2 is themost recommendedmethod (Browne, 2004)
none of the other methods except MQL1 converged. Therefore MQL1 was used by
compulsion.

Step 2: The�gij for the ith individual within the jth cluster is estimated for each individual
from the fitted model.
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Step 3: As cited in Perera et al. (2016), in order to rank the estimated probabilities within
each cluster, Rosner et al. (2003) asymptotic approach of ranking clustered data is
used. This approach ranks the estimated probabilities among all units over all clus-
ters. According to this approach the estimated probabilities are sorted and ranked
in ascending order. The overall ranking systemwill be preservedwithin cluster too.
According to Perera et al. (2016), the Hosmer and Lemeshow test (1980) approach
can now be applied within each cluster since the ranking system is thus preserved
within the cluster and observations in different clusters are independent of each
other, that is no between cluster correlation.
Consequently the estimated and sorted probabilities are collapsed into “G”(positive
integer) groups within each cluster (Hosmer and Lemeshow, 1980). The estimated
probabilities are allocated into “G” groups within each cluster as such that the first
region covers observations with the smallest predicted probabilities and the last
region covers observations with largest probabilities (Perera et al, 2016). The good-
ness of fit test is formulated by defining (G-1) group indicator variables for each
cluster according to the partition of the data.
Then the indicator variable,

I_ gij =
⎧⎨
⎩

1 ; if �ij is in region g

0 ; if otherwise
Where g = 2, 3, . . . ,G

Step 4: The whole data set is sorted with respect to the second level unit in order to fit a
model to the restructured data with indicator variables.

Step 5: Next, to assess the goodness of fit of the model, the model (3.1) is compared to the
alternative model (3.2) given below that contains the indicator variables as well.

log
(

�gij
1 − �gij

)
= β0 j +

3∑
g=2

αgTgi j + βXij +
G∑

g=2

γgI_ gij (3.2)

Where β0j= β0 + u0 and u0j ∼ N (0, σ 2
u0)

G∑
g=2

γgI_ gij = γ2I_2ij + γ3I_3ij + · · · + γGI_Gij

i = 1, 2, . . . , nj and j = 1, 2, . . . , k

where k is the number of clusters.
Step 6: The model (3.2) is fitted as mentioned in Step 1.
Step 7: The joint Wald statistic is calculated by using the software MLwiN for model (3.2)

to check the following hypothesis.
H0 : γ2 = γ3 = · · · = γG = 0, i.e. All the coefficients of indicator variables are equal
to zero.
H1: At least one coefficientγg �= 0
If all the indicator variables simultaneously equal to zero (i.e. Do not reject H0) it
indicates that the model (3.1) is an adequate fit to the data, and if at least one of the
indicator variable coefficient is not equal to zero (i.e. Reject H0) it implies that the
model under consideration (3.1) has a questionable fit. This is the basic concept
behind this novel goodness of fit test.
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36 K. BALAKRISHNAN ANDM. R. SOORIYARACHCHI

Step 8: The test is performed at a α% significance level. If the jointWald statistic calculated
for the model (3.2) is greater than the value of χ 2

(G−1),α%, then the null hypothesis
H0 should be rejected at α% significance level. Else it supports the null hypothesis
H0.

The above 8 Steps describes the procedure of Goodness of fit testing for accessing the ade-
quacy of the fitted Multilevel Discrete Time Hazard model.

4. A simulation study to determine the properties of the novel goodness of fit
test for clustered survival data

In this section in order to handle simulated data with multilevel hierarchical nature, a binary
response variable dgi j is considered. This represents whether the ith individual within jth clus-
ter died in the gth time interval.

4.1. Introduction to the simulation study

To perform the novel goodness of fit test, there are no restrictions on using an explanatory
variable from any distribution. As cited in Perera et al. (2016), the recommended distribu-
tions for an explanatory variable are Bernoulli distribution, Normal distribution andUniform
distribution. For this study the Normal distribution is chosen and the explanatory variable is
simulated using random data from the Normal distribution.

This study uses MLwiN v2.19 to fit the selected multilevel model to simulated data. Before
fitting a model it is essential to determine the estimation procedure and the linearization
method. According to Browne (2004) the 2nd order PQL estimation will yield more precise
estimates than the MQL estimation procedure. However, the PQL procedure does not con-
verge in some cases. In this study for each case 1000 data sets were generated to study the
properties of the developed test. For those simulated data, few out of 1000 did not converge.
As mentioned in chapter 3, to overcome this convergence problem 1st order MQL estimation
procedure is used.

... Parameters used in the simulation study
In order to provide a better simulation study, the simulation procedure was carried out by
varying three main conditions.
Condition 1: Number of clusters (15 and 20)
Condition 2: Number of observations per cluster (35 and 50)
Condition 3: Second level standard deviation values (1, 1.5 and 2) corresponding to Intra

Cluster Correlation (ICC) values (0.23, 0.41 and 0.55) respectively.
Based on the recommendations given byMaas and Hox (2005), Van et al, (1997) and Kreft

andDe Leeuw (1998) the first two conditionsmentioned abovewere selected.Hence the num-
ber of clusters was selected to be 15 and 20, where 15 represents a small number of clusters
and 20 represents a moderately large number of clusters. The observations per cluster were
chosen as 35 and 50. It was chosen in a manner that 35 observations represents the smaller
cluster and 50 observations represent the larger cluster. These two conditions form four com-
binations. The combinations stated above were named as follows.
Data set A: 20 clusters with 50 observations in each cluster (In total 1000 observations)
Data set B: 15 clusters with 50 observations in each cluster (In total 750 observations)
Data set C: 20 clusters with 35 observations in each cluster (In total 700 observations)
Data set D: 15 clusters with 35 observations in each cluster (In total 525 observations)
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For each of the four combinations data were simulated under three different ICC values
by considering three different standard deviations (Perera et al., 2016). Therefore, altogether
there were 12 combinations. For each of the 12 (2 × 2 × 3) combinations, a thousand data
sets were generated. An MLwiN macro was used to generate the datasets and to apply the
developed goodness of fit test to the simulated data. This has been uploaded as a separate
file.

... Data generation procedure
In order to determine whether the type І error holds for the developed goodness of fit test and
to determine the power of the developed goodness of fit test, 12000 data sets were generated
separately for each of the two conditions. The null and alternative hypotheses are presented
below.

H0 : The multilevel discrete time hazard model fits the data well
Versus

H1 : The multilevel discrete time hazard model does not fit the data well.

In order to generate the data sets, MLwiN macros were used with selected parameter esti-
mates. Those parameters were selected by trial and error methods (Perera et al, 2016).

β0 = − 0.15 and β1 = − 0.5

Generation of data sets under the null hypothesis

During the data generation procedure under the null hypothesis, firstly the explanatory vari-
able was generated from the standard normal distribution and according to trial and error
results the mean of the generated explanatory variable was selected as 10.

i.e.xij ∼ N (10, 1)

According to the theory of multilevel data u0j ∼ N(0, σ 2
u0). Thus, in line with the value of

the standard deviation, the random effect u0j was generated from the normal distribution.
After xij and u0j were generated from the normal distribution, in order to simulate survival

times, which satisfies the proportional hazard assumption the Weibull distribution was cho-
sen (Bender et al. 2005). TheWeibull distribution is characterized by two positive parameters
respectively scale parameter λ and shape parameter ν. According to Bender et al, (2005) haz-
ard function decreases monotonically for 0 < v < 1. So that v = 0.5 and λ= 2 was chosen for
this study.

As stated in Bender et al, 2005 the survival time T from the proportional hazards model
with Weibull distribution can be expressed as

T = H−1
0 [− log (U ) × exp(−β ′x)]

whereU is a random variable from Uniform[0,1] and

H0(t ) = ∫t
0 h0(u) du is the cumulative hazard function.

H−1
0 (t ) = (λ−1t )1/v is the inverse of the cumulative hazard function.

Hence,T = {λ−1[− log(U ) × exp(−β ′x)]}1/v
where β ′x = β0 + u0 j + β1x

After the generation of survival times in months, in order to create the censoring indicator
variable, those who survive beyond 20 years (that is 240 months) will be taken as censored
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38 K. BALAKRISHNAN ANDM. R. SOORIYARACHCHI

observations. In that manner the survival times greater than 240 were coded as 1 and others
as 0. Finally, the new response variable was created by considering the survival time incorpo-
rating the censoring indicator variable.

Then, with the intention of expanding the simulated data, the “SURV” macro command
of MLwiN was used. According to the MLwiN command manual v2.0.01, SURV command
returns expanded data, including risk set indicators to <RSI column>, risk set time to <RST
column>, risk set size to<RSS column>. Before using “SURV” command it is essential to sort
the data. Hence, according to the response variable created, the simulated data were sorted.
Then the sorted data were expanded and the risk set time (RST) was discretized using 2 cut
points into three time intervals.

Criteria for selecting cut point (According to Abeysekera and Sooriyarachchi (2009)).
(i) Expected deaths in jth cluster within gth time interval (Ejg) should be greater than or

equal to 1 for all j and g.
(ii) Ejg � 5 for 80% of g’s for each j.
After discretization of the survival times, the respective probabilities of the fitted discrete

time hazard models were estimated for the selected β0 and β1 parameter values.
The fitted model under the null hypothesis can be represented by,

logit(πgi j) = β0 j − 0.5xij +
3∑

g=2

αgTgi j

where β0 j = −0.15 + u0 j and u0 j ∼ (
0 , σ 2

u0

)
i = 1, 2, . . . , nj and j = 1, 2, . . . , k where k is the number of clusters,Tg is the indicator

for gth time interval and πgij is the probability that ith individual in jth cluster dies in the
current period g, given that survived from the last period (g − 1)

It is essential to identify the proportion of the 1000 data sets that lie within or outside the
probability limits for a significance level of 5%, for each combination of data sets declared in
sub topic 4.1.1. Along with that it can be concluded whether the type I error holds for the
developed goodness of fit test. The 95% probability interval for a true significance level of 5%
can be constructed in the following way.

95% probability interval for 1000 datasets =
(
0.05 ± 1.96 ×

√
0.05 × 0.95

1000

)

= (0.036, 0.064)

Table 1 gives the results of the simulation study for type I error for each combination of
parameters.

For the developed goodness of fit test, the type I error rate clearly holds under all conditions
A, B, C, and D regardless of the standard deviation value.

Under condition D for the standard deviation 1.0 (i.e., With the lower intra cluster corre-
lation), the type I error rate is marginal being just on the lower border of the 95% probability.
The reason behind this can be elucidated by the fact that a small number of clusters with
smaller cluster sizes result in poor estimation of the fixed and random coefficients and lead
to bias in the joint Wald statistics and hence marginal convergence probabilities (Maas and
Hox, 2005). Another reason for the poor performance for this small sample case is that Rosner
et al.’s method of allocation of indicator variables works well only for somewhat large sample
sizes.
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Table . Observed Type I error rates for simulation study.

Standard
Deviation Values of (k, n) ICC

Cut-point


Cut-point


Number
of signifi-
cant data
sets (out
of 
data sets)

Rejection
propor-
tion Result

. k= , n=  . .   . Within the limits
k= , n=  .   . Within the limits
k= , n=  .   . Within the limits
k= , n=  .   . Just within limits

. k= , n=  . .   . Within the limits
k= , n=  .   . Within the limits
k= , n=  .   . Within the limits
k= , n=  .   . Within the limits

. k= , n=  . .   . Within the limits
k= , n=  .   . Within the limits
k= , n=  .   . Within the limits
k= , n=  .   . Within the limits

Note: % significance level was considered, k represents the number of clusters and n represents the observations per cluster

However, in the case of the small number of clusters with smaller cluster sizes (conditionD)
for large standard deviation (i.e., 1.5 and 2.0), the type I error holds. Hence themarginal type I
error rate in the case of conditionDwith the standard deviation of 1.0might be due to smaller
standard deviation as well.

4.2. Study of power

It is vital to discuss the power of the developed goodness of fit test by using a simulation study.
The power of a test can be defined as,

Power = Pr[reject H0 | H1 is true] = 1 − β

where β = Type II error.
Firstly, in order to generate data under the alternative hypothesis, that is data from non-

proportional hazards the following method was considered. As stated in Stewart (2010), “the
presence of a significant interaction implies nonproportionality, thus indicating that a covari-
ate is time-varying.” In order to simulate an explanatory variable which is time-varying, the
simulated data used a transformation of X, namely (X ) × log(Tnp). This time varying covari-
ate was used in the fitted model as the X term.where Tnp is the survival time generated from
nonproportional hazards and

Tnp =
[ −log (1 −U )

0.75 × (−β ′x)

]
.

Other notations used in the above equation are the same as used in the Section 4.1.2
Here any value between 0 and 1 can be chosen in the divisor and for this study 0.75 was

selected.
The β0 = −0.15 and β1 = −0.05 was taken as the model parameters. After the generation

of survival times in months, in order to create the censoring indicator variable it was con-
sidered that those who survive beyond 50 months will be the censored observation. In that
manner the survival times generated greater than 50 were coded with 1. Afterwards the new
response variable was created by considering the survival time incorporating with the censor-
ing indicator variable. The data were then expanded and discretized in the same way as in the
generation of data sets under the null hypothesis.
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Table . Observed results for simulation study under power analysis.

Standard
deviation Values of (k, n) ICC

Cut-point


Cut-point


Number of
significant

data sets(out
of  data

sets)
Rejection
proportion

. k= , n=  . .   
k= , n=  .   
k= , n=  .   
k= , n=  .   .

. k= , n=  . .   
k= , n=  .   
k= , n=  . .  
k= , n=  .   

. k= , n=  . . .  
k= , n=  . .  
k= , n=  . .  
k= , n=  .   .

Note: % significance level was considered, k represents the number of clusters and n represents the observations per cluster

By fitting the discrete time hazard model, for each combination of the number of clusters,
cluster size and variance of random effect term declared in the Section 4.1.1, the rejection
proportion of the null hypothesis out of 1000 was obtained. The results of the simulation
study of power for each simulation condition are given in Table 2.

The results in Table 2 show that the power for every combination is very high. Hence the
developed test is extremely powerful against the alternative hypothesis of nonproportional
hazards for all cluster sizes and number of clusters examined.

5. Application to an example

5.1. Description of the example

The developed test considered themultilevel nature of the survival data. In order to determine
the applicability of this test it is vital to apply it to a survival data set with a multilevel hier-
archical structure. An example dataset named as “LIFETIME.ws” was taken from the inbuilt
data sets of MLwiN software. This data set consisted the lifetimes in years of Malmö residents
at the time of the 2000 Swedish Census and the individuals are closed cohorts of people 65 to
69 years old at the 1970 Swedish Census and followed up over 30 years (Yang and Goldstein,
2003). In addition, there were three explanatory variables spread across two main levels. The
second level unit of this data set is identified as the parish where each individual belongs to
and the first level units are the individuals. The potential analytical factors/covariates and
their base categories where applicable are: (i) gender coded as female = 0 and male = 1
where the female is the base level, (ii)Total size which is the number of members in the
household and (iii) Family income giving the Disposable family income (in 100SEK).

Data preparation

The selected data set consisted of 21 clusters and 12587 individuals. In order to fit a discrete-
time hazard model, the data were expanded as follows (Yang and Goldstein, 2003). Firstly
the survival time of individuals at the time of the year 2000 is divided into three intervals
and for each time interval, an indicator variable was introduced. To prepare the data set for
multilevel analysis, the original data set was expanded using SURV command in MLwiN.

D
ow

nl
oa

de
d 

by
 [

12
3.

23
1.

10
7.

71
] 

at
 0

8:
50

 0
4 

Ja
nu

ar
y 

20
18

 



COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 41

Table . Grouping of survival time.

Survival time(age) code Indicator

< = 71 years 1 T1
– years  T
> years  T

Note: The time interval coded as  was taken as the base category

Then the 33rd percentile and the 67th percentile of “rstime” was calculated and used as the
lower and upper cut point respectively. Here “rstime” corresponds to the expanded survival
times. Table 3 illustrates the grouping of survival times into three intervals.

While expanding the data set a variable was created to determine the status of the observa-
tion within each interval. At each time interval the variable was taken to have a code of 1 if an
individual died in the time period, and 0 otherwise. This variable was taken as the response
variable in themodel. In the expanded dataset each individual has a line of data corresponding
to every risk set they survived until either censoring or the event of interest occurs (MLwiN
survival manual). The final data set consists of 31,468 observations.

5.2. Descriptive analysis

... Comparison of survival time between gender groups (-Male, -Female)
To detect departure from proportional hazards it is necessary to examine the LLS (log-log
survival) plot.

Figure 1 clearly illustrates that the log cumulative hazard plots of males and females are not
parallel indicating nonproportional hazards between males and females.

... Log-rank test andwilcoxon test gender groups

χ 2 Value for the Log−Rank Test = 311.62 p−value = 0.000
χ 2 Value for the Wilcoxon Test = 377.69 p−value = 0.000

Both tests show significant differences between the median life expectancies of males and
females.

Figure . Log–log survival Plot for age  by gender.

D
ow

nl
oa

de
d 

by
 [

12
3.

23
1.

10
7.

71
] 

at
 0

8:
50

 0
4 

Ja
nu

ar
y 

20
18

 



42 K. BALAKRISHNAN ANDM. R. SOORIYARACHCHI

5.3. Model fitting

To avoid over fitting the data it is essential to use a model building procedure. In this analy-
sis the forward selection procedure with a significance level of 5% (0.05) is used to select the
important explanatory variables (Blanchet, Legendre, and Borcard, 2008). Initially the sim-
ple model with the constant term and the time interval indicators is considered. Next, each
explanatory variable is added separately to the initial model and the most significant vari-
able is identified by using the Wald statistic associated with the variable with a significance
level of 5%. The reason for using the Wald statistic rather than using the likelihood ratio (or
deviance) test statistic is because for discrete response multilevel models the likelihood test is
not available in MLwiN (Perera et al., 2016).

As quasi-likelihood estimation is used in MLwiN for generalized linear models with
discrete responses, in this study “marginal quasi likelihood” (MQL) with the first-
order is used to obtain parameter estimates (as used in the simulation study). As
this data set is very large and the response probability is not extreme, it is envis-
aged that there will be negligible bias in the parameter estimates given by the MQL1
method. Also the MQL1 approach was used in the example to be in line with the
simulations.

Final main effectmodel

The final main effects model only consists of one factor, male, that has been selected at 1st
stage. The discrete time hazard model selected by the forward selection procedure is,

Logit(�gij) = β0 j + 1.396 (0.036)T2_1ij + 4.659 (0.051)T3_1ij + 0.866 (0.032)male_1ij
where β0 j = − 2.555 (0.042) + u0j (5.1)

The terms within parentheses are the standard errors of the estimated parameters.
Equation (5.1) shows the parameter estimates and their standard errors within
brackets.

The result of the above model shows that the odds of a male dying is higher than the odds
of a female dying.

Checking suitability of themultilevel concept

If between parishes variance is zero, this would be equivalent to fitting a single level model.
In this case a multilevel model is not essential as there will be no level 2 variation. Therefore,
it is necessary to check the suitability of the multilevel concept by testing the significance of
the parish level variance.

H0 : Unexplained parish level variance is zero
H1 : Unexplained parish level variance is not equal to zero
To test this null hypothesis Markov ChainMonte Carlo (MCMC) estimation is carried out
and the MCMC diagnostics are obtained.
The estimate of the parish level variance = 0.007
The 95% credible interval for the parish level variance = [0.002, 0.024]

The 95% confidence interval does not include 0. Hence we reject the null hypothesis at the
5% significance level. Therefore, there is evidence to say that, it is appropriate to apply the
multilevel concept.
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5.3. Goodness of the fittedmodel

In this section the developed goodness of fit test for the multilevel survival model is applied
to the final model obtained for the example data set.

Indicator variables were defined for this multilevel data as explained in Abeysekera and
Sooriyarachchi, 2009 since in the example data set, most of the clusters consisted of observa-
tions that were not divisible by 5. This procedure is as follows.

k j = Number of observations in jth cluster
5

,

If i ≤ a × k j then I = a for a = 1, 2, . . . , 5 where j = 128001, 128002, . . . , 128021 and I
represents the indicator variable.

In this goodness of fit test the hypothesis is;
H0: The model fits the data well

Versus
H1: The model does not fit the data well.

Finally, to assess the goodness of fit of the final model, i.e. Equation (5.1) the model given
below was constructed.

Logit
(
�gij

) = β0 j + 0.047 (0.171)T2_1ij + 1.913 (0.200)T3_1ij + 0.049 (0.050)male_1ij

+
5∑

k=2

γkI_kij

where β0 = − 1.031 (0.036) + u0 j (5.2)

where I_kij is the indicator variable of the kth group for the ith observation in the jth cluster.

5∑
k=2

γkI_kij = 1.892(0.059)I_2ij + 1.161(0.173)I_3ij − 0.639(0.194)I_4ij

− 2.763(0.216)I_5ij

If the model (5.1) is correctly specified, then the
H0: The model (5.1) fits the data well is not rejected and it indicates that,

γ2 = γ3 = · · · = γ5 = 0.

In order to check that, the joint Wald statistic for the model (5.2) is calculated by using the
MLwiN software.

H0 : γ2 = γ3 = · · · = γ5 = 0, i.e. All the coefficients of indicator variables equal to 0.
H1: At least one coefficient of indicator variables does not equal to zero.

The result of the joint Wald test indicates that the test statistic is 4835.122 on 4 degrees of
freedom resulting in a p-value of< 0.0001. Since there are four indicator variables, degrees of
freedom is 4. And since the p-value of joint Wald statistic test is<0.0001, it can be concluded
that γ2 = γ3 = · · · = γ5 = 0 is rejected at the 5% significance level. Hence, there is evidence
to say that the model (5.1) does not fit the data well.

In retrospect, it is suspected that the goodness of fit of this model fails due to nonpropor-
tional hazards between the two levels of the sexes. The final model (5.1) has only the explana-
tory variable male. But Figure 5.5 clearly illustrates that the LLS curves with respect to males
and females are not parallel and these curves are closing together, indicating nonproportional
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hazards between males and females. However the discrete time hazard model assumes pro-
portional hazards. Therefore the discrete time hazard model does not fit well to the example
data set with nonproportional hazard.

However, it is essential to find an adequate model for this data. In consequence, the inter-
action terms of “Time interval indicator variable”(T)∗male is added to the model and the
significance of that was checked. Now the model can be represented as below.

Logit(�gij) = β0 j + 0.280 (0.034)T2_1ij − 0.595 (0.040)T3_1ij − 0.516 (0.029)male_1ij

+ 0.302 (0.042)male_1.T2_1ij + 4.083 (0.097)male_1.T3_1ij

Where β0 j = − 0.581 (0.032) + u0j (5.3)

The terms within parentheses are the standard errors of the estimated parameters. It can be
seen that theWald statistics corresponding to “Male,” “Male_1.T2_1,” and “Male_1.T3_1” are
316.59, 51.70, and 1771.80, respectively, each with 1 degree of freedom resulting in a p-value
of <0.0001.

This illustrates that the factormale and the interaction of factormale with timewere highly
significant. This also gives evidence towards the nonproportionality of hazards for the variable
male.

6. Discussion and conclusions

6.1. General discussion

It is essential to assess the model adequacy before making inferences on the fitted model.
Accordingly, in order to examine themodel adequacy a goodness of fit test is vital. A goodness
of fit test provides information about how well the model fits a given set of data.

Most of the tests proposed for goodness of fit of survival data can be used only under the
assumption that the observations in the sample are independent. That is, under the single
level case. It is not possible to deal with single level data structures always and there are many
instances in practice where the data set consists of a hierarchical structure. Fitting amultilevel
model is one of the approaches used to handle the intra cluster correlation in multilevel data,
(Steenbergen and Jones 2002). Although multilevel modeling can be used, for survival data,
there are no satisfactory techniques to assess the goodness of fit of the fittedmultilevel models
in specialized packages like MLwiN (Browne, 2004).

Therefore, the main objective of this research was to develop a goodness of fit test to assess
the model adequacy of a model fitted to multilevel survival data. The secondary objective was
to identify the properties of the developed goodness of fit test under different scenarios; that
is, to test the effect of different numbers of clusters with different numbers of cluster sizes and
different intra cluster correlations on the type I error rates and the power of the developed
novel test.

Notmuch literature is availablewith respect to testing themodel adequacy of survivalmod-
els of rare eventswith a large proportion of censored observations in themultilevel framework.
Hence, developing a goodness of fit test for survival data in a multilevel structure via discrete
time hazard model proved to be a new and challenging experience.

In order to perform the developed goodness of fit test, five indicator variables were used
in the multilevel discrete time hazard model. Even though using ten indicator variables is
the most popular choice (Hosmer and Lemeshow, 1980), minimum allowable number of
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Table . Detailed Theoretical Comparisons between this method and competing methods.

Competing Methods

Parameters of
Interest

Developed
Method

May and Hosmer
(a)

May and Hosmer
(b)

Evans and
Hosmer (a)

Evans and
Hosmer (b)

Setting Clustered Data Unclustered Data Unclustered Data Clustered Data Clustered Data
Model -level multilevel

binary model
Cox proportional
hazards model

Cox proportional
hazards model

Logistic
Regression
model for
clustered
binary data via
Generalized
Estimating
Equations(GEE)

Weighted
Gaussian
Linear model
(fitted to a
modified
dependent
variable

Method of
Estimation

First order
Marginal Quasi
Likelihood
(MQL) via
Iterative
weighted Least
squares

Maximum
Likelihood
estimation
based on the
partial
likelihood
function

Maximum
Likelihood
estimation

Moment
Estimation via
Generalized
Estimating
Equations(GEE)

Restricted
pseudo
likelihood
(REPL) via
iterative
weighted least
squares.

Test used for
testing
whether group
indicator
variables are
zero

Joint Wald Test Score Test Score Test — —

Number of
Simulations

  —  

Type I error Checked. Holds
for cluster sizes
as small as 
and number of
clusters as
small as .

Checked. Inflated
for sample
sizes less than
or equal to 

Not checked. Checked. Holds
for number of
clusters over
.

Checked. Can be
recommended
only for large
clusters of size
 or more

Power Checked.
Extremely
powerful
against
proportional
hazards
assumption
violation.

Examined.
Authors
mention that
the power is
comparable to
competing
tests.

Not Checked. Not Checked Not Checked

Real Example Method applied
to a real
example

Not applied to a
real example

Method applied
to a real
example

Not applied to a
real example

Not applied to a
real example

Complexity Simple. Based on
the Hosmer
Lemeshow test
and Rosner
et al.
methodology

Simple. Similar to
Parzen and
Lipsitz ()

Simple based on
Moreau et al.
test ()

Simple based on
Pearson’s
statistic and
uncorrected
sums of
squares
statistic.

Based on
Complex
theory

Usage Even nonstatisti-
cians can use
and apply.

Less theoretical
but not
suitable for
clustered data.

Less theoretical
but not
suitable for
clustered data.

Even nonstatisti-
cians can use
and apply

For the more
advanced user.

Software MLwiN SAS/IML SAS SAS Macros SAS Proc
GLIMMIX
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indicator variables were used in order to avoid the convergence problem (Hosmer and
Lemeshow, 1980).

A simulation study was used to identify the properties of the developed test. In the case
of the simulation study of type I error, the twelve scenarios provide evidence that the type I
error holds for the novel goodness of fit tests for all scenarios. Under the scenario with smaller
cluster size and smaller number of clusters for the standard deviation 1.0, the type I error rate
was marginal. The results indicate that the developed test takes multilevel data structure into
consideration, as the type I error rate obtained for a small value of intra cluster correlation
with the smaller sample was marginal.

In the case of simulation studies for power, the developed goodness of fit test gave high
power for the all twelve scenarios. Hence the developed test is extremely powerful against the
alternative hypothesis of nonproportional hazards for all cluster sizes and number of clusters
examined.

The goodness of fit test was developed with only one explanatory variable. However, it is
illustrated that the developed test can be applied when there are one ormore explanatory vari-
ables by application of the developed goodness of fit test to the example data set in Section 5.
The real life data used to fit the discrete time hazard model and to perform the goodness
of fit test, consisted of one categorical explanatory variable and two continuous explanatory
variables.

The application to the example data set illustrated that this test can be easily generalized to
the case of unequal cluster sizes.

6.2. Conclusions

The developed goodness of fit test for multilevel survival data is an extension of the goodness
of fit test for multilevel models with binary responses developed by Perera et al. (2016). In
order to apply the newly proposed goodness of fit test there is no limitation on the number
of explanatory variables and the type of those explanatory variables. That is the explanatory
variables can be categorical or continuous from any distribution. The developed test can be
applied to data with unequal cluster size.

According to Perera et al. (2016), the Hosmer and Lemeshow test (1980) approach are
applied within each cluster. Thus the developed test is not based on complex theories. For
the multilevel discrete time hazard model, the Type І error holds for the developed test for
large/small number of clusters with large/small cluster size. Type I error rate for small intra
cluster correlation with the small sample size is marginal. The developed goodness of fit test
gives high power for large/small number of clusters with large/small cluster size, for any value
of standard deviation of the random effect. The newly developed test is extremely powerful
and superior against the alternative hypothesis of nonproportional hazards.

A detailed theoretical comparison of our newly developed goodness of fit test is made with
some competing goodness of fit tests both in the clustered data scenario and in the unclustered
data scenario. This is given in Table 4.

The results of Table 4 indicate that with respect to all the characteristics examined, our test
is as good as if not more superior to the competing tests.

6.3. Further work

This study can be extended to develop a goodness of fit test for the continued survival time
model.
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