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Abstract: Receiver operating characteristic (ROC) graphs 

are useful for organising binary classifiers and visualising 

their performance. In order to compare classifiers it may be 

needed to reduce the ROC performance to a single scalar value 

representing expected performance. Such a commonly used 

summary statistic is the area under the curve (AUC) of the 

ROC curve. The AUCs can be estimated either parametrically 

or non-parametrically. The parametric approach assumes that 

the signal present (positive) and signal absent (negative) groups 

can be represented as two overlapping Gaussian distributions. 

If the observations of two or more ROC curves are obtained 

from the same region of interest, their AUCs are considered to 

be correlated.

 A novel asymptotic test for comparing multiple AUCs of 

several ROC curves was proposed by Meyen and Sooriyarachchi 

in 2014, and it was of interest to study the behaviour of the 

test statistic for various sample sizes and varying degrees of 

overlap between the Gaussian distributions via a simulation 

study. Hence this study was carried out to test the properties of 

the test statistic when the AUCs were estimated parametrically 

by Dorfman and Alf’s method. This simulation was carried out 

for the case where the AUCs are independent. 

 

 Inferences were made regarding the distribution of the test 

statistic for various sample sizes. The test statistic performed 

better when the spread between the two Gaussian distributions 

increased, while the test statistic was valid with respect to 

sample sizes above 100 when 2 ROC curves were being 

compared simultaneously.

Keywords: Area under the curve (AUC), beta distribution, 

likelihood ratio test (LRT), receiving operating characteristic 

(ROC) curve, score test.

INTRODUCTION

A ROC curve is simply a graphical plot, which illustrates 

the performance of a binary classifier system as its 

discrimination threshold is varied. A variety of summary 

indices have been proposed as a single measure or 

simplification for considering the entire curve. One of 

the most common measures used for summarising the 

performance of the diagnostic modalities is the value 

of the area under the curve (AUC), which ranges from 

0 to 1, where the higher the value of the AUC a better 

discrimination power is implied  (Fawcett, 2006). There 

are parametric, nonparametric and semi parametric 

methods of estimating the area under a ROC curve. The 

method of estimating the AUC depends on whether the 

data used is either continuous or in rating form.

 The application areas of receiver operating 

characteristic (ROC) curves range from medical imaging 

and radiology to machine learning and data mining. In 

practice it is often required to compare several alternative 

diagnostic tests and this entails the comparison of 

several AUCs under the ROC curves. At present this is 

achieved by comparing all pairwise combinations but 

this procedure has some serious drawbacks. 

 To make things clear consider an example from 

medical testing. Suppose it is required to determine 

whether suspected coronary artery disease (CAD) 

patients are positive or negative with respect to CAD. The 

gold standard test for determining this is an angiogram. 
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However an angiogram is a very expensive diagnostic 

tool and specially in developing countries like Sri Lanka 

only a few persons can afford this test. Two substitute 

tests for diagnosing CAD are the coronary stress test 

(CST) and non-invasive carotid artery ultrasound of the 

neck (NICAUN). In order to compare the performance 

of the two substitute tests with respect to that of an 

angiogram, two independent groups of patients of size m 

and n, respectively can be selected. One group will be 

given the angiogram and CST and the other group will 

be given the angiogram and NICAUN. The comparison 

of each substitute test with respect to the angiogram will 

be done using the AUCs of the respective ROC curves, 

which are constructed by plotting the sensitivity versus 

(1-specificity) for varying discrimination threshold 

values (Fawcett, 2006). As the two groups of patients 

are independent the AUCs will also be independent. 

This corresponds to the comparison of two independent 

AUCs.

 An asymptotic test for comparing several AUCs 

under the curves has been proposed by Meyen and 

Sooriyarachchi (2014) and it is of interest to study the 

effectiveness of this method and validate its properties. 

Therefore, the motivation of this study arose to address 

the need for such proper simulation based analysis.

 No proper study concerning the properties of the 

asymptotic test proposed by Meyen and Sooriyarachchi 

(2014) has been carried out yet. An important assumption 

of this test is that the AUCs are multivariate normally 

distributed. Therefore it was of interest to study the 

properties of the test under different circumstances, 

as in many real life applications the AUCs may not be 

multivariate normally distributed. The study determined 

the appropriate sample sizes and checked the null 

distribution of the proposed statistic, whilst identifying 

its limitations.  Here the sample size corresponds to the 

size of the sample used for generating the ROC curve and 

its AUC. In the simulation study each sample generates a 

ROC curve. The type of classifier used here is binary.

 To carry out this study it was necessary to implement a 

programme of the Dorfman and Alf method of maximum 

likelihood estimation  (Dorfman & Alf, 1969) in order 

to estimate the parameters needed to calculate the AUC.  

The language used for this implementation was C. 

Furthermore, the analysis of AUCs of ROC curves was 

carried out for categorical rating-scale data where 

3 categories were considered for uncorrelated ROC curves 

with two ROC curves being compared at once. As per 

previous research carried out by Cleeves (2002), it was 

decided to simulate data for sample sizes of 20, 50, 100, 

120,140, 250 and 500 observations in total (i.e. sample 

sizes of 10, 25, 50, 60, 70, 125 and 250 with respect 

to the positive and negative groups, respectively). The 

degree of overlap of the two populations was controlled 

by generating observations from Gaussian distributions 

whose means differed by 0.5, 0.75 and 1 standard 

deviations. Additionally, data were simulated assuming 

equal variances in the two subpopulations, and assuming 

distributions with standard deviation ratios of 1:1.5. 

The mean and the standard deviation of the negative 

population were taken to be 0.5 and 0.1, respectively. Each 

of the 42 combinations of sample size, degree of overlap, 

and standard deviation ratio was replicated 1000 times. 

After simulation for the various sample sizes, likelihood 

ratio (LR) and score tests based on the beta distribution, 

which the proposed test statistic should asymptotically 

follow, were applied to the sample of test statistics thus 

formed for the different sample sizes. When the sample 

size was very small (20) confidence intervals based on 

the above tests could not be constructed as large sample 

approximations were invalid.

METHODS AND MATERIALS

Binormal ROC curves 

In order to understand the construction of ROC curves it 

is important to understand the signal-detection paradigm 

from which it is derived. According to Grey and Morgan 

(1972), the signal-detection paradigm consists simply of a 

subject successively choosing between signal present (with 

background noise), SN, or no signal present (just noise), N. 

The model now usually assumed is that the stimulus sets 

up a response within the subject that can be represented 

as a continuous, uni-dimensional random variable X with 

probability distribution function, FN (x)  as the stimulus 

noise and FSN (x)  as the stimulus signal and noise.

  

 Typically FN (x) = F(x), FSN (x) = F(bx – a) for some 

F, i.e. the distributions are two-parameter and of the 

same form. The ROC curves simulated in this study use 

F=N(.,.), where N(.,.) denotes the normal distribution. If 

the subject is required to respond just Yes (signal present) 
or No (no signal present) then the model assumes that 

the tests for the underlying distribution by setting up a 

criterion (z, say) and responding “Yes” if the response   
X is, say greater than z and “No” if X is less than z. 

Then it follows that,

 

 

...(1)

...(2))
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Varying z gives the ROC curve [P(Hit) against P(False 

alarm)], defined by a and b that is taken to represent 

the subject’s performance. In order to estimate b, 

the experiment must be elaborated, the two standard 

means of doing so being either a repetition of the above 

with different z values (which could be obtained by 

manipulating a payoff matrix) or by requiring that the 

subject grade the response (for example, Yes, Sure or No, 
Fairly sure). It is the second elaboration that is considered 

here: by analogy with the above the model then assumes 

n criteria, zk , k = 1,2, ... , n (In addition it is convenient to 

define z0 = –∞ and zn+1 
= + ∞ ) so that the subject makes 

the overt response Ri , if the latent response X falls in the 

interval:

 The values of a and b along with other parameters 

of the ROC curve were estimated using the method of 

scoring proposed by Dorfman and Alf (1969).

 

Problems of iteration

The start for the initial iteration was used as the parameter 

estimates of the simple linear regression as outlined in 

Grey and Morgan (1972). Iteration continues until either, 

two successive iterates differ by less than 10-3 in all of 

their components and the final iterate is a possible solution 

(i.e. ẑ1
 ≤ ẑ2  

≤ ...
 
≤ ẑn and b > 0). The degenerate solution 

for the parameter estimates of the ROC curve can occur 

from empty cells in the data matrix. Therefore in order to 

overcome the problem of degeneracy similar to Dorfman 

and Berbaum (1995) the programme developed adds a 

small positive constant in order to avoid degeneracy in 

the case of empty cells.  

Determination of the threshold of the categories of 

the rating data

The threshold of the categories was decided by dividing 

the false positive fraction (FPF) into equal fractions, so 

that for example if 3 category rating data were considered 

the thresholds or cut points of the categories would be 

0.33 and 0.66. If the mean and standard deviation for the 

signal present (with background noise) cases are denoted 

by µSN ,σSN , and the mean and the standard deviation for 

the noise only cases are denoted as µN ,σN , assuming 

without loss of generality that µN ≤ µSN and c represent 

the cut point on the decision variable axis such that a case 

is classified as ‘negative’ if x≤ C and positive if x > C,  

then the values for the FPF is given as follows where 

Φ(. ) denotes the cumulative standard normal distribution  

(Metz & Pan, 1999):

 

Calculation of the AUC and variance of the AUC

According to Metz et al. (1998), when the mean and 

standard deviation of the signal present (with background 

noise) cases, and the mean and the standard deviation 

of the noise only cases are considered in their usual 

notation, the values of a and b are given as follows in 

equations (4) and (5). 

 

 It is possible to obtain the AUC of a ROC curve using 

the following formula where Φ(. ) denotes the cumulative 

standard normal distribution as shown in equation (6).

 In order to calculate the variance of the AUC, the 

delta method, which is described in detail in Casella 

and Berger (2002) is made use of, giving the formula as 

follows for the variance.

                  

Proposed test statistic

The test developed by Meyen and Sooriyarachchi 

(2014) has been developed using various results from 

multivariate statistics along with the properties of ROC 

curves. Since the test is derived for the asymptotic 

distribution of the statistic it is of interest to study the 

small sample behaviour of the test statistic as well. In the 

following sections is the derivation of the test developed 

by Meyen and Sooriyarachchi (2014).

Let,

   
which is a p×1 vector, where AUC

i

 

denotes the AUC of the ith ROC curve.

...(5)

...(4)

...(3)

...(6)

...(7)
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Let  be an estimate of  , let µ be the expected 

value of  and let  be the associated variance-

covariance matrix of . Then as  is the 

Dorfman and Alf (1969) maximum likelihood estimate 

(MLE) of  and as MLE’s are asymptotically normal, 

for large samples  Furthermore, if the 

estimate  of  of a ROC curve is made up of the 

sum of n independent quantities where n is a function of 

n
1
 (the number of positive responses) and n

2
 (the number 

of negative responses) according to Vergara et al. (2008). 

Then  is made up of n1 n2 quantities of which 

n = min (n
1
, n

2
) are independent. Thus n is the number 

associated with .  is the (Dorfman & Alf, 1969) 

MLE of the covariance matrix     of  . According 

to Mardia et al. (1979), the sampling distribution of the 

MLE of the matrix is asymptotically 

 as  has an asymptotic multivariate normal 

distribution. Therefore, .

 It is needed to test the null hypothesis H
0
 that all   

 s are same on average versus the alternative 

hypothesis H
1
 that all the  s are not the same 

on average. 

 i.e.  constant vector versus 

It is possible to estimate  as the simple average  

of  (i.e. the simple average of the individual s.) 

Therefore  can be estimated by  (under H
0
 ) where, 

 
 As  is not known it has to be estimated. From 

(Hotelling, 1947) the general form of the Hotelling’s  

statistic is as follows,

 The dimensionality p needs to be reduced by 1 for 

estimating . Therefore taking instead of   

for large samples gives the following,

                                                   

             

 Here p is the number of AUCs and n is the number of 

independent quantities used to calculate the AUCs. For 

the case of large samples (large n
1
 and n

1
 ) n will be large.  

The test statistic  can be used to test H
0
.

Confidence intervals for the beta distribution are fit under 

MATLAB as described in Hahn and Shapiro (1994).

Application of the likelihood ratio and score tests for 

the test statistic

Since the test statistic is supposed to asymptotically 

follow a beta distribution it is necessary to check the 

hypothesis that it comes from a beta distribution with 

given parameters, which can be calculated for the ROC 

curves generated. Apart from this confidence intervals 

also need to be constructed for the maximum likelihood 

estimates (MLEs) fitted to the data under the hypothesis 

that they are beta distributed.

  

 Consider the standard form of the   

distribution with shape parameters  

and support on . The beta distribution includes 

some well-known distributions as special cases, such 

as the uniform distribution  and the 

power distribution . The total log-

likelihood function for p,q based on a random sample 

y1, ..., yn of size n can be written as given in equation 

(10) (Maia et al., 2003).

 

                

where ɡ1 and ɡ2 are the geometric means of the y
,
i  s 

and  s respectively, and  is the gamma 

function. The log-likelihood function given above is 

regular (Maia et al., 2003) with respect to all p and q 

derivatives up to the fourth order. The score function is

                                             

where ψ(. ) is the digamma function, and the observed 

Fisher’s information matrix for p and q is given by 

 

 Where ψ �(x) = dψ(x)/dx is the trigamma function.

The maximum likelihood estimates (MLEs)  of  p 

and q have no closed-form expressions and can only be 

obtained from an iterative process.

...(8)

...(11)

...(12)

...(9)

...(10) ...(13)
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Consider testing the null hypothesis H
0
:p = p(0), q = q(0) 

where p(0) and q(0) are specified values tested against the 

alternative hypothesis H
1
: H

0 
is false

 
. Then according to 

Maia et al. (2003) the likelihood ratio (LR) statistic for 

testing H
0
 versus H

1
 is given by,

          

 In large sample T1  has under the null hypothesis 

approximately a chi squared distribution with two 

degrees of freedom.

 For testing H
0
 the score statistic is particularly 

attractive since it does not involve estimation under the 

alternative hypothesis H
1
, but only requires the evaluation 

of the score function and the observed information matrix 

under the null hypothesis. The score statistic for the null 

hypothesis is given by,

     

                                                      

where all quantities with tilde represent estimates 

evaluated at the null hypothesis. The asymptotic 

chi-squared distribution of the LR and score statistics 

is used to test statistical hypotheses since their exact 

distributions are usually unknown.

RESULTS

Analysis of 3 category rating-method data for 20 

individuals

When the AUCs of the generated ROC curves were 

applied to the test statistic in this case it was of interest to 

note that some of the values obtained were lying outside 

the uppermost boundary of the beta distribution [ i.e. the 

value 1 of the interval (0,1)]. This simply means that the 

large sample theory is not applicable with this sample size. 

Thus no confidence intervals are calculated for this case. 

 Table 1 gives the results of the analysis of 3 category 

rating-method data for 20 individuals.

Analysis of 3 category rating-method data for 50 

individuals

When the AUCs of the generated ROC curves were 

applied to the test statistic, it was noted in the case when 

the AUCs were distributed with means 0.75 standard 

deviations apart and standard deviations in the ratio 1:1, 

that it was not possible to apply the likelihood ratio and 

score tests, as the geometric mean of the AUCs could 

not be numerically represented. Apart from the particular 

instance it was possible to apply the likelihood ratio test 

and score tests to the other cases. However in all the other 

cases the values of the statistics obtained were high, which 

led to the rejection of the hypothesis that the AUCs came 

from beta distributions with the given parameters.

 Means 0.5 standard  Means 0.75 standard  Means 1 standard

 deviations apart deviations apart deviation apart

 Standard Standard Standard Standard Standard Standard

 deviations deviations deviations deviations deviations deviations

 in the  in the  in the  in the  in the  in the

 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5

Observed 0.2019 0.172 0.2422 0.2254 0.2496 0.2775

MLE of q/2 

Observed 1.1374  0.9705 1.4244 1.2436 1.621 1.6658

MLE of 

(n _ q _ 1)/2

Expected  0.5 0.5 0.5 0.5 0.5 0.5

value of q/2 

Expected value 4 4 4 4 4 4

of (n _ q _ 1)/2 

Table 1:  Analysis of 3 category rating-method data for 20 individuals
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Table 2 gives the results of the analysis of 3 category 

rating-method data for 50 individuals.

Analysis of 3 category rating-method data for 100 

individuals

In this instance it was possible to compute the score 

statistics along with the likelihood ratio statistics.

 Table 3 gives the results of the analysis of 3 category 

rating-method data for 100 individuals.

Analysis of 3 category rating-method data for 120 

individuals

Table 4 gives the results of the analysis of 3 category 

rating-method data for 120 individuals. It should be 

noted in the case when the AUCs were distributed with 

means 0.75 standard deviations apart and standard 

deviations in the ratio 1:1.5 that it was not possible 

to apply the likelihood ratio and score tests as the 

 Means 0.5 standard Means 0.75 standard Means 1 standard

 deviations apart deviations apart deviation apart 

 Standard Standard Standard Standard Standard Standard

 deviations deviations deviations deviations deviations deviations

 in the  in the  in the   in the  in the  in the

 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5

Observed 0.4782 0.4544 0.3806 0.4655 0.3932 0.4481

MLE of q/2 

Observed 9.9200 9.3589 8.1448 9.8104 6.2532 9.0766

MLE of 

(n _ q _ 1)/2

Expected 0.5 0.5 0.5 0.5 0.5 0.5

value of q/2

Expected 11.5 11.5 11.5 11.5 11.5 11.5

value of

(n _ q _ 1)/2

95 % confidence [0.4461, [0.4230, [0.3751, [0.4344, [0.3661, [0.4188,

interval for q/2 0.5125] 0.4881] 0.3861] 0.4988] 0.4223] 0.4795]

95 % confidence [9.1743, [8.6268, [7.5215, [9.1195, [6.0597, [8.5619,

interval for 10.7264] 10.1532] 8.8198] 10.5536] 6.4528] 9.6223]

(n _ q _ 1)/2

Value of LR 21.3131 29.0134 
_
 20.6766 183.4875 35.4873

statistic

Value of 26.3091 11.4393 
_
 12.8730 38.2452 11.1723

Score statistic

Value of   5.99 5.99 
_
 5.99 5.99 5.99

x 2
2
 
,5%

Table 2:  Analysis of 3 category rating-method data for 50 individuals

geometric mean of the AUCs could not be numerically 

represented.

Analysis of 3 category rating-method data for 140 

individuals

Table 5 gives the results of the analysis of 3 category 
rating-method data for 140 individuals. It is of interest to 
note that the value of the score statistic is negative when 
the AUCs were distributed with means 0.5 standard 
deviations apart and standard deviations in the ratio 

1:1.5. According to Morgan et al. (2007) this is possible 

because, when the observed information matrix is used 

in place of the expected information matrix and if the 
observed information matrix is negative definite this 
could result in negative values for the score statistic.

Analysis of 3 category rating-method data for 250 

individuals

Table 6 gives the results of the analysis of 3 category 
rating-method data for 250 individuals.
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Table 3:  Analysis of 3 category rating-method data for 100 individuals

 Means 0.5 standard Means 0.75 standard Means 1 standard

 deviations apart deviations apart deviation apart 

 Standard Standard Standard Standard Standard Standard

 deviations deviations deviations deviations deviations deviations

 in the  in the  in the   in the  in the  in the

 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5

Observed 0.4878 0.4822 0.4637 0.4882 0.4550 0.4882

MLE of q/2

Observed MLE of 20.8061 21.6107 19.3811 20.9926 17.7614 21.2555

(n _ q _ 1)/2

Expected 0.5 0.5 0.5 0.5 0.5 0.5

value of q/2

Expected value of 24 24 24 24 24 24

(n _ q _ 1)/2

95 % confidence [0.4528, [0.4488, [0.4307, [0.4533, [0.4241, [0.4527,

interval for q/2 0.5255] 0.5181] 0.4993] 0.5259] 0.4882] 0.5265]

95 % confidence interval [18.7433, [19.3171, [17.4650, [19.0169, [16.1388, [19.2218,

for (n _ q _ 1)/2 23.0958] 24.1766] 21.5074] 23.1735] 19.5470] 23.5043]

Value of LR statistic 7.9503 3.4994 14.8469 6.9136 30.8485 5.5090

Value of Score statistic 10.5818 1.1315 3.8170 9.0087 14.9949 6.6172

Value of x 2
2
 
,5% 5.99 5.99 5.99 5.99 5.99 5.99

Table 4:  Analysis of 3 category rating-method data for 120 individuals

 Means 0.5 standard Means 0.75 standard Means 1 standard

 deviations apart deviations apart deviation apart 

 Standard Standard Standard Standard Standard Standard

 deviations deviations deviations deviations deviations deviations

 in the  in the  in the   in the  in the  in the

 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5

Observed 0.5148 0.5015 0.5085 0.4029 0.4667 0.5035

MLE of q/2

Observed MLE of 31.2776 31.2265 30.49242 23.9617 27.2751 30.9002

(n _ q _ 1)/2

Expected 0.5 0.5 0.5 0.5 0.5 0.5

value of q/2

Expected value of 29 29 29 29 29 29

(n _ q _ 1)/2

95 % confidence [0.4528, [0.4488, [0.4307, [0.4533, [0.4241, [0.4527,

interval for q/2 0.5536] 0.5387] 0.5467] 0.4085] 0.4999] 0.5402]

95 % confidence interval [27.8719,  [27.9454,  [27.7289, [21.4851,  [24.5406,  [27.8768,

for (n _ q _ 1)/2 35.0995] 34.8928] 34.4877] 26.7237] 30.3144] 34.2515]

Value of LR statistic 1.7149 2.4962 1.3385 
_
 3.6031 1.6316

Value of Score statistic 0.2106 4.5961 1.0732 
_
 0.7117 2.5911

Value of x 2
2
 
,5%  5.99 5.99 5.99 

_
 5.99 5.99
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Table 5:  Analysis of 3 category rating-method data for 140 individuals

 Means 0.5 standard Means 0.75 standard Means 1 standard

 deviations apart deviations apart deviation apart 

 Standard Standard Standard Standard Standard Standard

 deviations deviations deviations deviations deviations deviations

 in the  in the  in the   in the  in the  in the

 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5

Observed 0.5096 0.4866 0.4966 0.5215 0.5081 0.5133

MLE of q/2

Observed MLE of 34.1440 31.9175 34.458 33.8716 35.9667 33.4923

(n _ q _ 1)/2

Expected 0.5 0.5 0.5 0.5 0.5 0.5

value of q/2

Expected value of 34 34 34 34 34 34

(n _ q _ 1)/2

95 % confidence [0.4757, [0.4528, [0.4757, [0.4852, [0.4731, [0.4759,

interval for q/2 0.5459] 0.5228]   0.5459] 0.5605]  0.5457] 0.5536]

95 % confidence interval [30.4907,  [29.3911, [30.4907, [30.4378, [32.3627, [29.8931,

for (n _ q _ 1)/2 38.2351] 35.8820] 38.2351] 37.6928] 39.9722] 37.5250]

Value of LR statistic 0.3745 1.2295 0.3745 2.3346 1.002 1.3639

Value of Score statistic 0.6323 -0.1499 0.6323 4.9657 0.6751 3.3484

Value of x 2
2
 
,5% 5.99 5.99 5.99 5.99 5.99 5.99

 Means 0.5 standard Means 0.75 standard Means 1 standard

 deviations apart deviations apart deviation apart 

 Standard Standard Standard Standard Standard Standard

 deviations deviations deviations deviations deviations deviations

 in the  in the  in the   in the  in the  in the

 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5

Observed 0.4917 0.4959 0.5087 0.4940 0.5070 0.5008

MLE of q/2

Observed MLE of 61.1898 59.7002 61.4909 59.4911 58.0148 60.3211

(n _ q _ 1)/2

Expected 0.5 0.5 0.5 0.5 0.5 0.5

value of q/2

Expected value of 61.5 61.5 61.5 61.5 61.5 61.5

(n _ q _ 1)/2

95 % confidence [0.4528, [0.4488, [0.4307, [0.4533, [0.4241, [0.4527,

interval for q/2 0.5291] 0.5352] 0.5481] 0.5298] 0.5444] 0.5384]

95 % confidence interval [54.6205, [53.8132,  [55.2284,  [53.8145,  [51.9969, [54.4276,

for (n _ q _ 1)/2 68.5491] 66.2310] 68.4635] 65.7664] 64.7291] 66.8527]

Value of LR statistic 0.2712 0.2866 0.3702 0.3368 2.8390 0.2274

Value of Score statistic 0.4157 0.2154 0.7478 0.0838 6.9990 0.5065

Value of x 2
2
 
,5%  5.99 5.99 5.99 5.99 5.99 5.99

Table 6:  Analysis of 3 category rating-method data for 250 individuals
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Analysis of 3 category rating-method data for 500 

individuals

Table 7 gives the results of the analysis of 3 category rating-

method data for 500 individuals. It is of interest to note that 

 Means 0.5 standard Means 0.75 standard Means 1 standard

 deviations apart deviations apart deviation apart 

 Standard Standard Standard Standard Standard Standard

 deviations deviations deviations deviations deviations deviations

 in the  in the  in the   in the  in the  in the

 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5 ratio 1:1 ratio 1:1.5

Observed 0.5238 0.4902 0.4213 0.4947 0.4688 0.5149

MLE of q/2

Observed MLE of 130.7749 122.9364 103.4261 121.7594 119.94 127.5198

(n _ q _ 1)/2

Expected 0.5 0.5 0.5 0.5 0.5 0.5

value of q/2

Expected value of 124 124 124 124 124 124

(n _ q _ 1)/2

95 % confidence [0.4860,  [0.4552,  [0.4157,  [0.4597,  [0.4378,  [0.4801,

interval for q/2 0.5646] 0.5278] 0.4269] 0.5324] 0.5019] 0.5522]

95 % confidence [116.496, [109.4625,  [92.974,  [109.4903,  [107.1281,  [114.0848,

interval for  146.804] 138.0687] 115.0531] 135.4034] 134.2842] 142.537]

(n _ q _ 1)/2

Value of LR 1.5836 0.3499 
_
 0.1121 3.6068 0.6263

statistic

Value of -0.4029 0.4459 
_
 -0.0612 3.9375 0.0571

Score statistic

Value of x 2
2
 
,5%  5.99 5.99 

_
 5.99 5.99 5.99

Table 7:  Analysis of 3 category rating-method data for 500 individuals

the value of the score statistic is negative when the AUCs 

were distributed with means 0.5 standard deviations apart 

and standard deviations in the ratio 1:1, and when the AUCs 

were distributed with means 0.75 standard deviations apart 

and standard deviations in the ratio 1:1.5.

DISCUSSION AND CONCLUSION

In the case of the smallest sample size (i.e. 20) it could 

be seen that it was not appropriate to use the LR and 

score statistics as the values of the geometric mean of 

the AUC vectors, which were used in computing these 

statistics, could not be numerically represented in Matlab 

as they were very large. This illustrates that large sample 

theory does not hold for sample size 20. Therefore no 

confidence intervals were constructed for this case. The 

observed and expected parameters for this case were very 

different from each other indicating that the said theory 

regarding the beta distribution of the test statistic does 

not hold in the case of sample size 20.

For cases simulated under the sample size of 50 it could 

be seen that both the likelihood ratio and score test 

resulted in rejecting the assertion that the test statistic 

came from a beta distribution with specified parameters, 

apart from a single case in which both tests were not 

applicable. However in that case the confidence interval 

for the parameters did not include the expected values.

 When considering the cases simulated under the 

sample size of 100 it could be seen that when the means 

differed by 0.5 and the standard deviation between the 

signal absent and signal present group were taken to be 

1:1.5, the likelihood ratio and score tests indicated that 

the test statistic indeed came from a beta distribution 
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with specified parameters, while the expected values for 

the parameter lay within the confidence interval thereby 

confirming this assertion. However, in the other cases it 

could be seen from the results that the assertion that the 

test statistic came from a beta distribution with specified 

parameters was rejected. It could be seen however that 

when the spread between the two Gaussian populations 

(i.e. signal present and signal absent) was higher (i.e. the 

standard deviations were in the ratio 1:1.5) the value of 

the likelihood ratio and score statistics were closer to 

that of the 5 % significance level of the  distribution, 

which is indicative of the fact that the test statistic 

performs better when there is a greater spread between 

the two populations.

 For the cases simulated under the sample size of 120 it 

could be seen that apart from a single case, the score and 

likelihood ratio tests could be calculated for all the other 

cases and they lead to the acceptance of the assertion 

that the test statistic follows a beta distribution with 

specified parameters. In this case as well it could be seen 

by the values of the likelihood ratio and score statistics 

obtained, that the test statistic appears to perform better 

when there is a greater spread between the two Gaussian 

populations.

 For all cases simulated under the sample size 140 

it could be seen that both the likelihood ratio and score 

test resulted in acceptance of the assertion that the test 

statistic comes from a beta distribution with specified 

parameters. Similar to the case under the sample size of 

100 it could be seen that when the spread between the 

two Gaussian populations were higher, the value of the 

likelihood ratio and score statistics were closer to that of 

the 5 % significance level of the  distribution, which 

serves to strengthen the assertion made towards the end 

in the previous paragraph.

 For all cases simulated under the sample size of 250 

it could be seen the results obtained were similar to the 

case when the sample size of 140 was considered.

 When considering the cases simulated under the 

sample size of 500 it could be seen that apart from a 

single case, the score and likelihood ratio tests could 

be calculated for all the other cases and they lead to the 

acceptance of the assertion that the test statistic follows 

a beta distribution with specified parameters. In this case 

too it could be seen by the values of the likelihood ratio 

and score statistics obtained that the test statistic appears 

to perform better when there is a greater spread between 

the two Gaussian populations.
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APPENDIX

Matlab implementation of the score test for the beta distribution

Given below is the Matlab implementation of the score test for the beta distribution. 

% score function for beta distribution function val = score(n,p,q,logg1,logg2)

 

u = zeros(2,1);

 

u(1,1) = n*(psi(p+q)-psi(p)+logg1);

u(2,1) = n*(psi(p+q)-psi(q)+logg2);

 

K = zeros(2,2);

 

K(1,1) = -n*(psi(1,p+q)-psi(1,p));

K(1,2) = -n*psi(1,p+q);

K(2,1) = -n*psi(1,p+q);

K(1,1) = -n*(psi(1,p+q)-psi(1,q));

 

inverseK = inv(K);
val = transpose(u)*inverseK*u;

end

Matlab implementation of the likelihood ratio test for the beta distribution

Given below is the Matlab implementation of the likelihood ratio test for the beta distribution. 

% Likelihood ratio statistic for beta distributionfunction val = LHR(n,p,q,phat,qhat,logg1,logg2)

val1 = (2*n*(phat -p)*logg1);

val2 =(2*n*(qhat-q)*logg2);

val3 = 2*n*(log(gamma(phat+qhat))+log(gamma(p))+log(gamma(q))-log(gamma(p+q))-log(gamma(phat)) 

-log(gamma(qhat)));

val = val1 + val2 + val3;

end
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