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Many clinical studies such as those in the areas of toxicology, early phase clinical trials and
bioequivalence studies use small samples due to the high cost of experimentation. These
studies test hypotheses based on small samples. These small samples result in low power and
therefore even if the alternative hypotheses may be true the chance of it being rejected is low.
The sample size is determined in an ad-hoc way and no proper scientific approach is used.
Sample size calculations for clinical studies are usually conducted to determine the total
number of patients needed to satisfy a specified power requirement, and their validity is
dependent on pre-trial knowledge of nuisance parameters and distributional and modelling
assumptions. Another short coming is that often hypotheses are tested without checking the
assumptions required by the test. This paper looks at design reviews in the context of small
samples. It examines several design modifications done with asmall internal pilot study. In the
past similar techniques have been applied to large scale studies but it sperformance is yet to be
established in small scale clinical studies thus the contribution of this paper is in justifying the
validity of these techniques for small samples too. The methodology is illustrated on an
uncontrolled observational toxicology study. In this paper simulations will be presented
showing that the design modifications would not influence the type-I error rate and that these
would be successful in preserving the power, and the implementation of the design review
procedure will be described.

© 2010 Elsevier Inc. All rights reserved.

Keywords:
Internal pilot study
Mid-trial design review
Normal error linear model
Sample size reestimation
Testing distributional and
modelling assumptions

1. Introduction

Wittes and Britain [1], Gould [2,3] and Gould and Shih [4]
developed the idea of mid-trial reviews using internal pilot
studies for the purpose of estimating unknown parameters
required to determine sample size. More recently Zucker et al.
[5], Shih [6], Gould [7], Whitehead et al. [8] and Bolland et al.
[9] among others discuss the applicability of these mid-trial
reviews for making other decisions in addition to estimating

unknown parameters. Coffey and Muller [10] use an internal
pilot study for fitting a Normal error linear model and
estimating the variance required to determine the sample
size using the mean square error (MSE) of the model. Friede
and Kieser [11] review past studies on this topic. While all
these authors have considered the performance of design
reviews in large scale clinical trials its validity in small scale
clinical studies is yet to be established [12]. The objective of
this paper is to examine the performance of several design
modifications at the design review, based on a small scale
clinical study in order to determine the validity of these
methods in small studies.

The methods are illustrated on an uncontrolled observa-
tional study of the drug atropine in the treatment of
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bradycardia (slow pulse) in yellow oleander seed poisoned
patients [13,14]. The design modifications applied to this
study are sample size recalculation by estimating nuisance
parameters and testing of pre-trial distributional and mod-
elling assumptions through a mid-trial review. Prior to
completing the review a simulation study is performed to
confirm that the review procedure is successful in preserving
power without inflation of the type-I error rate, and those
simulation results are presented here.

The primary response in the study is the change in heart
rate 5 min after treatment and baseline. Medically, there were
two objectives of equal interest in this study, the first was to
determine whether 0.6 mg of atropine significantly increases
the heart rate at 5 min after treatment from that at baseline.
The second was to determine whether a measure of the
rise in heart rate (W) is related to a measure of the heart rate
at baseline (Z). These two objectives require the calculation
of two sample sizes and selecting the larger of the two to
satisfy both power requirements.

In this paper the sample size formulae required for
satisfying the two objectives of the study are derived. These
sample size formulae involve nuisance parameters for which
values were unknownwhen the trial was set up. For example,
with normally distributed data the variance of the primary
response variable is required. In addition knowledge of the
form of the most suitable model between a measure of the
change in heart rate (W) and a measure of the heart rate at
baseline (Z) together with determination of W and Z is
needed. This means that it is required to identify a suitable
relationship between ameasure of the difference in heart rate
(W) and a measure of baseline heart rate (Z). The form and
the error structure of such amodel are unknown at the design
stage.

2. Materials and methods

2.1. Study description

The yellow oleander tree is found commonly in Sri Lanka
where its seeds have become a popular means of self harm
[13,14]. A common consequence of poisoning is a bradycardic
(slow) pulse [15]. Atropine is the recommended treatment
for oleander-induced bradycardia. It is common practice to
give small doses of Atropine when the heart rate is above
60 bpm with the aim of keeping the heart rate around
80 bpm. Doses as large as 12 mg over 1 h have been used for
treatment in hospitals in Sri Lanka [16]. However, bradycardia
has been effectively treated with 0.6 mg of atropine in
uncontrolled studies and large doses of atropine can result
in confusion and hyperpyrexia [14]. An uncontrolled obser-
vational study was undertaken in a Sri Lankan hospital in the
North Central province to determine the typical heart rate
response to 0.6 mg of atropine. Eligible patients were those
with yellow oleander seed self-poisoning whose heart rate
was below 90 bpm at baseline. Usually, Bradycardia is defined
as a low frequency heart rate below 60 bpm. In our study the
criteria for selection was below 90 bpm because in Yellow
Oleander poisoned patients the heart rate and Bradycardia
status is very variable and could vary among normal, mild,
moderate and severe status within a short period of time. This
is the reason that even patients having heart rate between 60

and 90 bpm are included in this study as a precaution that
their heart rate would not go below 40 bpm [17,18]. Patients
treated at local hospitals prior to the admission to the study
hospital and patients given more than 0.6 mg of atropine
were excluded from this study. Atropine was given intrave-
nously to each patient as part of their routine clinical care.
Patients were then observed for 60 min and information on
the primary response variable, heart rate, was collected 5
times at baseline, 2, 5, 15 and 60 min after the treatment was
given. Medically it is known that the peak heart rate after
atropine injection in anaesthetized patients undergoing
surgery occurs at 5 min [19]. In Yellow Oleander poisoned
patients some work on this has been done by Eddleston
(2007) [20] and he has found the same result. Thus the
medical interest lay only in the time to maximum heart rate
and no Statistical adjustments were made for repeated
measures. This is further justified by the fact that, our
atropine study which was continued for 66 patients with
Yellow Oleander poisoning found that on average the peak
heart rate occurs at 5 min. Thus of these time points heart rate
at 5 min was selected to be compared to heart rate at baseline
because it is known that the maximum heart rate after
atropine administration on average occurs at 5 min. The
primary outcome variable, heart rate, is a continuous
measure. An important prognostic factor was thought to be
the baseline heart rate. Ethics approval for observational
studies of poisoned patients was obtained from Oxford
Tropical Medicine Research Ethics Committee and the
Colombo Faculty of Medicine Ethics Committee. Patient
consent was not obtained for this observational study of
response to usual clinical care, as no interventions were given
as part of the trial.

2.2. Sample size calculation

2.2.1. Setting up of notation
A standard form of power requirement for the first

objective specifies that a significant increase in heart rate at
5 min from that at baseline should be found with probability
(1−β1) if a true increase equal to θR is present. By ‘finding a
significant increase’ means obtaining a significant difference
at the 100α percent level against the upper one sided
alternative. The probability (1−β1) is referred to as the
power of the test for satisfying the first objective.

The value θR represents a clinically relevant increase in
heart rate and is a particular value of some measure θ of
change in heart rate. Sample size formulae and tables for
controlled trials aiming to examine the familiar hypothesis of
efficacy, for a variety of types of end point are given by
Machin et al [21].

A power requirement for the second objective specifies
that a significant correlation between W and Z should be
detected with power (1−β2) if a true value of correlation R
(b0) is present. This corresponds to a one sided alternative.
The notation can be interpreted similarly as for the first
objective. As there are two tests here the Bonferroni
correction is used for multiple comparisons and therefore a
more stringent significance level of α is used for both tests so
as to keep the overall significance level at 2α=5%.

As there were two questions of interest, two sample sizes
had to be calculated. The first sample size was based on the
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requirement to detect an increase of 10 bpm in mean heart
rate between 5 min after treatment and baseline with 80%
power at the 2.5% significance level. The second sample size
was based on the requirement to detect a correlation of−0.5
between ameasure of the rise in heart rate at 5 min (W) and a
measure of the baseline heart rate (Z) with 80% power at the
2.5% significance level. The significance level was taken to be
α=2.5% so that the overall significance level, 2α=5%. As the
relationship of interest between W and Z was a linear one,
correlationwas used in preference to regression in calculating
the second sample size. Both sample sizes calculated are
approximate and not exact.

2.2.2. Calculation of the first sample size
As mentioned previously W is the measure of change in

heart rate which is of interest. Let μw be its true mean. Then
the hypothesis to be tested is that of no change in the true
mean heart rate at 5 min and baseline (H01:μw=0) versus the
alternative that there is an increase in the true mean heart
rates at 5 min and baseline (H11:μw=θRN0). Here θR is the
difference in mean heart rate between 5 min and baseline
which requires to be detected as significant if a difference
exists. It is assumed that W follows an approximate normal
distribution. This assumption will be tested at the review
stage. Using the sample size formula of Pocock [22] the total
number of patients required for satisfying the power
requirement (1−β1) for testing H01 is n1, where,

n1 =
Φ−1 αð Þ + Φ−1 β1ð Þ
h i2

σ2

θ2R
ð1Þ

Here σ2 denotes the variance of W, Φ−1(u) is the uth

percentile of the standard normal distribution, α corresponds
to the significance level and (1−β1) corresponds to the
power.

In order to calculate this, the form of a suitable Gaussian
error linear model between W and Z and the mean square
error (MSE) is needed to estimate σ2 but is unknown at the
planning stage. Since there is only one treatment group in this
study blinding is not an issue. However it might be if there
was more than one treatment. In this case the EM estimator
(based on the EM algorithm) [2,4] is a possible alternative for
preserving the blindness, though in recent times its use has
been criticized for small interim samples as being biased and
inefficient, compared to the maximum likelihood estimator
[23]. A modified EM estimator [23] has been found to bemore
effective for blind estimation in small samples, though more
simulation studies are needed to confirm its performance.

2.2.3. Calculation of the second sample size
Suppose, the population correlation coefficient between

W and Z is denoted by R and its estimate based on the sample
data is denoted by r. Then the hypothesis to be tested is that
there is no correlation between W and Z (H02:R=0) versus
the alternative that there exists a negative relationship
between W and Z (H12:R=R'b0). The general consensus in
medical circles is that small baseline values of heart rate are
associated with large changes and large baseline values are
associated with smaller changes. Thus a negative relationship
is anticipated between W and Z. Here R' is the value of

correlation required to be detected as significant if such a
correlation exists.

Using Fisher's Z transformation [24] the test statistic

Z = 1
2 log

1 + r
1−r

� �
is such that Z follows a normal distribution

given by

ZeN 1
2
log

1 + R
1−R

� �
;

1
n−3

� �
ð2Þ

where n is the sample size required.
Using the power approach of Pocock [22] and this test

statistic, the second sample size formula is given by,

n2 =
Φ−1 αð Þ + Φ−1 β2ð Þ
h i2

1
2 log

1 + R′

1−R′

 !" #2 + 3 ð3Þ

For values of α=2.5%, 1−β2=80%, R'=−0.5 the second
sample size n2 results in 29 observations.

2.3. The plan for the internal pilot study

2.3.1. The plan
The method of Wittes and Brittain [1] was used to do an

internal pilot study at n2 (29) observations, to identify a suitable
model and to obtain theMSEof thismodel. Here n2 is the sample
size required to satisfy power requirement II. In obtaining a
suitable model, the following strategy was used. Two medically
plausible variables were considered for W that is a measure of
the change in heart rate at 5 min and baseline. These two
measures were the absolute difference of the two measures
(diff) and the logarithm of the rate of the two measures (lrate).
Similarly two measures of the baseline heart rate, Z, were also
used. This being the direct baseline heart rate (bhr) and its
reciprocal (rbh). Four correlation coefficientswere estimated for
this 2×2matrix of variables, using the first 29 observations. The
preferred pair of variables was the simplest that is diff and bhr.
However, the correlation of themost significant pair of variables
was compared with the correlation of the preferred pair of
variables using a rule of thumb. This rule of thumbwas touse the
pair of variables with the highest correlation coefficient if its
correlation coefficient was at least greater than 0.2 on an
absolute scale from that of the preferred pair of variables. Based
on this either thepreferredmodel or if amore appropriatemodel
exists, this new model was selected. In the past (before 2000)
Statistics used in the analysis had to be those used in the
Statistical design.Howeverwith the advent of Adaptivemethods
[25], there is no longer this restriction.

The method of Coffey and Muller [10] was used to
calculate the first sample size,

n1 =
MSE Φ−1 αð Þ + Φ−1 β1ð Þ

� �
θ2R

: ð4Þ

The new sample size actually used in the trial, n, was
decided using the rule

n = n2 if n2≥n1
n1 if n1≥n2

:

�
ð5Þ
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2.3.2. Testing hypothesis at the end of the study

2.3.2.1. The first hypothesis. Suppose the Gaussian error linear
model selected is Wi=β0+β1 Zi+ξi where Wi is a measure
of the rise in heart rate and Zi is a measure of the baseline
heart rate of the ith patient. The notations β0, β1, and ξi are
the familiar notations used in linear regression [26]. The test
statistic t0 for testing the null hypothesis H01 is such that
t0 =

Pwffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE1 = n

p , where w
__

is the sample mean of W based on

the total observations, MSE1 is the mean square error of the
model between W and Z based on only the first stage
observations and n is the new sample size. The test statistic t0
follows a student's t distribution with n2-2 degrees of
freedom. This statistic is used to test the first hypothesis. As
the model selection is done at the interim stage taking the
MSE of the total observations for calculating the test statistic
inflates the type I error. The method of Stein [27], used here
overcomes this problem by using the MSE based only on the
first stage observations.

2.3.2.2. The second hypothesis. Fisher's Z [24] statistic is only
approximately normal. The normality improves for large n. In
order to make the statistic more normal, Fisher [24]
introduced a bias correction. The bias corrected test statistic
z″= z′− r

2 n−1ð Þ which follows an approximate normal distri-

bution given by z″eN tanh−1R; 1
n−3

� �
is used as the test statistic

here.

3. Results

3.1. First implementation of plan

The results from analyzing the first 29 observations are
presented in this section. The first objective here is to identify
a suitable Gaussian error linear model between a measure of
the rise in heart rate (W) and a measure of the baseline heart
rate (Z). Several such measures are considered and correla-
tions of such measures are given in Table 1.

The correlations show that the strongest linear relation-
ship is between the log rate of heart beat at 5 min and
baseline (lrate) and the reciprocal of heart rate (rbh).
However, this is not very different from that between the
absolute difference of heart rate at 5 min and baseline (diff)

and the baseline heart rate (bhr). ThusW is taken as diff and Z
is taken as bhr. Fig. 1 illustrates this relationship. This figure
shows a scatter plot of diff and bhr with its corresponding
Gaussian error linear model incorporated. Fig. 1 indicates that
there is an approximate linear negative relationship between
diff and bhr.

Fig. 2 shows a normal probability plot of the errors with
95% confidence intervals. Anderson Darling test [28] and
confidence intervals show that assumption of normality is
approximately satisfied. The F test in the Analysis of Variance
(ANOVA) is fairly robust to departures from normality. Thus
unless there is extreme departures from normality, in which
case other transformations should be used, there is no cause
for alarm.

Fig. 3 shows a plot of the residuals versus fitted values.
There is no noticeable pattern and the residuals are
distributed in a band around zero, within 95% confidence
limits ±2. (If the standardized residuals are N(0,1) then the
limits will be Φ-1(0.975)≅2 where Φ-1 is the inverse
cumulative distribution function of the N(0,1)).

Table 1
Correlations of several measures of rise in heart rate and baseline heart
rate for the first 29 observations. The values within brackets correspond to
p-values associated with the correlation.

Measure of rise in heart rate Measure of baseline heart rate

Bhr rbh

diff -0.461 0.468
(0.0118) (0.0105)

Lrate -0.572 0.584
(0.0012) (0.009)

Where,
diff is the absolute difference in the heart rate between 5 min and baseline.
lrate is the log of the ratio of heart rate at 5 min and heart rate at baseline.
bhr is the baseline heart rate.
rbh is the reciprocal of bhr.

Fig. 1. Regression plot of difference in heart rate at 5 min after treatment and
at baseline (diff) and baseline heart rate (bhr) with its corresponding
Gaussian error linear model incorporated based on the first 29 observations.

Fig. 2. Normal probability plot of the errors of the Gaussian error linear
model between the difference in heart rate at 5 min after treatment and at
baseline (diff) and baseline heart rate (bhr) fitted to the first 29 observations.

582 M.R. Sooriyarachchi et al. / Contemporary Clinical Trials 31 (2010) 579–586
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The Analysis of variance (ANOVA) for this chosenmodel is
given in Table 2.

Table 2 shows that there is a significant linear relationship
between difference in heart rate and basal heart rate. TheMSE
of this model is 440.2. This will be used as an estimate of σ2

for estimating the first sample size, n1.

3.2. Simulation study

3.2.1. Parameters used
Some practically plausible values were taken for the

parameters required for the simulation study. A mean heart
rate at baseline (μ1) of 70 bpm was used. The time of interim
inspection was decided to be at 29 patients. Five values of
reference improvement θR=5,7.5,10,20,30 were examined. For
theMeanof baselineheart rate (Z), varianceof baselineheart rate
(Z) and variance of errors (variance of diff (W)) values based on
thedata collected, that is on the29observationswereused. These
values are 70.103, 122.88 and 440.22 respectively. The reference
correlation coefficient betweenW and Z (R')was taken to be -0.5.

The properties of the mid-trial review were examined
over four scenarios. These four scenarios represent the
following four hypotheses:

Null hypothesis H01, Null hypothesis H02 (that is taking
θ=0 and R=0)
Null hypothesis H01, Alternative hypothesis H12 (that is
taking θ=0 and R=R’b0)
Alternative hypothesis H11, Null hypothesis H02 (that is
taking θ=θRN0 and R=0)
Alternative hypothesis H11, Alternative hypothesis H12

(that is taking θ=θRN0 and R=R’b0).

A 10,000 simulations of the model diff=β0+β1(bhr)+ξi
were carried out for each of the four scenarios up to the
interim stage. In the simulated model β0 is the intercept, β1 is
the slope and ξ is the error term.

At the interim stage from the model fitted alternative

values for W and Z such that W = ln
diff + bhr

bhr

� �
= lrate

and Z =
1
bhr

= rbh were derived and the 2×2 correlation
matrix of the values of W and Z determined. The value of W
was taken to be diff and Z taken to be bhr if the correlation
coefficient between diff and bhr was not less than 0.2 (on the
absolute scale) than the correlation coefficient between lrate
and rbh. OtherwiseWwas taken to be lrate and Zwas taken to
be rbh. Thus themodel could be switched at the interim stage.
The other two correlations in the correlation matrix were not
considered in the simulations as it would have complicated
matters. However this procedure could be generalized for all
correlations, the principle being the same. After themodelwas
selected the remaining data was simulated under the selected
model and the hypotheses tests conducted. Both tests were
considered to be one sided. Here α was taken to be 2.5% for
both tests and 1−β was taken to be 80% for both tests.

3.2.2. Results of the simulation study
Table 3 gives the proportion of rejections of the two null

hypotheses and the number of times out of 10,000 that the
model was changed, for the four scenarios for the different
parameter combinations when amid-trial reviewwas used in
the simulation study.

Table 4 gives the average sample size for the four scenarios
for the different parameter combinations when a mid-trial
review was used in the simulation study.

3.2.3. Summary of the simulation study
The 95% probability interval for the significance level

based on a sample of 10,000 and estimate of 0.025 is (0.022,
0.028). The results in Table 3 show that over all combinations
of θR examined, the observed significance level is within this
interval for both tests and thus the review does not materially
affect the type I error rate. The 95% probability interval for
power based on an estimate of 0.80 is (0.792, 0.808). For large
θR, that is when n2 is greater than n1 the power for the second
test is well maintained but as expected the first test is over-
powered. Similarly when θR is small, that is when n1 is greater
than n2 power for the first test is well maintained but the
second test is over-powered. Use of the review procedure has
been successful in achieving the required power for both
tests. The results in table 3 also show that changing themodel
at interim stage has not affected the type I error materially.

The results in Table 4 show that when θR is small (n1 is
greater than n2) then the sample sizes are quite large and
varies between the scenarios as the sample size will then
depend on n1 which in turn depends on MSE which is
variable. On the other hand when θR is large n2 is greater than
n1 and this is fixed.

The model selection procedure has not affected the error
rates. This is because Stein's procedure [22] has been used in
the calculation of the t-test statistic. Further simulations (not

Fig. 3. Plot of the residuals versus fitted values of the Gaussian error linear
model between the difference in heart rate at 5 min after treatment and at
baseline (diff) and baseline heart rate (bhr) fitted to the first 29 observations.

Table 2
ANOVA for the model between difference in heart rate at 5 min after
treatment and at baseline (diff) and baseline heart rate (bhr) fitted to the
first 29 observations.

Source of
variation

Degrees of
Freedom

Sum of
squares

Mean sum
of squares

F-value p-value

Due to
Regression

1 3212.3 3212.3 7.3 0.012

Due to
Residual Error

27 11,885.9 440.2

Total Variation 28 15,098.1
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reported here) show that the usual t-test statistic inflates the
type I error.

3.3. Second implementation of plan

3.3.1. Recalculation of sample size 1 (n1)

From Eq. (4), n1 is determined by
MSE Φ−1 αð Þ + Φ−1 β1ð Þ� 	2

θ2R
.

A value of 2.5% for α implies thatΦ-1(α) is 1.96 and a value of
80% for 1−β1 implies that Φ-1(β1) is 0.8416. For the first 29
observations the model between W and Z gives an MSE of
440.217. The reference improvement of interest θR is 10.0.
Substituting these values in Eq. (4) gives n1=35. As n1 is
larger than n2 an additional 6 (35–29) observations are taken.

Fig. 4 gives a scatter plot of the fitted heart rate at 5 min
versus the index of the patient under the model incorporated.

Fig. 4 shows that all of the 35 patients have a fitted heart
rate in excess of 80 bpm at 5 min.

An ANOVA table similar to Table 2 was obtained for the

Gaussian error linear model between diff and bhr fitted to the
35 observation . A normal probability plot similar to Fig. 2 and
a residual versus fitted value plot similar to Fig. 3 were also
plotted for the case of 35 observations. These show that the
assumptions of the Gaussian error linear model are well
satisfied. This table and figures are not given in the paper due
to space limitations.

Based on the total sample of 35 observations, the
correlation between diff and bhr was −0.464 (p-
value=0.0019) and the sample mean of diff (w

__
) was

32.5148 and the mean square error of the first model
corresponding to 29 observations was 440.217.

3.3.2. Hypothesis testing
Testing Hypothesis H01:

t0 =
32:5148ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
440:217= 35

p = 9:16815 p−value b 0:001ð Þ: ð6Þ

As the p-value is less than 0.001 there is strong evidence to
reject H01 and conclude that 0.6 mg of Atropine successfully
increases the heart rate. At the mean pulse rate the estimate
of the mean heart rate at 5 min is 102.51 bpm. (32.51+70).

Testing Hypothesis 2:

z′ =
1
2
log

1−0:464
1 + 0:464

� �
+

0:464
2 × 34

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35−3ð Þp

= −2:804 p−value = 0:0025ð Þ:
ð7Þ

As the p-value is verymuch less than 0.025 this hypothesis
is also rejected. The estimated correlation between diff and
bhr is −0.464. This indicates that the difference of heart rate
at 5 min and baseline reduces with baseline heart rate.

4. Discussion

4.1. Main conclusions

The methods of Wittes and Brittain [1] and Coffey and
Muller [10] were used for utilising an internal pilot study for
testing hypotheses pertaining to a Gaussian error linear
model for a clinical toxicology study. Themethod of Stein [27]
was used in testing the first hypothesis. This adjusts the type I
error rate of the first test for selection between models at the
interim stage.

At the interim stage it was found that a model which is
very suitable for relating the change in heart rate with basal

Table 3
Proportion of rejections of the null hypothesis under various scenarios when amid-trial reviewwas used in the simulation study. This table also shows the number
of times out of 10,000 that the model W=lrate and Z=rbh was used instead of W=diff and Z=bhr.

θR Scenario

1 2 3 4

H01 H02 No: of times
(out of 10000)
model change

H01 H12 No: of times
(out 10000)
model change

H11 H02 No: of times
(out of 10000)
model change

H11 H12 No: of times
(out of 10000)
model change

5 0.026 0.026 135 0.025 1 0 0.804 0.025 59 0.798 1 0
7.5 0.024 0.026 150 0.025 0.992 0 0.813 0.025 45 0.798 0.991 0
10 0.025 0.024 129 0.028 0.921 2 0.811 0.025 34 0.819 0.923 3
20 0.024 0.025 116 0.023 0.829 1 0.999 0.023 489 0.999 0.831 55
30 0.023 0.024 146 0.023 0.833 0 1 0.021 2456 1 0.819 442

Table 4
Average new sample size under various scenarios when a mid-trial review
was used in the simulation study.

θR Scenario

1 2 3 4

5.0 153 150 152 149
7.5 69 67 67 67
10 40 38 39 39
20 29 29 29 29
30 29 29 29 29

Fig. 4. Scatter plot of fitted heart rate at 5 min Vs. Index for 35 observations.
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heart rate is the Gaussian error linear model between diff and
bhr. The MSE of this model was used to calculate the final
sample size.

The first hypothesis test indicates that 0.6 mg of Atropine
significantly increases the mean heart rate at 5 min after
treatment. At the mean pulse rate the estimated mean heart
rate at 5 min was 102.51 bpm and the mean increase in heart
rate at 5 min and baseline was 32.51. Themean baseline heart
rate in this population was considered to be 70 bpm in these
calculations. This study suggests that a single 0.6 mg dose of
IV atropine is sufficient to treat yellow oleander-induced
bradycardia. The second hypothesis test shows that the
difference of heart rate at 5 min and baseline reduces with
baseline heart rate. This study found that the baseline heart
rate is an important variable determining the change in heart
rate between, 5 min after injection of Atropine and baseline.
This is why the model includes a measure of the baseline
heart rate (Z). By including this variable (Z) in the model we
adjust for baseline differences. Simulation studies based on
this problem show that the type I error rate and power are
well maintained within acceptable limits.

4.2. Wider applicability of methods developed

While these adaptations are instrumental in achieving the
required power, these do notmaterially affect the significance
level.

In practice in many studies there is a lack of knowledge of
nuisance parameters and distributional and modelling
assumptions. These problems could be overcome by using
an internal pilot study to conduct a review for gaining
knowledge about these unknown parameters and assump-
tions. It has been found [1,2,4,10] that in large scale clinical
trials while these adaptations are instrumental in achieving
the required power, these do not materially affect the
significance level, but the performance of these methods
had yet to be established for small scale clinical studies.

In this paper the methods explained have been applied to
a small uncontrolled observational study and illustrated that
the methods examined are valid for small clinical studies too.
While experimental methods (randomised controlled trials)
are the "gold standard" for evaluation, observational studies
have provided and will continue to make unique and
important contributions to the totality of evidence upon
which to support a judgment of proof beyond a reasonable
doubt in the evaluation of interventions [29]. All the methods
discussed here can well be applied to small scale clinical trials
where the patients are randomised to two treatment groups.
The only issue which should be considered for clinical trials is
that of blinding and whether unblinding of treatment
allocation at design review could be allowed. For large scale
trials Gould [2] and Gould and Shih [4] recommend the use of
a blinded method of estimating variance at design review
which is based on the EM algorithm. Subsequently simulation
studies done by Sooriyarachchi [30] revealed that this
estimate is very biased for small samples. These results
have been supported by the findings of Marschner [23].
Marschner has developed a modified version of the EM
algorithm for estimating the variance without unblinding and
this seems promising though more simulation studies are
required before it can be recommended. Sooriyarachchi [30]

also studied the performance of a Bayesian version of the EM
algorithm, namely the MCEM algorithm for estimating the
variance at design review without unblinding treatment
allocation. Sooriyarachchi [30] found that this method gives
promising results for small samples when there is good
previous evidence to base a guess of variance upon. This
though is not the case when previous evidence is poor. When
there is a lot of uncertainty about nuisance parameters
considering unblinded estimation of these parameters at
design review and overcoming any procedural issues is
supported by certain authors [31].
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