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Receiver Operating Characteristic curves and the Area Under Curve (AUC) are widely6
used to evaluate the predictive accuracy of diagnostic tests. The parametric methods of7
estimating AUCs are well established while nonparametric methods, such as Wilcoxon’s8
method, lack proper research. This study considered three standard error techniques,9
namely, Hanley and McNeil, Hanley and Tilaki, and DeLong methods. Several param-10
eters were considered, while measuring the predictor on a binary scale. The normality11
and type I error rate was violated for Hanley and McNeil’s method while asymptotically12
DeLong’s method performed better. Hanley and Tilaki’s Jackknife method and DeLong’s13
method performed equally well.14

Keywords Area under curve (AUC); DeLong’s method; Hanley and McNeil’s method;15
Hanley and Tilaki’s method; Receiver operating characteristic (ROC) curve; Simulation16
study.17
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1. Introduction19

Receiver operating characteristic (ROC) curves were first adopted to predict the presence20
of Japanese aircrafts from radar signals, following the attack on Pearl Harbour in 194121
(Green and Swets, 1966). Since then it has been widely used to evaluate the predictive22
accuracy of models, algorithms or technologies that produce the predictions. It may often23
involve classification of a certain outcome into two or more categories. The ROC curve24
is a probability scale, two-dimensional plot of Sensitivity versus 1-Specificity for a given25
classifier with continuous or ordinal output score and is calculated using all possible cutoffs26
(Agresti, 2007). Sensitivity or the “True Positive Rate” (TPR) is the probability of a positive27
test in a person known to have a positive outcome, while the Specificity also known as “True28
Negative Rate” (TNR) describes the probability of a negative test in a person known to29
have a negative outcome (Nettleman, 1988). The AUC measures the strength of association30
between the underlying test and the outcome status and is widely used to measure the31
classification power of diagnostic tests.32

Hanley and McNeil (1982) first developed the theory for comparing the AUCs pertain- Q233
ing to two ROC curves for unpaired data. The AUCs were estimated nonparametrically by34
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the Wilcoxon’s method. However, the Wilcoxon’s statistic is an estimate of the true area35
under ROC curve for infinitely large samples and sufficiently continuous rating scale and36
often underestimates the true AUC (Hanley and McNeil, 1982). Their work was extended inQ3 37
1983 to determine a method of comparing areas under two ROC curves for paired designs.38
This approach involves calculating the correlations induced by the paired nature for both39
the diseased and nondiseased groups, separately. A table containing the average of the two40
correlations along with the average of the areas under the two curves is used to arrive at41
an estimated correlation between the two areas. However, for measures that are not on a42
continuous rating scale, Hanley and McNeil (1982, 1983) method heavily relies on Gaus-Q4 43
sian modeling assumptions for estimating the variances of the two areas. Hence, Hanley44
and McNeil (1982, 1983) method is not a completely nonparametric approach. However,Q5 45
Hanley and Tilaki (1997) proposed a method to account for the paired nature of data through46
Jackknife method that could be effectively used in simulations. An alternative methodology47
for comparing two or more ROC curves using a more completely nonparametric approach48
was introduced by Delong et al. (1988), which exploits the properties of Wilcoxon statistic.49
A covariance matrix is estimated using the method of structural components. Hanley and50
Tilaki (1997) observed the “twin-like” nature in results obtained by Jackknife and Delong51
et al. (1988) methods.52

Cleves (2002) performed a simulation study to compare the two algorithms proposed53
by Hanley and McNeil (1982) and, DeLong et al. (1988) for estimating the standard errorQ6 54
of the estimated AUCs under one sample design. He found that when the outcome of the55
diagnostic test was measured on a continuous scale, both Hanley and McNeil’s (1982)Q7 56
and DeLong et al. (1988) methods performed similarly well. It was found that when the57
outcome of the diagnostic test was measured on a discrete ordinal scale, the methods58
developed by DeLong et al. (1988) outperformed Hanley and McNeil’s (1982) method.Q8 59
This was true regardless of sample size and distance between population means. However,60
Cleves (2002) study was restricted to one sample analysis. Also, Cleves’ (2002) study was61
limited to comparing variances. He did not examine the normality, type I error rate, and62
power. Thus, a complete study is imperative. Binary classifiers pose more of a challenge as63
several assumptions have to be made regarding the estimated AUC and its standard error64
for both methods. This problem has led to fewer complete studies being done on binary65
classifiers. For these reasons, this study is based purely on binary classifiers. Thus, the66
main objective of the study was to analyze the behavior and the sensitivity of the Wilcoxon67
test statistic under different study designs. The study facilitated in identifying the effect68
of sample size on the normality of the AUCs and distribution of the test statistic while69
determining the power of the test and type I error rates for various parameter combinations.70
This further enabled the comparison of Hanley and McNeil’s (1982, 1983), Hanley andQ9 71
Tilaki (1997) and, DeLong et al. (1988) standard error calculation techniques in terms of72
the performance.73

74

2. Simulation75

Data were simulated by assuming the diagnostic test to produce results on a binary scale.76
Simulations were carried out for one sample, two independent and two correlated sample77
designs with varying sample sizes such as 20, 50, 75, 100, 250, and 500. The predictability78
of a classifier was varied by the degree of correlation between the observed and predicted79
outcomes. The simulations were performed under both null and alternative hypotheses of80
the respective study design. Each combination of parameters was replicated 5,000 times.81
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To determine the effect of sample size on the normality of estimated AUCs, the Chi-square82
Goodness of Fit test was applied to the empirical null distribution. In the case of the83
alternative hypothesis, the Chi-square test was performed assuming the empirical mean of84
AUCs to be equal to average of estimated AUCs for large simulations such as 5,000.85

3. Methodology86

3.1. Algorithm for Estimating the AUC and its Variances87

Suppose a sample of N individuals undergoes a test for predicting the presence or absence88
of a condition. Assume the diagnostic variable to be binary. In the case of a dichotomous89
diagnostic variable, the value 1 represents the positive or the “abnormal” outcome while 090
represents the negative or the “normal” outcome. Let the positive group contain m number91
of individuals while the negative group contain n (N–m) number of individuals. Let Xi, i =92
1, 2, . . . , m and Yj, j = 1, 2, . . . , n be the outcome for the diagnostic test for both positive93
and negative groups, respectively. The Wilcoxon statistic estimates the probability θ , that a94
randomly selected observation from the population represented by the positive group will95
be less than or equal to a randomly selected observation from the population represented96
by the negative group. It can be computed as,97

θ̂ = 1

mn

n∑
j=1

m∑
i=1

ϕ(Xi, Yj ) where ϕ(X, Y ) =
⎧⎨
⎩

1 X > Y

0.5 X = Y

0 X < Y

The θ̂ represents the estimated AUC derived using the Wilcoxon method.98
The Hanley and McNeil’s (1982) variance is formulated as follows. Let Q1 be the Q1099

probability that two randomly selected positive (“abnormal”) subjects both having a higher100
score than a randomly selected negative (“normal”) subject, and let Q2 be the probability101
that one randomly selected positive (“abnormal”) subject will have a higher score than any102
two randomly selected negative (“normal”) subjects. The standard error of θ̂ is given by103
the following equation.104

SE(θ̂) =
√

θ (1 − θ) + (m − 1)(Q1 − θ2) + (n − 1)(Q2 − θ2)

mn
. . . . . . (1)

When the underlying distributions of the negative group (Xn) and the positive group105
(Xm) are Gaussian, gamma or negative exponentials, Q1 and Q2 can be expressed as simple106
functions,107

Q1 = θ/(2 − θ ) and Q2 = 2θ2/(1 + θ ).

The standard error formula (1) could be used both under one sample and two indepen-108
dent sample situations.109

By adhering to the notations given in 3.1, DeLong et al. (1988) variance for each AUC110
could be computed as follows. For each of the positive subjects i,111

V10(Xi) = 1

n

n∑
j=1

ϕ(Xi, Yj ) and S10 = 1

m − 1

m∑
i=1

(V10(Xi) − θ̂ )2
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and similarly, the following is defined for each negative subject j,112

V01(Yj ) = 1

m

m∑
i=1

ϕ(Xi, Yj ) and S01 = 1

n − 1

n∑
j=1

(V01(Yj ) − θ̂ )2.

Then, DeLong’s variance of the estimated AUC is given by,113

Var(θ̂) = S10

m
+ S01

n
.

In machine learning and statistics, classification is the problem of identifying to which114
of a set of response categories an observation belongs. An algorithm that implements115
classification is known as a classifier.116

In the presence of two classifiers r1 and r2, the components of the covariance term is,117

[S10]r1,r2 = 1

m − 1

m∑
i=1

⎛
⎝1

n

n∑
j=1

ϕ
(
X

r1
i , Y

r1
j

) − θ̂ r1

⎞
⎠

⎛
⎝1

n

n∑
j=1

ϕ
(
X

r2
i , Y

r2
j

) − θ̂ r2

⎞
⎠

118

[S01]r1,r2 = 1

n − 1

n∑
j=1

(
1

m

m∑
i=1

ϕ
(
X

r1
i , Y

r1
j

) − θ̂ r1

) (
1

m

m∑
i=1

ϕ
(
X

r2
i , Y

r2
j

) − θ̂ r2

)
.

The covariance is,119

Cov(θ̂ r1 , θ̂ r2 ) = [S10]r1,r2

m
+ [S01]r1,r2

n
∠.

Therefore, the Var(θ̂ r1 − θ̂ r2 )DeLong = Var(θ̂ r1 ) + Var(θ̂ r2 ) − 2Cov(θ̂ r1 , θ̂ r2 ).120
The following algorithm is the Jackknife technique proposed by Hanley and Tilaki121

(1997) to estimate the standard error for paired study designs. The method is developed122
based on pseudo values that are constructed for each observation. This can be determined123
by calculating the summary statistic with and without the observation in question. For124
example, if the summary ROC index is the AUC, then the AUC pseudo value (pAUC)125
corresponding to observation i is,126

pAUC(i) = (m + n)AUC − (m + n − 1)AUC(−i) . . . . . . . . (2)

The variance of individual AUCs is defined as,127

Var[AUC] = Variance of mean of all (m + n) pAUCs = Variance of all pAUCs

m + n
.

This variance depends on the pseudo values obtained by the Eq. (2). The covariance128
term is calculated as follows,129

Covar[AUC1, AUC2] = Covar(pAUC1, pAUC2)

m + n
,

where, Covar[pAUC1, pAUC2] = Correlation ∗ SD(pAUC1) ∗ SD(pAUC2)).130
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3.2. Simulation Study Design131

For a binary predictor, there are two distributions that should be considered for the pos-132
itive or negative outcomes. Overlap exists between these two distributions as no classi-133
fier is perfect at predicting the positive or negative status. Thus, the degree of overlap134
between the two outcomes was considered as a parameter. Therefore, correlated binary135
variables were simulated using Park et al. (1996) method to represent the observed and136
predicted outcomes. The concept lies on the property that any Poisson random vari-137
able could be expressed as a convolution of several other independent Poisson random138
variables.139

The study of one sample analysis considered two binary variables Y , X as response140
and explanatory variables, respectively. The null hypothesis tested was that there is no141
classification of variable Y by X. This is equivalent to the expected area under ROC curve142
between Y and X being 0.5 (Hosmer and Lemeshow, 2000). The alternative hypothe-143
sis represents the case where the classifier is suitable for predicting a certain outcome.144
The definition of suitability could be given by the overlap of the two distributions of145
the binary outcomes corresponding to the case where Y could be classified by X. Four146
scenarios were simulated under the alternative hypothesis where the correlation between147
Y and X was set to 0.2, 0.5, 0.75, and 0.9, which also depicts the gradual increase of148
predictability.149

The analysis of two independent samples depicts the scenario in which the classifiers150
are tested on two completely independent samples. Consider a binary response variable151
Y1 and a binary explanatory variable X1 for classifier 1 and, another two binary variables152
Y2 and X2 to represent the response and explanatory variables for classifier 2. Let Y1, X1153
and Y2, X2 be correlated. However, Y1, X1 is completely independent of Y2, X2. Thus, Y1154
is classified by X1 and similarly, Y2 is classified by X2. The null hypothesis of interest is155
that there is no difference between the predictability for classifier 1 and classifier 2. This is156
equivalent to the expected area under ROC curves 1 and 2 being alike. The null hypothesis157
was simulated under four correlations 0.0, 0.3, 0.6, and 0.7, where equal predictabilities158
were given to both classifiers. The alternative hypothesis represents the case where both159
classifiers have different discrimination abilities between cases and controls. This could160
be simulated such that Y1, X1 and Y2, X2 be correlated by amounts ρ1 and ρ2, respec-161
tively. Four scenarios were simulated under the alternative hypothesis with correlations162
(ρ1, ρ2) being (0.6, 0.5), (0.6, 0.3), (0.7, 0.3), and (0.8, 0.2). The correlations were se-163
lected such that the differences between the correlations are increased by 0.1, 0.3, 0.4, and164
0.6.165

Paired samples give rise to the analysis of two correlated samples. The null hypothesis166
depicts the scenario in which the predictability of two classifiers is equal and is tested167
on two completely correlated samples. Consider two binary response variables Y1 and168
Y2, and a binary explanatory variable X to illustrate classifier 1 and 2, respectively. The169
variables Y1 and X are correlated while variables Y2 and X are also correlated. Since170
the explanatory variable X is common to both, it illustrates the scenario of correlated171
samples. Four scenarios were considered under the null hypothesis with correlations 0.0,172
0.3, 0.6, and 0.7 for both classifiers. In order to depict the alternative hypothesis, where173
the predictabilities are different four scenarios with correlations (0.4, 0.3), (0.5, 0.3), (0.5,174
0.2) and (0.6, 0.2) were considered with 0.1 increment in the difference of predictabilities.175
At each simulation, the estimated AUCs, the standard error of the estimated AUCs and the176
test statistic (Z0) were calculated. Percentage points of Z0 falling under different quartiles177
of the standard normal curve were obtained to perform the Goodness of Fit Test. The test178
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statistics under H0 for each case are given by the following formulae.179

One sample: Z0 =
̂AUC − 0.5

SE(̂AUC)
. (3)

Two independent samples: Z0 =
̂AUC1 − ̂AUC2

SE(̂AUC1 − ̂AUC2)
. (4)

180

Two correlated samples (DeLong):

Z0 =
̂AUC1 − ̂AUC2√

var(̂AUC1) + var(̂AUC2) − 2cov(̂AUC1, ̂AUC2)
. (5)

181

Two correlated samples (HT):

Z =
̂AUC1 − ̂AUC2√√√√var(̂AUC1)

�
X

+ var(̂AUC2)
�
Y

− k ∗ ρ ∗ SD(p̂AUC1) ∗ SD(p̂AUC2))
�
S

. (6)

4. Results182

4.1. One Sample Case183

Table 1 gives the results for one sample analysis.184

4.1.1. Normality of the test statistic under H0. Table 1a illustrates the Chi-square values185
obtained for the Normal Goodness of Fit test under the null hypothesis of the methods HM186
and DeLong for one sample case. For all Chi-square goodness of fit tests in this research,187
14 groups have been used. According to Table 1a, it is clear that the normality does not hold188
for all sample size combinations under the binary predictor for HM. However, in contrast189
to HM method, the asymptotic normality of the estimated AUCs could be clearly observed190
for DeLong’s method as the Chi-square goodness of fit statistic reduces with increasing191
sample size and becomes nonsignificant for samples of size 250 and above for DeLong’s192
method.193

4.1.2. Normality of the test statistic under H1. The true mean of the AUCs is unknown194
as there is no method to relate the true AUC to a given correlation under H1. However,195

it is reasonable to assume that the true AUC is approximately equal to the E(̂AUC) =196 ∑5,000
i=1

̂AUCi

5,000 for very large simulation such as 5,000. Using the above, the test statistic was197
recalculated and the percentage of standardized normal values falling to each quartile was198
checked. Table 1b illustrates the Chi-sqaure values obtained for the Normal GOF test under199
the alternative hypothesis. Table 1b clearly shows the complete violation of normality200
under the alternative hypothesis when HM standard errors are used. Interestingly, the201
normality is lost for classifiers with high predictability even under DeLong standard error.202
However, unlike HM method, the DeLong’s method achieves the normality for classifiers203



701xml LSSP_A_752840 October 21, 2013 20:41

Testing the Properties of Areas under ROC Curves 7

Table 1
Summarized results under one sample analysis

(a) Goodness of fit test results under H0 for one sample analysis

Sample
size HM DeLong

20 367.483∗ 137.393∗

50 239.983∗ 65.9106∗

75 250.604∗ 39.3410∗

100 235.464∗ 33.1397∗

250 171.023∗ 17.7067
500 168.004∗ 7.9976

(b) Goodness of fit test results under H1 for one sample analysis

HM DeLong
Correlations Correlations

Sample under H1 under H1

size 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5

20 287.9∗ 773.9∗ 1156.6∗ 3305.2∗ 315.7∗ 908.7∗ 805.6∗ 3027.7∗

50 158.7∗ 230.8∗ 784.5∗ 1930.8∗ 70.3∗ 163.5∗ 809.1∗ 1141.7∗

75 195.7∗ 189.2∗ 439.3∗ 1867.2∗ 68.1∗ 118.2∗ 629.2∗ 2194.4∗

100 127.1∗ 177.5∗ 353.8∗ 1670.9∗ 49.2∗ 77.3∗ 330.0∗ 1797.8∗

250 133.1∗ 125.8∗ 162.1∗ 436.5∗ 41.8∗ 31.7∗ 133.8∗ 398.8∗

500 132.7∗ 115.0∗ 100.3∗ 165.0∗ 12.3 16.5 52.5∗ 223.0∗

Note: Table value = x2
(α,k−c) = 23.6848 where α = 0.05, k = 14 and C = 0 as no models were fitted.

The asterisk (∗) represents significant values.

(c) Significance level of HM/DeLong methods for one sample analysis

Sample size

Method Tail 20 50 75 100 250 500

HM Lower 0.0096∗ 0.0118∗ 0.0108∗ 0.0116∗ 0.0114∗ 0.0110∗

Upper 0.0072∗ 0.0098∗ 0.0080∗ 0.0104∗ 0.0122∗ 0.0114∗

DeLong Lower 0.032∗ 0.033∗ 0.024 0.028 0.024 0.025
Upper 0.027 0.029 0.024 0.023 0.025 0.025

(d) Power of the tests under one sample analysis

HM DeLong
Correlations Correlations

Sample under H1 under H1

0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5

20 0.127 0.594 0.952 0.998 0.151 0.634 0.961 0.998
50 0.232 0.940 1.000 1.000 0.317 0.966 1.000 1.000
75 0.320 0.993 1.000 1.000 0.420 0.997 1.000 1.000
100 0.412 0.999 1.000 1.000 0.539 1.000 1.000 1.000
250 0.819 1.000 1.000 1.000 0.886 1.000 1.000 1.000
500 0.985 1.000 1.000 1.000 0.995 1.000 1.000 1.000
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with low predictabilities given the sample sizes are large. Under both methods, the normality204
improves with increasing sample size.205

4.1.3. Type I error rates. In order to determine whether the type I error rate was maintained206
by the test, it was checked whether the proportions fall within the 95% probability interval207
(0.0207, 0.0293) for α/2 = 0.025. Here α/2 is used since two-sided tests are considered.208
According to Table 1c, the type I error rate is not maintained by the HM method for all209
sample sizes. The type I error rate is not maintained for smaller sample sizes such as 20210
and 50 by DeLong’s method while achieved for larger sample sizes.211

4.1.4. Power of the tests. Table 1d illustrates the power of the test for varying sample212
sizes and correlations between the observed and the predicted outcomes for both HM and213
DeLong methods for one sample analysis. It is clear that the power of the tests increases214
with respect to both increasing sample size and predictability.215

Comparing both methods, it is evident that DeLong’s method outperforms Hanley216
and McNeil’s method when the normality, type I error rates, and power of the tests are217
considered for one sample case.218

4.2. Two Independent Samples Case219

Table 2 gives the results for two independent samples’ analysis.220

4.2.1. Normality of the test statistic under H0. Table 2a illustrates the Normal GOF test221
results under the simulation of the null hypothesis of two independent samples. According222
to Table 2a, the normality is lost for all combinations under HM’s method. Even though223
normality is not achieved for all combinations of sample size and correlations, the normality224
improves when the predictability of the two classifiers improves for a given sample size as225
the Chi-square value decreases. Also, there seems to be no improvement in the normality226
with respect to increasing sample size. In contrast to HM’s method, the normality holds227
for large samples such as size 50 and above under DeLong’s method. The normality is228
achieved with respect to both increasing predictability and sample size.229

4.2.2. Normality of the test statistic under H1. Table 2b illustrates the Normal GOF test230
results obtained under the simulation of the alternative hypothesis under HM and DeLong’s231
methods for two independent samples. Similar to null hypothesis, the normality does not232
hold under HM method while DeLong’s method outperforms HM method as the normality233
is conserved for sample with size above 50.234

4.2.3. Type I error rates. Table 2c presents type I error rates under two independent235
samples. The 95% probability interval for α/2 = 0.025 is (0.0207, 0.0293). According to236
Table 2c, it is evident that type I error rates are not maintained by the HM method for237
all combinations of parameters under two independent samples. However, type I error is238
maintained by the DeLong’s method on average for large samples such as size 250 and 500239
when the predictability of both classifiers increases.240

4.2.4. Power of the tests. Table 2d illustrates the power of the tests under two independent241
samples. Analyzing Table 2d, it is clear that the power of the test increases with respect242
to both increasing sample size and difference between the predictabilities of the classifiers243
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Table 2
Summarized results under two independent samples analysis

(a) Goodness of fit test results under H0 for two independent samples

HM DeLong
Correlations Correlations

Sample under H0 under H0

size 0.0/0.0 0.3/0.3 0.6/0.6 0.7/0.7 0.0/0.0 0.3/0.3 0.6/0.6 0.7/0.7

20 133.50∗ 117.18∗ 69.25∗ 48.66∗ 39.09∗ 25.37∗ 61.30∗ 58.20∗

50 160.80∗ 120.56∗ 60.62∗ 65.04∗ 15.04 8.98 22.71 10.08
75 145.07∗ 134.43∗ 62.98∗ 61.36∗ 11.41 9.68 22.24 11.92
100 150.76∗ 170.71∗ 81.26∗ 66.43∗ 18.96 10.52 18.65 18.64
250 161.47∗ 142.04∗ 76.42∗ 74.53∗ 15.14 15.86 9.50 10.30
500 188.27∗ 146.76∗ 79.41∗ 62.45∗ 4.50 9.62 18.38 4.64

(b) Goodness of fit test results under H1 for two independent samples

HM DeLong
Correlations Correlations

Sample under H1 under H1

size 0.6/0.5 0.6/0.3 0.7/0.3 0.8/0.2 0.6/0.5 0.6/0.3 0.7/0.3 0.8/0.2

20 52.58∗ 61.50∗ 78.17∗ 91.19∗ 35.73∗ 28.30∗ 31.52∗ 31.30∗

50 102.02∗ 88.00∗ 118.30∗ 135.37∗ 14.81 9.74 13.80 15.24
75 90.55∗ 134.61∗ 139.65∗ 119.97∗ 19.92 11.59 10.72 20.67
100 98.42∗ 126.75∗ 149.86∗ 123.58∗ 23.73 9.34 19.86 23.10
250 101.17∗ 115.53∗ 91.98∗ 155.15∗ 14.64 11.34 16.91 19.68
500 103.09∗ 146.77∗ 100.41∗ 106.46∗ 14.75 7.92 22.54 8.57

Note: Table values of 2.a and 2. b are, x2
(α,k−c) = 23.6848 where α = 0.05, k = 14 and C = 0 as no models were fitted.

The asterisk (∗) represents significant values.

(c) Significance level of HM and DeLong methods for two independent samples

Sample size

Method Correlation Tail 20 50 75 100 250 500

HM 0.0/0.0 Lower 0.0162∗ 0.0136∗ 0.0138∗ 0.0130∗ 0.0138∗ 0.0110∗

Upper 0.0190∗ 0.0128∗ 0.0126∗ 0.0126∗ 0.0100∗ 0.0102∗

0.3/0.3 Lower 0.0162∗ 0.0104∗ 0.0142∗ 0.0142∗ 0.0108∗ 0.0114∗

Upper 0.0172∗ 0.0156∗ 0.0134∗ 0.0110∗ 0.0118∗ 0.0124∗

0.6/0.6 Lower 0.0196∗ 0.0150∗ 0.0154∗ 0.0128∗ 0.0170∗ 0.0180∗

Upper 0.0178∗ 0.0182∗ 0.0200∗ 0.0190∗ 0.0196∗ 0.0160∗

0.7/0.7 Lower 0.0198∗ 0.0170∗ 0.0156∗ 0.0168∗ 0.0132∗ 0.0170∗

Upper 0.0158∗ 0.0180∗ 0.0212 0.0214 0.0172∗ 0.0194∗

DeLong 0.0/0.0 Lower 0.0304∗ 0.0266 0.0270 0.0282 0.0304∗ 0.0258
Upper 0.0304∗ 0.0260 0.0242 0.0256 0.0246 0.0224

0.3/0.3 Lower 0.0268 0.0242 0.0252 0.0234 0.0212 0.0224
Upper 0.0338∗ 0.0280 0.0272 0.0256 0.0264 0.0262

0.6/0.6 Lower 0.0316∗ 0.0294∗ 0.0274 0.0242 0.0264 0.0264
Upper 0.0310∗ 0.0306∗ 0.0330∗ 0.0312∗ 0.0274 0.0258

0.7/0.7 Lower 0.0338∗ 0.0258 0.0250 0.0258 0.0222 0.0240
Upper 0.0304∗ 0.0270 0.0300∗ 0.0294∗ 0.0250 0.0242

(d) Power of the tests under two independent samples

HM DeLong
Correlations Correlations

Sample under H1 under H1

size 0.6/0.5 0.6/0.3 0.7/0.3 0.8/0.2 0.6/0.5 0.6/0.3 0.7/0.3 0.8/0.2

20 0.043 0.146 0.244 0.536 0.205 0.069 0.321 0.625
50 0.059 0.306 0.563 0.926 0.390 0.090 0.661 0.954
75 0.079 0.432 0.760 0.987 0.530 0.114 0.827 0.994
100 0.092 0.561 0.872 0.998 0.657 0.136 0.914 0.999
250 0.205 0.945 1.000 1.000 0.966 0.265 1.000 1.000
500 0.389 0.999 1.000 1.000 0.999 0.474 1.000 1.000
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under both methods. However, the powers of tests based on DeLong’s standard error are244
higher than the respective HM tests.245

4.3. Two Correlated Samples Case246

Table 3 gives the results for two correlated samples analysis.247

4.3.1. Normality of the test statistic under H0. Table 3a presents the Normal GOF test248
results under two correlated samples when HT (Jackknife method) and DeLong methods249
are used. Unlike in the two independent sample analysis, the Chi-square values under both250
methods increase as the predictability of the two classifiers increases under a given sample251
size. This results in the violation of normality for classifiers with high predictabilities when252
tested on same set of data. However, for a given classifier, the normality improves when253
the sample size is gradually increased. Interestingly, the HT and DeLong methods seem to254
behave similarly.255

4.3.2. Normality of the test statistic under H1. Table 3b depicts the Normal GOF test256
values under the alternative hypothesis of two correlated samples. According to Table 3b,257
the normality seems to hold for combinations of classifiers with different predictabilities258
when tested on paired samples with size above 100 on average. The similarity between HT259
and DeLong methods could be further observed in this. However, the normality holds true260
much better under the scenarios of alternative than the null.261

4.3.3. Type I error rates. In order to determine whether the type I error rate was maintained262
by the test, it was checked whether the proportions fall within the 95% probability interval263
(0.0207, 0.0293) for α/2 = 0.025. The parameter combinations given in bold lettering in264
Table 3c resulted in the test statistic being infinity due to perfect classification. Thus, Table265
3e gives the corresponding intervals for those parameter combinations. Through Table 3c,266
it is clear that for both methods, type I error rates are not maintained for tests with smaller267
sample sizes.268

4.3.4. Power of the tests. Table 3d illustrates the power of the test under two correlated269
samples. Analyzing Table 3d, it is clear that the powers of the HT and DeLong tests increase270
with respect to both increasing sample size and difference between the predictabilities of271
the classifiers. Interesting point to note is that the powers of the tests associated with both272
HT and DeLong’s methods are approximately alike. Also, under both methods, the increase273
in power is less for classifiers with small and slightly different predictabilities. However,274
an increase in the power is seen as the difference in classification increases.275

4.4. Comparison with Respect to Empirical Variance276

In order to compare the standard errors under HM, HT, and DeLong methods, each standard277
error technique was compared with the empirical standard error generated by the estimated278
AUCs. The ratio between empirical to HM or DeLong standard deviations were found for279
comparison.280

Ratio = Emperical Standard Deviation

HM or DeLong Standard Deviation
. (7)
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Table 3
Summarized results under the analysis of two correlated samples

(a) Goodness of fit test results under H0 for two correlated samples

HT DeLong
Correlations Correlations

Sample under H0 under H0

size 0.0/0.0 0.3/0.3 0.6/0.6 0.7/0.7 0.0/0.0 0.3/0.3 0.6/0.6 0.7/0.7

20 133.81∗ 178.14∗ 4983.62∗ 5472.97∗ 135.25∗ 177.71∗ 5057.06∗ 5526.48∗

50 35.45∗ 27.29∗ 114.41∗ 247.85∗ 33.69∗ 26.45∗ 116.08∗ 254.18∗

75 16.43 29.36∗ 29.63∗ 156.41∗ 14.14 22.96 22.00 144.90∗

100 20.45 16.18 51.01∗ 63.97∗ 20.36 14.46 43.23∗ 55.45∗

250 22.09 16.63 37.65∗ 44.45∗ 15.31 13.34 13.63 15.80
500 10.29 31.11∗ 14.80 46.58∗ 4.07 25.91∗ 5.83 23.11

(b) Goodness of fit test results under H1 for two correlated samples

HT DeLong
Sample Correlations Correlations
size under H1 under H1

0.4/0.3 0.5/0.3 0.5/0.2 0.6/0.2 0.4/0.3 0.5/0.3 0.5/0.2 0.6/0.2

20 55.03∗ 80.74∗ 81.60∗ 97.98∗ 61.24∗ 81.44∗ 84.36∗ 93.84∗

50 41.01∗ 20.58 13.16 18.42 43.84∗ 24.04∗ 14.60 16.73
75 10.66 19.63 34.08∗ 19.46 9.88 23.91∗ 34.12∗ 19.03
100 14.24 12.19 18.26 19.63 16.17 12.92 21.86 18.98
250 7.85 15.98 5.64 11.56 6.18 13.49 5.70 10.96
500 6.72 11.29 26.75∗ 19.22 7.56 10.60 16.75 12.73
Note: Table values of 2.a and 2. b are, x2

(α,k−c) = 23.6848 where α = 0.05, k = 14 and C = 0 as no models were fitted. The
asterisk (∗) represents significant values.

(c) Significance level of HT and DeLong methods for two correlated samples

Sample size

Method Correlation Tail 20 50 75 100 250 500

HT 0.0/0.0 Lower 0.0326∗ 0.0286 0.0276 0.0254 0.0212 0.0270
Upper 0.0370∗ 0.0276 0.0260 0.0276 0.0244 0.0252

0.3/0.3 Lower 0.0322∗ 0.0288 0.0280 0.0250 0.0268 0.0264
Upper 0.0336∗ 0.0286 0.0252 0.0268 0.0248 0.0248

0.6/0.6 Lower 0.0287 0.0304∗ 0.0280 0.0270 0.0262 0.0226
Upper 0.0346∗ 0.0272 0.0274 0.0258 0.0250 0.0246

0.7/0.7 Lower 0.0209 0.0266 0.0282 0.0260 0.0260 0.0238
Upper 0.0265 0.0318∗ 0.0256 0.0248 0.0232 0.0262

DeLong 0.0/0.0 Lower 0.0366∗ 0.0276 0.0256 0.0282 0.0250 0.0252
Upper 0.0326∗ 0.0286 0.0276 0.0252 0.0210 0.0268

0.3/0.3 Lower 0.0334∗ 0.0288 0.0244 0.0264 0.0248 0.0232
Upper 0.0322∗ 0.0288 0.0280 0.0246 0.0270 0.0258

0.6/0.6 Lower 0.0346∗ 0.0256 0.0280 0.0266 0.0234 0.0254
Upper 0.0287 0.0302∗ 0.0286 0.0278 0.0260 0.0238

0.7/0.7 Lower 0.0265 0.0314∗ 0.0260 0.0250 0.0234 0.0262
Upper 0.0209 0.0266 0.0276 0.0256 0.0262 0.0234

(d) Power of the tests under two correlated samples

HT DeLong
Correlations Correlations

Sample under H1 under H1

size 0.4/0.3 0.5/0.3 0.5/0.2 0.6/0.2 0.4/0.3 0.5/0.3 0.5/0.2 0.6/0.2

20 0.060 0.112 0.180 0.273 0.060 0.111 0.180 0.272
50 0.077 0.177 0.327 0.536 0.078 0.177 0.328 0.537
75 0.091 0.238 0.454 0.709 0.090 0.239 0.454 0.709
100 0.114 0.296 0.573 0.825 0.115 0.296 0.572 0.826
250 0.194 0.619 0.929 0.995 0.196 0.621 0.930 0.995
500 0.349 0.887 0.999 1.000 0.349 0.886 0.999 1.000

(e) Missing value summary under H0 of two correlated sample analysis

Parameter combination No. of missing values Lower tail Upper tail

N = 20, pho = 0.6/0.6 59 0.02065 0.02935
N = 20, pho = 0.7/0.7 206 0.02058 0.02942
N = 50, pho = 0.7/0.7 2 0.02067 0.02933
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Thus, a ratio greater than unity indicates an underestimation of the empirical value,281
while a lesser value to unity indicates an overestimation. Comparisons were made by282
plotting the ratio against varying sample sizes (plots are not presented here due to space283
limitations). The empirical standard error remains as the reference line for comparison. The284
scale of the following plots was decided based on the Cleves (2002) paper. Summarizing285
the results observed under one sample analysis, the HM standard error overestimated while286
the DeLong standard error was close to the empirical standard error for all sample sizes.287
It was further observed that the distinction between HM and empirical standard errors288
were reduced when the predictabilities were improved. Similar to one sample analysis,289
the HM standard error overestimated the true empirical value while DeLong maintained290
it for varying sample sizes and correlations of null and alternative hypothesis of the two291
independent samples. Unlike one sample and two independent samples, the Jackknife292
method of HT and DeLong standard errors preformed equally well and was approximately293
close to the empirical value for all sample sizes and correlations of both null and alternative294
hypotheses of the two correlated samples.295

4.5. Analytical Explanation of HM and HT Results296

The HM standard error was derived in order to comprehend the behavior of HM standard297
error with the results obtained (see Annex). There are two problems in the standard error298
calculation.299

(a) θ̂ is known to underestimate θ for Wilcoxon’s method (Hanley and McNeil, 1982).300

Therefore, ̂var(θ̂ ) will be an overestimate (θ̂ squared terms mostly affect the vari-301
ance negatively).302

(b) When the correlation (ρ) increases between the observed and the predicted out-303
comes, the ties between them also increase. That is, the effect from P (xA = xN )304
also increases. Hanley and McNeil (1982) have derived the above equation assum-305
ing the outcome of interest to be continuous. However, the simulation is conducted306
for a binary case. Since ties correspond to a positive component in the estimated307

variance of θ̂ , not accounting for ties deflate the ̂var(θ̂). Therefore, in the presence308
of increasing correlation (i.e., increasing ties), the underestimation is more.309

Thus, the above mentioned reasons (a) and (b) are two forces acting against each other310
as (a) gives an overestimation while (b) gives an underestimation.311

4.5.1. Explanation of the results in the light of the findings. This section provides a brief ex-312
planation to the results observed with one sample, two independent and correlated samples,313
both under null and alternative hypotheses.314

(a) One sample: The test statistic for one sample is given by Eq. (3). The top part of315
the test statistic is always an underestimation. Bradley’s (1996) view point is that316
this underestimation decreases with respect to increasing sample size. There is no317
overestimation in variance due to underestimation of AUC as we take the AUC to318
be 0.5 under H0, in the variance calculation. However, the binary classifier will319
have ties, even though the correlation is zero (i.e., μAUC = 0.5) as there are only320
two values 0 and 1. This will result in an underestimation of the variance resulting321
inflated values of the test statistic (Z0), which will violate both the normality322
assumption and the significance level.323
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(b) Two independent samples: The test statistic under null hypothesis is given by, Eq.324
(4). The underestimation of the AUCs in the top part of the equation is cancelled325
out as it is the difference between estimated AUCs. The variance is overestimated326
due to the estimated AUCs while underestimated due to the ties generated by the327
correlations. Slight underestimation is seen when the correlations are low such as328
0.0 or 0.3 as the effect from ties is small. When the correlations increase up to 0.6329
or 0.7, there are both overestimation due to estimated AUC and underestimation330
due to increasing ties. This results in the two forces cancelling out while giving an331
improved result with the increasing correlation (ρ).332

(c) Two correlated samples: The test statistic under null is given by Eq. (6). Since333
the pseudo values are generated by a function of AUCs (which is a difference in334
AUCs), the underestimation of the true AUC by the Wilcoxon statistic is cancelled335
out. Hence, there is no underestimation from the top part of the test statistic and336
in the individual variance terms. When the correlation between the observed and337
the predicted is low such as 0.0 or 0.3, the correlation (ρ) between AUC1 and338
AUC2 also becomes negligible. Thus, the effect from the term S in Eq. (6) is zero.339
In contrast, when the correlation is increased up to 0.6 or 0.7, the correlation (ρ)340
between AUC1 and AUC2 also becomes significant and the effect from the term341
S is significant. Therefore, the bottom part of the test statistic keeps deflating as342
the correlation increases. This results in the test statistics inflation with respect to343
increasing correlation, which results in the rejection of the null hypothesis.344

4.6. Analytical Explanation of DeLong Results345

It is important to note that, the only assumption DeLong et al. (1988) have made is the large346
sample approximation (refer Annex). The problems associated with DeLong standard error347
are the underestimation of θ due to Wilcoxon’s method and the large sample approximation.348

4.6.1. Explanation of the results in the light of the findings. This section provides a brief349
explanation to the results observed with one sample, two independent and two correlated350
samples, with respect to DeLong standard error.351

(a) One sample: Unlike in Hanley and McNeil’s method, there is no effect from the352
ties. The variance formula should work well with large samples. Interestingly, this353
was clearly seen with large samples. The normality was held true for samples with354
size above 250. Thus, there is no effect from the standard error to the test statistic355
Z0. The only effect is the underestimation due to Wilcoxon’s method.356

(b) Two independent samples: The underestimations by the estimated AUCs are now357
cancelled out since a difference in means is considered. Since the DeLong standard358
error is a large sample approximation, the results obtained from the simulation359
process showed a violation in the normality for small samples such as size 20.360
Thus, the results obtained through two independent samples are explainable.361

(c) Two correlated samples: Similar to HT method, the effect from the covariance362
term is significant when the correlation is increased from 0 to 0.7. Therefore, the363
bottom part of the test statistic (5) decreases and results in the overall test statistic364
to be inflated. Thus, for increasing correlations the normality is violated with great365
degree. When the correlation is small, the only negative effect is from the large366
sample approximation.367
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5. An Example Based on Real Data368

The methodology was illustrated using data from the Cardiology Unit of the Sri Jayawar-369
denapura Hospital in Sri Lanka. The “Gold Standard” test for detecting coronary artery370
disease in patients is the angiogram. However, due to its high expense a substitute test in the371
form of cardiac stress test (CST) is first carried out to determine the necessity for doing an372
angiogram. The angiogram results have two levels failed or passed, while the CST results373
have four levels, namely,374

1. Stage 1 difficulty375
2. Stage 2 difficulty376
3. Stage 3 or higher difficulty or minor difficulties377
4. Completed the CST or patient was diagnosed as adequately stressed.378

In order to use the CST results as a substitute for the angiogram, the CST is di-379
chotomized using two cut-points in order to determine which cut-point results in better380
classification of the angiogram result. In the first categorization levels 1, 2 or 3 are consid-381
ered as failure while stage 4 is considered as a success and this is considered as classifier382
one (r1). In the second categorization levels 1 or 2 is considered a failure while stages383
3 or 4 is considered a success and this is considered as classifier two (r2). As the tests384

Table 4
Summarized conclusions under all methods

Summarized properties of the tests under three sample designs

One sample
Two independent

samples
Two correlated

samples

Normality of the
estimated AUCs

– Normality under
DeLong’s method is
assured for samples
with size above 20.

– Normality under
DeLong’s method
holds for samples
with size 50 and
above.

– Both HT and
DeLong methods
require large
samples (above
500) on average to
achieve normality.– Normality is

violated for all
sample sizes under
HM method.

– Normality is
violated for all
sample sizes under
HM method.

Type I error – Type I error is
maintained for large
samples (above 50)
by DeLong’s
method.

– Type I error under
DeLong’s method is
maintained for large
samples (above
250).

– Type I error is
maintained by both
HT and DeLong’s
methods for
samples with size
above 75.– Type I error is

violated under HM
– Type I error is lost

under HM.
Power – DeLong’s method

outperforms HM
– DeLong’s method

outperforms HM
– Powers of HT and

DeLong methods
are approximately
equal



701xml LSSP_A_752840 October 21, 2013 20:41

Testing the Properties of Areas under ROC Curves 15

20 50 75 100 250 500

DeLong 1.007 1.006 0.983 0.987 0.996 0.995

HM 0.846 0.862 0.846 0.851 0.861 0.861

0.500
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Comparison of HM and DeLong SE's for 1 sample und
H0

4C/Art

Figure 1. Ratios of empirical standard error to HM/DeLong standard errors under null hypothesis

Q11

of the one sample. (color figure available online)

20 50 75 100 250 500

DeLong 1.013 1.005 1.004 1.013 1.014 1.016

HM 0.883 0.876 0.875 0.882 0.883 0.884
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Comparison of HM and DeLong SE's for 1 sample 
under H1 : rho=0.2
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Figure 2. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes is set to 0.2 under alternative hypothesis. (color figure
available online)

20 50 75 100 250 500

DeLong 1.011 1.005 0.989 1.001 1.000 1.000

HM 0.898 0.897 0.882 0.893 0.892 0.892
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1.000

1.500

R
at

io

Comparison of HM and DeLong SE's for 1 sample 
under H1 : rho=0.5
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Figure 3. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes is set to 0.5 under alternative hypothesis. (color figure
available online)
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20 50 75 100 250 500

DeLong 1.068 1.016 1.010 1.016 0.993 0.993

HM 0.972 0.939 0.936 0.942 0.923 0.923

0.500
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1.500
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Comparison of HM and DeLong SE's for 1 sample 
under H1 : rho=0.75
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Figure 4. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes is set to 0.75 under alternative hypothesis. (color figure
available online)

were carried out on the same patients, this was an example of the two samples correlated385
case. The null hypothesis was that AUC1 corresponding to classifier one as a predictor of386
angiogram results was the same as AUC2 that corresponds to classifier two as a predictor387
of angiogram results. The alternative hypothesis was that AUC1 and AUC2 were different388
in terms of predictive ability of angiogram results.389

In order to test the null hypothesis both Hanley-Tilaki (HT) and DeLong methods for390
two correlated samples were used. The values of the estimated AUC1, AUC2 their standard391
errors and their covariance for both HT and DeLong’s methods were: 0.345, 0.33, 0.031,392
0.031, and 0.000653, respectively, giving a Z value of 0.604 and a p-value of 0.5456. The393
data corresponded to a correlation of 0.68 between AUC1 and AUC2. As the p-value is394
greater than 0.05 the null hypothesis is not rejected at the 5% level and it is concluded that395
there is no significant difference between AUC1 and AUC2 and thus, there is no significant396
difference between the two classifiers r1 and r2 in their classifying ability of the angiogram397
results.398

20 50 75 100 250 500

DeLong 1.307 1.095 1.058 1.051 1.013 1.004

HM 1.212 1.042 1.013 1.009 0.977 0.970

0.500

1.000

1.500

R
at

io

Comparison of HM and DeLong SE's for 1 sample 
under H1 : rho=0.90

4C/Art

Figure 5. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes is set to 0.90 under alternative hypothesis. (color figure
available online)
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20 50 75 100 250 500

HM 0.874 0.861 0.867 0.870 0.866 0.862

Delong 1.002 0.992 0.999 1.004 0.999 0.996
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Comparison of standard errors for 2 independent 
samples under H0 with rho=0.0

4C/Art

Figure 6. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of both independent samples is set to 0.0 under null
hypothesis. (color figure available online)

20 50 75 100 250 500

HM 0.874 0.877 0.874 0.865 0.871 0.873

Delong 0.994 1.002 0.998 0.989 0.995 0.998
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Comparison of standard errors for 2 independent 
samples under H0 with rho=0.3

4C/Art

Figure 7. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of both independent samples is set to 0.3 under null
hypothesis. (color figure available online)

20 50 75 100 250 500

HM 0.902 0.918 0.915 0.911 0.913 0.908

Delong 1.003 1.018 1.015 1.009 1.011 1.004
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Comparison of standard errors for 2 independent samples
under H0 with rho=0.6
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Figure 8. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of both independent samples is set to 0.6 under null
hypothesis. (color figure available online)
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20 50 75 100 250 500

HM 0.922 0.917 0.922 0.922 0.911 0.923

Delong 1.016 1.004 1.007 1.006 0.992 1.004

0.500

1.000

1.500

R
at

io

Comparison of standard errors for 2 independent samples
under H0 with rho=0.7
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Figure 9. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of both independent samples is set to 0.7 under null
hypothesis. (color figure available online)

20 50 75 100 250 500

HM 0.900 0.890 0.878 0.882 0.886 0.875

Delong 1.015 1.005 0.991 0.995 1.000 0.987
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samples under H1 with rho=0.6/0.3
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Figure 10. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of the two independent samples is set to 0.6 and 0.3
under alternative hypothesis. (color figure available online)

20 50 75 100 250 500

HM 0.904 0.889 0.905 0.906 0.897 0.894

Delong 1.011 0.993 1.010 1.011 1.000 0.997
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samples under H1 with rho=0.6/0.5
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Figure 11. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of the two independent samples is set to 0.6 and 0.5
under alternative hypothesis. (color figure available online)
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20 50 75 100 250 500

HM 0.889 0.882 0.875 0.873 0.903 0.901

Delong 1.001 0.993 0.984 0.981 1.015 1.012
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Figure 12. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of the two independent samples is set to 0.7 and 0.3
under alternative hypothesis. (color figure available online)

20 50 75 100 250 500

HM 0.882 0.878 0.890 0.884 0.872 0.890

Delong 0.996 0.990 1.004 0.996 0.982 1.003
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samples under H1 with rho=0.8/0.2
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Figure 13. Ratios of empirical standard error to HM/DeLong standard errors when the correlation
between observed and the predicted outcomes of the two independent samples is set to 0.8 and 0.2
under alternative hypothesis. (color figure available online)

20 50 75 100 250 500

HHT ratio 1.001 1.005 1.007 1.008 0.991 1.001

Delong ratio 1.000 1.005 1.007 1.008 0.991 1.001
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Figure 14. Ratios of empirical standard error to HT/DeLong standard errors when the correlation
between observed and the predicted outcomes of both correlated samples is set to 0.0 under null
hypothesis. (color figure available online)
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20 50 75 100 250 500

HM ratio 0.983 1.002 0.998 1.000 0.983 0.991

Delong ratio 0.983 1.002 0.998 1.000 0.983 0.991
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under H1 for rho=0.4/0.3
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Figure 15. Ratios of empirical standard error to HT/DeLong standard errors when the correlation
between observed and the predicted outcomes of the two correlated samples is set to 0.4 and 0.3
under alternative hypothesis. (color figure available online)

The low values of AUC1 and AUC2 indicate that for both classifiers, r1 and r2 used, the399
predictive ability of CST as a predictor for angiogram results is poor. Therefore, determining400
the predictive ability of r1 and r2 after adjusting for other prognostic factors such as gender,401
age, smoking, alcohol, family history, hypertension, diabetes, etc., using logistic models is402
recommended.403

As both the Hanley and Tilaki method and the DeLong method give identical results,404
this illustrates their twin-like nature observed in the simulations.405

6. Overall Discussion406

Summarizing the results for one sample and two independent samples, it is advisable to407
use DeLong et al. (1988) algorithm if one is interested in proceeding with nonparametric408
techniques as it is very consistent and robust for samples with size above 250, even though409
the calculations are more difficult than compared to Hanley and McNeil (1982, 1983)410
methods. Both, DeLong et al. (1988), and Hanley and Tilaki (1997) methods perform411
similarly well for two correlated samples. The normality was achieved for various parameter412
combinations as explained in the previous sections. Thus, the assumption of normality of413
the area under curve often made in the literature of many previous researches could now be414
validated under certain conditions. Furthermore, the type I error rate was also controlled415
asymptotically for DeLong et al. (1988) and Hanley and Tilaki (1997) while lost for Hanley416
and McNeil (1982, 1983) on average. It was found that the Hanley and McNeil (1982, 1983)417
variance overestimated the true empirical variance, while the DeLong et al. (1988) variance418
maintained close to the empirical variance for all sample sizes and correlations under419
one sample and two independent samples. Interestingly, the “twin-like” nature between420
DeLong’s and the Jackknife method as described by Hanley and Tilaki (1997) was clearly421
seen as both variances maintained close to the empirical variance for all combinations of422
sample sizes and correlations under two correlated samples. This was further highlighted423
in the example on real data.424
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7. Conclusions425

The findings of this study are summarized in Table 4:426
DeLong et al.’s (1988) method was consistent under all sample designs while Hanley427

and McNeil’s (1982, 1983) method was not. Q12428

Annex429

Reference: Hanley and McNeil (1982) and Appendix to Hanley and McNeil Radiology Q13430
paper “A Method of Comparing the Areas under ROC curves derived from same cases.”431

Assume, without loss of generality, that higher values of a diagnostic test are associ-432
ated with “abnormal” subjects, while lower values are associated with “normal” subjects.433
Further, assume that the diagnostic test is applied to nN normal and nA abnormal subjects.434
Let xA i = 1, 2, . . . , nA and xN , j = 1, 2, . . . , nN be the observed outcomes of the435
diagnostic test for the abnormal and normal subjects, respectively. Let the true area under436
curve be denoted as θ . The Wilcoxon statistic (θ̂) is given by,437

θ̂ = 1

nAnN

nA∑
i

nN∑
j

S(xA, xN ) where S(xA, xN )

⎧⎨
⎩

1 if xA > xN

0.5 if xA = xN

0 if xA < xN

(Discrete only)

The variance of the estimator is given as follows.438

var(θ̂) = 1

n2
An2

N

⎧⎨
⎩

nA∑
i

nN∑
i

var[S(xA, xN )] +
nA∑

ii �=j

nN∑
j

cov[S(xA, xN ), S(x ′
A, x ′

N )]

⎫⎬
⎭ (A)

Now consider var[S(xA, xN )], assuming α = S(xA, xN ). It can be found as,439

var[α] = E[α2] − (E[α])2

Hanley and McNeil (1982) assumes the data to be on a continuous scale. Thus, P (xA = Q14440
xN ) = 0 and θ = P (xA > xN ). The expectations could be now written as follows,441

E[α2] = 12P (xA > xN ) + 0.52P (xA = xN ) + 02P (xA < xN ) = θ

E[α] = 1P (xA > xN ) + 0.5P (xA = xN ) + 0P (xA < xN ) = θ

Thus, var[S(xA, xN )] = θ − θ2 = θ (1 − θ ).
(B)

Estimate it by θ̂ (1 − θ̂). Now consider the covariance term in (A) and let β = S(x ′
A, x ′

N ).442
The covariance term could be written as, cov(α, β) = E(αβ) − [E(α)E(β)].443

Most of the terms in the above equation are zero. As proved before E(α)E(β) = θ2.444
The only non zero terms given by E(αβ) is when, xA > xN and x ′

A > x ′
N . This could be,445

xA > xNx ′
N or xA, x ′

A > xN.

Taking normal and abnormal cases separately,446
Abnormal There are nA such pairs447

nA∑
ii �=j

nN∑
j

cov[S(xA, xN ), S(x ′
A, x ′

N )] = nA(nAnN − nN )(Q1 − θ2) (C)
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Normal There are nN such pairs448

nA∑
ii �=j

nN∑
j

cov[S(xA, xN ), S(x ′
A, x ′

N )] = nN (nAnN − nA)(Q2 − θ2) (D)

where Q1 is the probability that two randomly selected abnormal subjects will both have449
a higher score than a randomly selected normal subject, and Q2 is the probability that450
one randomly selected abnormal subject will have a higher score than any two randomly451
selected normal subjects. Substituting B, C, and D to A,452

̂var(θ̂ ) = {nAnN θ̂(1 − θ̂ ) + nA(nAnN − nN )(Q1 − θ̂2) + nN (nAnN − nA)(Q2 − θ̂2)}
n2

An2
N

̂var(θ̂ ) = θ̂(1 − θ̂ ) + (nA − 1)(Q1 − θ̂2) + (nN − 1)(Q2 − θ̂2)

nAnN

.

Reference: DeLong et al. (1988) paper “Comparing the Areas under Two or More Corre-453
lated Receiver Operating Characteristic Curves: A Nonparametric Approach.”454

Suppose a sample of N individuals undergo a test for predicting an event of interest455
or determining presence or absence of a medical condition. Adhere to the convention that456
higher values of the test variable are assumed to be associated with the event of interest,457
e.g., positive disease status. Let this group be denoted by Cl and let the group of n (= N –458
m) individuals who do not have the condition be denoted by C2. Let Xi, i = 1, 2, . . . , m459
and Yj, j = 1, 2, . . . , n be the values of the variable on which the diagnostic test is based460
for members of Cl and C2, respectively. Let the true area under curve be denoted as θ . The461
Wilcoxon statistic (θ̂) is given by,462

θ̂ = 1

mn

m∑
i

n∑
j

S(Xi, Yj ) where S(Xi, Yj )

⎧⎨
⎩

1 if Xi > Yj

0.5 if Xi = Yj

0 if Xi < Yj

(discrete only).

The variance of an estimated AUC is given by,463

̂var(θ̂ ) = ε̂11 + (n − 1)ε̂10 + (m − 1)ε̂01

mn
,

where ε10 = E[S(Xi, Yj )S(Xi, Yk)] − θ2; j �= k, ε01 = E[S(Xi, Yj )S(Xk, Yj )] − θ2; i �= k464
and ε11 = E[S(Xi, Yj )S(Xi, Yj )]−θ2. It is important to note that the form of this equation is465
similar to the form of Hanley and McNeil’s standard error formula. For large m, n, DeLong466
et al. (1988) made the following assumption: lim

m,n→∞
ε11
mn

= 0 (Reference: Hajian-Tilaki467

(1997)).468
Assuming ε11

mn
= 0, the variance formula reduces to the following formula.469

̂var(θ̂ ) = (n − 1)ε̂10 + (m − 1)ε̂01

mn
. (E)

Since ε10 = E[S(Xi, Yj )S(Xi, Yk)]− θ2; j �= k is a covariance term, it could be written470
as follows, ε10 = E[S(Xi, Yj ) − E(S(Xi, Yj ))][S(Xi, Yk) − E(S(Xi, Yk))].471

According to the defined values of S(Xi, Yj ), E(S(Xi, Yj )) = θ = E(θ̂ ).472
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Now ε̂10 is a sample covariance term. Thus,473

ε̂10 =

∑m
i = 1
i �= k

∑n
j,k=1[S(Xi, Yj ) − θ̂ ][S(Xi, Yk) − θ̂]

mn(n − 1)

=
∑m

i=1

[∑n
j=1(S(Xi, Yj ) − θ̂ )

∑n
k=1(S(Xi, Yk) − θ̂)

]
mn(n − 1)

For large n, ε̂10 =
∑m

i=1[nV10(Xi )−nθ̂ ][(n−1)V10(Xi )−(n−1)θ̂ ]
mn(n−1)474

ε̂10 =
∑m

i=1(V10(Xi) − θ̂ )2

m
= (m − 1)S10

m
where S10 =

∑m
i=1(V10(Xi) − θ̂ )2

m − 1
.

Similarly, ε̂01 =
∑n

j=1(V01(Yj )−θ̂ )2

n
= (n−1)S01

n
where S01 =

∑n
j=1(V01(Yj )−θ̂ )2

n−1 .475
The definitions of V10(Xi) and V01(Yj ) are given in the Methodology.476

Substituting, to Eq. (E), ̂var(θ̂ ) = (n−1)(m−1)S10
m2n

+ (m−1)(n−1)S01
n2m

.477

For large m, n, limm,n→∞ (n−1)(m−1)
mn

= 1.478

Hence, for large sample sizes, ̂var(θ̂ ) = S10
m

+ S01
n

.479
This is the DeLong et al. (1988) standard error formula for estimating area under ROC480

curve for single sample. Thus, it is clear that it is a large sample formula.481
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