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A Goodness of Fit Test for the Multilevel
Logistic Model

A. A. P. N. M. PERERA, M. R. SOORIYARACHCHI, 
AND S. L. WICKRAMASURIYA 

Department of Statistics, University of Colombo, Colombo, Sri Lanka 

It is crucial to test the goodness of fit of a model before it is used to make statistical 
inferences. However, no satisfactory goodness of fit test is available for the case of 
categorical multilevel data which occur when categorical data are clustered or hierar-
chical in nature. Hence the aim of this paper is to develop a new goodness of fit test 
for multilevel binary data based on Hosmer and Lemeshow and Lipsitz et.al. In order 
to identify the properties of the developed test, simulation studies were carried out to 
assess the Type I error and the power. 

Keywords Binary data; Hosmer–Lemeshow test; Multilevel models; Power; Simula
tion; Type I error. 

Mathematics Subject Classification 62F05 

1. Introduction

1.1 Background

Multilevel data structures consist of data measured at multiple levels. For example, one 
may have survey data collected on individuals, indexed by i, while the individuals in turn 
may reside in distinct geographical units, indexed by j. The  j units could be census tracts, 
counties, states, or countries. Data structured in this way are implicitly ‘hierarchical’ in so 
far as there is a clear nesting of ‘lower level’ units (i) within ‘higher’ level units (j). It is 
not always possible to deal with single level data structures and there are many instances in 
practice where the data are clustered or hierarchical, resulting in multilevel data structures. 
Usually in data modeling, stratification or clustering is ignored. If, however, stratification 
is indeed effective, the ignoring of stratification usually increases the resulting variance of 
the estimators (Parson, 1992) as the independence of the observations is violated due to 
the correlation within strata, so that the usual maximum likelihood method for estimating 
the standard error is not valid. In the literature, there are several methods to handle this 
within cluster correlation in multilevel data. These methods include replicated sampling 
techniques (Lee et al., 1989), sandwich estimation of the standard errors (Huber, 1967), 
generalized estimating equations (Liang and Zeger, 1986; Zorn, 2001), and multilevel 
modeling (Steenbergen and Jones, 2002). In this research, the multilevel modeling approach 
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2 Perera et al. 

is considered for analyzing clustered data. Multilevel modeling has become very important 
for categorical responses and occurs in many areas such as Biology, Medicine, Social 
Science, Education, Environmental Science etc. Since multilevel modeling is a newly 
introduced technique, no really satisfactory measure to assess the fit of the model with 
discrete response variables is currently available. Thus this paper aims to propose a new 
technique which is more efficient and simpler than the available techniques. 

1.2 Objectives

The primary objective of this paper is to develop a suitable goodness of fit test for the 
clustered binary logistic multilevel model, based on the Hosmer and Lemeshow (1980) 
test. 

Secondary objectives of this research are to apply the developed test to real life data 
and to identify the properties of the goodness of fit test for varying numbers of clusters, 
cluster sizes, and Intra Cluster Correlation (ICC) for the binary multilevel model by using 
simulated data. 

1.3 Data for the Study

In the simulation study, 1,000 datasets were generated under the four scenarios, namely, 
a large number of clusters with a large cluster size, a small number of clusters with a 
small cluster size, a large number of clusters with a small cluster size and a small number 
of clusters with a large cluster size. The above four conditions were varied within three 
standard deviation values of random effect. Therefore altogether 12,000 datasets were 
considered in the simulation study. Each dataset consisted of one explanatory variable and 
each observation consisted of a two level hierarchical structure where the first level referred 
to an individual observation and the second level to the cluster the observation belongs to. 
In addition, to illustrate the developed test for the binary logistic model, a dataset was taken 
from the inbuilt datasets of MLwiN software. The dataset used was a sub-sample from 
the 1989 Bangladesh Fertility Survey (Huq and Cleland, 1990). The response variable of 
interest refers to whether a woman was practicing contraception at the time of the survey 
or not and it is a binary response variable. The data has a two level hierarchical structure, 
with 2,867 women nested within 61 districts. 

1.4 Brief Description of the Theory

In order to develop the goodness of fit test for clustered binary data, initially the Hosmer and 
Lemeshow test (1980) for a single level was considered. The primary focus of the research 
was to extend the theory behind Hosmer’s and Lemeshow’s method to the multilevel binary 
case. 

In the ordinary logistic regression model, it is considered that the responses on each 
observation are independent of each other. However, this assumption is violated in multilevel 
studies because when the data are clustered, responses are correlated with each other 
within the cluster. When responses are correlated the ordinary logistic regression model is 
unsuitable as the standard errors will be biased. Therefore the ordinary logistic model should 
be adjusted suitably for the clustered effect. In order to adjust for the cluster effect, model-
based goodness of fit testing methods described in Lipsitz et al. (1996) and Abeysekera and 
Sooriyarachchi (2008) are incorporated within the multilevel model. 
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Multilevel Logistic Model 3 

1.5 Outline of the Paper

The following is an overview of the sections included in the paper. Section 1 consists of an 
introduction giving an insight into the research. Section 2 gives a literature review which 
supports in organizing the structure and domain of this research. Section 3 presents the 
methodology on which this research is based. Section 4 consists of a simulation study for 
determining the properties of the developed goodness of fit test. Section 5 illustrates the 
developed test by applying it to an example. The final section, section 6 consists of a general 
discussion and conclusion. 

2. Literature Review

2.1 Hosmer and Lemeshow Goodness of Fit Test for Binary Single Level Data

In binary data analysis, likelihood ratio deviance and Pearson chi-square statistics (Agresti, 
1984) can easily be used to assess the goodness of fit of the logistic regression model for 
binary responses. However, these two statistics are highly inflated for small sample sizes 
and the p-values associated with these two statistics based on the chi-square distribution 
are incorrect (Hosmer and Lemeshow, 2000). According to Hosmer and Lemeshow (2000), 
one way to avoid this problem is to collapse the columns into a fixed number of groups and 
then obtain the observed and expected frequencies. 

Hosmer and Lemeshow (1980) and Lemeshow and Hosmer (1982) proposed grouping 
strategies based on the values of the estimated probabilities of the logistic regression model. 
Suppose that the fitted logistic model contains p independent variables denoted by x’ =
(x1, x2, x3, . . .  .,xp) and the set of unique patterns from the p set of covariates is denoted by 
a Q row by p column (Q x p) data frame where the Q rows represent unique observations 
and the p columns denote covariates, then Q ≤ n. Therefore, denote the number of subjects 
with xq ’ = (xq1, xq2, xq3, . . .  .,xqp) by mq, q  = 1,2, . . . ..,Q. It follows that 

�
mq = n. 

Let yq denote the number of positive responses, y = 1, among the mq subjects with 
x = xq. It follows that, 

�
yq = n1, the total number of subjects with y = 1. Suppose for 

consideration of discussion, that Q = n. Consider that the n estimated probabilities are 
sorted in ascending order. Hosmer and Lemeshow (1980) grouped these sorted estimated 
probabilities into G groups based on the following grouping strategies. 

(1) Collapse the table into G groups based on the percentiles of the estimated 
probabilities 

(2) Collapse the table in to G groups based on fixed values of the estimated probabil
ities. 

Hosmer and Lemeshow (1980) test statistic, Ĉ is given by Ĉ = �G
g=1 

(Og−n�
gπg )

2 

n�
gπg(1−πg) where 

n�
g is the total number of subjects in the gth group, cg denotes the number of covariate patterns 

in the gth group where Og = �cg

j=1 yj is the number of responses among the cg covariate 

patterns, and π̄g = �cg

j=1 
mj π̂j

n�
g

is the average estimated probability, where π̂j = exp[hh(x)] 

1+exp[hh(x)] 
where is the estimated logit. 

Though G = 10 groups is the most popular, there is a range of values that can be 
used to define G. As discussed by Hosmer and Lemeshow (1989), as a general rule, G 
should be chosen such that 6 ≤ G < n/5r where r is the number of response levels (in this 
case r = 2 as the response is binary). Using simulations, Hosmer and Lemeshow (1980) 
demonstrated that, when Q ∼= n and the fitted logistic regression model is the correct 
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4 Perera et al. 

model, the distribution of the statistic Ĉ by Hosmer et al. (1988) have shown that the 
grouping method based on percentiles of the estimated probabilities is preferable to the 
one based on fixed cut points in the sense of better adherence is well approximated by 
the chi-square distribution with G-2 degrees of freedom, χ2 

(G−2). Additional research to the 
χ2 

(G−2) distribution, especially when many of the estimated probabilities are small (i.e. less 
than 0.2). Lipsitz et al. (1996) extended the method of Hosmer and Lemeshow (1980) to a 
model based approach. 

2.2. Current Goodness of Fit Tests for Multilevel Studies with Binary Responses

Hosmer and Lemeshow (2000) suggested goodness of fit tests based on the design of 
the study. Archer and Lemeshow (2006) studied a method for assesing goodness of fit 
for clustered binary data and Archer et al. (2006) additionally proposed alternative design-
based goodness of fit tests for logistic regression models. Graubard et al. (1997) proposed an 
alternative grouping method for establishing deciles of risk for the Hosmer and Lemeshow 
goodness of fit test. Sturdivant and Hosmer (2007) extended the goodness of fit measures 
used in the standard logistic setting to the hierarchical case. Sturdivant and Hosmer (2007) 
also developed Kernel smoothed versions of the statistics and applied a bias correction 
method to the uncorrected sums of squares (USS) and Pearson statistics. Pardoe (2004) 
extended the Bayes Marginal Model Plot (BMMP) assessment technique from a traditional 
logistic regression setting to a multilevel application in the area of criminal justice. 

3. Methodology

3.1 Novel Goodness of Fit Test

According to the literature, there is no satisfactory goodness of fit test to check the fit 
of multilevel binary logistic models. Therefore the main concern of this research is to 
develop a goodness of fit test for multilevel binary data based on the single level Hosmer 
and Lemeshow (1980) goodness of fit test (Here the approach is to collapse the table 
according to the percentiles of the estimated probabilities based on the multilevel logistic 
regression model) and on the Lipsitz et al. (1996) method to include indicator variables to 
the multilevel binary logistic regression model. The test that will be developed has some 
features similar to the F-adjusted Wald test developed by Archer et al. (2006) . However, 
the F-adjusted Wald test has resulted in an inflated Type I error rate, while the power of this 
particular test is small. 

3.1.1 Development of the New Goodness of Fit Test. Multilevel data are implicitly ‘hier
archical’ in so far as there is a clear nesting of ‘lower level’ units (i) within ‘higher’ level 
units (j). Let yij denote the binary response of the ith lower level individual unit within the 
jth higher level (second level) to which that unit belongs and πij denotes the probability 
corresponding to yij where πij = Pr(yij = 1). 

The multilevel binary logistic model has the following form when there is a single 
explanatory variable, xij, measured at the lower level. In this case, the single-level model 
can be extended to a two-level random intercept model (Goldstein, 2003) 

logit(πij ) = β0j + β1xij where β0j = β0 + u0j and u0j ∼ N (0, σ 2 
u0) (3.1) 

i = 1,2, . . .  . . .  ,  nj and j = 1,2, . . .  . . .  .,  k where k is the number of clusters. 
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Multilevel Logistic Model 5 

The novel goodness of fit test is developed using the following steps. 

Step 1: The multilevel logistic regression model for binary response data as in Eq. (3.1) 
is initially fitted and the model parameters are estimated by using the second 
order Penalized Quasi Likelihood (PQL) method (if there exists a conver
gence problem an intermediate choice of estimation procedure can be applied) 
(Browne, 2004). 

Step 2: The  π ij for the ith observation in the jth cluster is estimated from the fitted model. 
Step 3: In the Hosmer and Lemeshow test, the are assumed to be independent and 

not correlated as in clustered data. Thus in this test, the estimated and sorted 
probabilities of the entire dataset are collapsed into ‘G’ groups. The multilevel 
data structures consist of data measured at multiple levels. Data structured in this 
way are implicitly ‘clustered’ or ‘hierarchical’ in so far as there is a clear nesting 
of ‘lower level’ units (i) within ‘higher’ level units (j). Such data are correlated 
within clusters. Thus it is not possible to directly rank the estimated probabilities 
within each cluster. In order to overcome this problem the method of Rosner, 
Glynn, and Tinglee (2003) which is an asymptotic approach of ranking clustered 
data is used. Here the ranking of the estimated probabilities is done among all 
units over all clusters. The estimated probabilities are sorted and ranked in 
ascending order. It is important to note that the overall ranking system will 
be preserved within each cluster too. As the ranking system is thus preserved 
within each cluster, and the observations in different clusters are independent 
of each other (no between cluster correlation), the Hosmer and Lemeshow test 
(1980) approach can now be applied within cluster. Accordingly, using the 
Hosmer and Lemeshow (1980) method, the estimated and sorted probabilities 
are collapsed in to ‘G’ groups within each cluster, where G is a positive integer. 
Generally, probabilities are partitioned into 10 groups. Within a cluster the 
estimated probabilities are allocated into regions (groups) such that the first 
group contains observations with the smallest predicted probabilities and the 
last group contains observations with the largest probabilities. According to the 
partition of the data, the goodness of fit test is formulated by defining (G-1) 
group indicator variables for each cluster (where G is the number of groups 
into which each cluster is partitioned). 
Then the indicator variable, 
Igij

= 1; if πij is in region g 
= 0; otherwise 
where g = 2,3, . . .  . . .  .,G.  

Step 4: The probabilities in each cluster (πij ) are sorted with respect to the observation 
index (the dataset arranged in the same order before the data are sorted). 

Step 5: Then to assess the goodness of fit of model (3.1) it is compared with the 
alternative model (3.2) that has to be constructed by using indicator variables. 
As observations between clusters are independent, all indicator variable values 
are pooled to form a single indicator variable for all the clusters. Therefore the 
newly developed method can also be used in the same way as the Hosmer and 
Lemeshow test (1980). 

logit(πij ) = β0j + β1xij +
n�

g=2 

γgIgij
(3.2) 
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6 Perera et al. 

where β0j = β0 + u0j and u0j ∼ N (0, σ 2 
u0) 

10 �

g=2 

γgIgij
= γ2I2ij

+ γ3I3ij
. . . . . . . . . γ10I10ij

i = 1,2, . . .  . . .  ,  nj and j = 1,2, . . .  . . .  .,  k where k is the number of clusters. 
Step 6: The model (3.2) is fitted as mentioned in step 1. 
Step 7: The joint Wald statistic (Liao, 2004) is calculated by using MLwiN software 

for model (3.2) to check the hypothesis : 

H0 : γ2 = γ3 = . . . . . . . . . = γn = 0; that is, all the coefficients of the indicator 
variables are equal to zero, and H1 : Not all the coefficients of indicator variables 
are equal zero. 

If all the indicator variables are simultaneously not significantly different
from zero, it indicates that there is no evidence for lack of fit in the model
(3.1) and if not, it implies that the model under consideration (3.1) has a 
questionable fit. If H0 is not rejected, it implies that there is no evidence for 
lack of fit of the model (3.1), and if H0 is rejected it implies that model (3.1) 
does not fit the data adequately. This is the basic concept behind this novel 
goodness of fit test. 

Step 8: The test is performed at α% significance level. If the calculated joint Wald 
statistic value is greater than the χ2 

(n-1)α% value, then the null hypothesis is 
rejected at α% significance level and therefore it can be concluded that model 
(3.1) does not fit the data well. If the calculated joint Wald statistic value is 
less than the χ2 

(n−1)α% value, then the null hypothesis is not rejected at α% 
significance level and it can be concluded that there is no evidence for the
lack of fit of the model (3.1). 

The eight steps given above describe the goodness of fit testing procedure for assessing 
model adequacy for multilevel binary data. 

4. Simulation Study to Determine the Properties of the Novel Goodness of
Fit Test for Clustered Data

In this section a binary response variable yij which represents the ith individual in the 
jth cluster and a continuous explanatory variable xij which represents the value of the 
explanatory variable for the ith observation in the jth cluster are considered in order to 
handle the multilevel nature in the simulated data. 

4.1 Introduction to the Simulation Study

There are no restrictions on the selection of a distribution to simulate the explanatory 
variable from for performing the novel goodness of fit test. Archer et al. (2007) suggest the 
Bernoulli distribution, normal distribution, and uniform distribution. Hdett (1999) suggests 
the normal and uniform distributions. In our dataset, the explanatory variable is simulated 
from a normal distribution. 

After simulating the data, this study uses MLwiN v2.19 to fit the multilevel models. 
Once the type of model has been specified, it is necessary to determine the estimation 
procedure and the linearization. The PQL method with second order terms of the Taylor 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ol
om

bo
] 

at
 0

7:
37

 2
6 

N
ov

em
be

r 
20

15
 



Multilevel Logistic Model 7 

series expansion will yield more precise estimates than the other available quasi-likelihood 
estimation methods in MLwiN (Browne, 2004). Therefore the PQL procedure is used as 
the estimation procedure in the simulations. According to Browne (2004), the second order 
PQL method is less stable and convergence problems may be encountered. Therefore the 
intermediate choice, the first-order PQL was used whenever such problems arose. 

4.1.1 Parameters Used in the Simulation Study. The simulation procedure was carried out 
by varying three main conditions in order to generate datasets with various properties. 
These main conditions are, 

Condition 1 : Number of clusters (15 and 61) 
Condition 2 : Observations per cluster (20 and 50) 
Condition 3 : Intra cluster correlation or standard deviation (1, 1.5, and 2) 

The number of clusters and the cluster size were selected on the basis of the guidelines 
set out by Maas et al. (2005) , Van et al. (1997) and Kreft et al. (1998) . The number 
of clusters was chosen so that, the smaller cluster size is 15 and the larger cluster size is 
61. The choice of this larger cluster size is dependent on the inbuilt dataset in MLwiN 
software. As the simulation study initially used parameters from this inbuilt dataset which 
was a sub-sample from the 1989 Bangladesh Fertility Survey (Huq and Cleland, 1990), the 
same cluster size was used in our study. The observations per cluster were selected such 
that the number of observations per cluster in the smaller cluster is 20 and the number 
of observations per cluster in the larger cluster is 50. Each of these four combinations 
was simulated under three different ICC values by considering three different standard 
deviations. The combinations were named as follows. 

Dataset A: 61 clusters with 50 observations in each cluster (Altogether 3050 observations). 
Dataset B: 15 clusters with 20 observations in each cluster (Altogether 300 observations). 
Dataset C: 61 clusters with 20 observations in each cluster (Altogether 1220 observations). 
Dataset D: 15 clusters with 50 observations in each cluster (Altogether 750 observations). 

For each of the 12 (2×2×3) conditions, a thousand datasets were generated. An MLwiN 
macro was used in order to generate the datasets and perform the developed goodness of 
fit test. This is included in the supplementary material. 

4.1.2 Data Generation Procedure. As discussed in section 4.1.1, by using 12 conditions, 
12,000 datasets were generated to determine whether the type I error holds for the developed 
test. Another 12,000 datasets were generated to determine the power of the developed test. 
The null and alternative hypotheses are, 

H0 : The multilevel binary logistic model fits the data well; 
H1 : The multilevel binary logistic model does not fit the data well 
In order to generate the datasets, MLwiN macros were used with selected parameter 

estimates. 
Before directly selecting parameters for the study, a small trial and error analysis was 

conducted and then the following parameters were selected. 
β0= − 0.686 and β1= 0.707 
4.1.2.1 Generation of Datasets Under the Null Hypothesis. In the data generation 

procedure, first the explanatory variable was generated from the normal distribution with 
selected parameters. Here the normal distribution with mean 2 and variance 1 (xij ∼
N (2, 1)) was used. Then according to the value of standard deviation, the random effect u0j 

was generated from the normal distribution because, according to the theory of multilevel 
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8 Perera et al. 

Table 1
Observed Type I error rates for the simulation study 

Number of 
significant Rejection 

datasets proportion Result 

standard deviation is 1.0 k = 61, n = 50 58 0.058 Within the limits 
k = 15, n = 20 37 0.037 Just within limits 
k = 61, n = 20 51 0.051 Within the limits 
k = 15, n = 50 47 0.047 Within the limits 

standard deviation is 1.5 k = 61, n = 50 53 0.053 Within the limits 
k = 15, n = 20 38 0.038 Just within limits 
k = 61, n = 20 44 0.044 Within the limits 
k = 15, n = 50 51 0.051 Within the limits 

standard deviation is 2.0 k = 61, n = 50 46 0.046 Within the limits 
k = 15, n = 20 13 0.013 Outside the limits 
k = 61, n = 20 49 0.049 Within the limits 
k = 15, n = 50 48 0.048 Within the limits 

Note: 5% significance level was considered, k represents the number of clusters, and n represents 
the number of observations per cluster. 

data, u0j ∼ N (0, σ 2 
u0). After xij and u0j were generated from the normal distribution, the 

respective probabilities of the fitted logistic models were estimated for the selected β0 and 
β1 parameter values. 

The fitted model under the null hypothesis can be represented by 

logit(πij ) = β0j + 0.707xij where β0j = −0.686 + u0j and u0j ∼ N (0, σ 2 
u0) 

i = 1,2, . . .  . . .  ,  nj and j = 1,2, . . .  . . .  .,  k where k is the number of clusters. 
Table 1 gives the results of the simulation study for the Type I error for each simulation 

condition. 
For the developed goodness of fit test, the Type I error rate clearly holds under condi

tions A, C, and D, irrespective of the standard deviation values. 
Under condition B, the Type I error rate is marginal, being just on the lower border 

of the 95% probability interval when the standard deviation is 1.0 and 1.5. The reason 
for this can be explained by the fact that small number of clusters and small cluster sizes 
result in poor estimation of the fixed and random coefficients leading to bias in the joint 
Wald statistics and hence marginal convergence probabilities (Maas et al., 2005). When the 
standard deviation is 2.0 under condition B, the developed goodness of fit has a conservative 
Type I error rate. 

Also the marginal Type I error rate for small sample size arising from a small number 
of clusters of small size (condition B), can be attributed to the fact that in the developed 
goodness of fit test, the method of indicator variable allocation works only for at least 
moderately large samples as explained by Rosner et al. (2003). 
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Multilevel Logistic Model 9 

Table 2
Observed results for the simulation study under power analysis I 

Rejection Proportion 

μ = 2, μ = 2, μ = 2, μ = 3, 
σ = 1, σ = 2, σ = 3, σ = 3, 

CV = 0.5 CV = 1.0 CV = 1.5 CV = 1.0 

standard deviation
is 1.0

K = 61, n = 50 0.622 1.000 1.000 1.000 

K = 15, n = 20 0.06 0.234 0.493 0.232 
K = 61, n = 20 0.210 0.857 1.000 0.881 
K = 15, n = 50 0.157 0.811 0.991 0.848 

standard deviation
is 1.5

K = 61, n = 50 0.571 1.000 1.000 1.000 

K = 15, n = 20 0.067 0.188 0.435 0.202 
K = 61, n = 20 0.194 0.845 0.993 0.832 
K = 15, n = 50 0.162 0.766 0.982 0.800 

standard deviation
is 2.0

K = 61, n = 50 0.522 1.000 1.000 1.000 

K = 15, n = 20 0.041 0.169 0.377 0.176 
K = 61, n = 20 0.163 0.769 0.991 0.772 
K = 15, n = 50 0.153 0.712 0.958 0.744 

Note: 5% significance level was considered, k represents the number of clusters, and n represents 
the number of observations per cluster. 

4.2 Study of Power

It is important to discuss the power of the developed goodness of test by using a simulation 
study. The power of the test is associated with Type II error, β, where, 

Power = 1 − β = Pr(reject H0|H1 is true) 

The data were generated from the model under the alternative hypothesis. Here, in the 
power analysis, the model fitted to the data is mis-specified in the sense that the model fitted 
uses an incorrect form of the explanatory variable to the model generating the data. This 
mis-specification took the following form. The simulated data used a transformation of x, 
namely, logX2, as the explanatory variable whereas the fitted model used the raw form of 
X. The β0 and β1 of this model was taken to be −0.686 and 0.3535. For each combination 
of number of clusters, cluster size and variance of random effect term used previously the 
rejection proportion of the null hypothesis out of 1,000 was obtained. Initially, the variance 
of the predictor variable (X) was taken to be 1 as X was simulated from a N(2,1). Therefore 
the random effect was larger than the covariate effect. This attributed to poor power. Thus 
more simulations where the covariate (X) was taken to have more explanatory power were 
done and all this is given in Table 2. 

As the standard deviation of the random effect increases, the power of the test decreases. 
For a given standard deviation the power increases with increasing number of first level 
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10 Perera et al. 

Table 3
Observed results for the simulation study under power analysis II 

Standard Deviation 
of Random Effect Combination 

No. of 
significant 

datasets 
rejection 

proportion 

standard deviation
is 1.0

15 clusters with
20 observations

413 0.413 

61 clusters with
20 observations

716 0.716 

15 clusters with
50 observations

559 0.559 

61 clusters with
50 observations

998 0.998 

standard deviation
is 1.5

15 clusters with
20 observations

114 0.114 

61clusters with
20 observations

553 0.553 

15 clusters with
50 observations

401 0.401 

61 clusters with
50 observations

966 0.966 

standard deviation
is 2.0

15 clusters with
20 observations

110 0.110 

61clusters with
20 observations

286 0.286 

15 clusters with
50 observations

259 0.259 

61 clusters with
50 observations

804 0.804 

units. It is also clearly seen that the power increases dramatically with increasing coefficient 
of variation of the covariate where the covariate has more explanatory power. 

Another scenario was examined for power where the data were generated from the 
model under the alternative hypothesis which used two covariates, the first from a uniform[
3, 3] and the second from a Bernoulli(0.5). The β0, β1 and β2 of this model were taken to 
be −0.3, 1.8, and 10, respectively. The parameters and distributions were selected using 
both Liu(2007) and trial and error methods. The model fitted to the data was taken to have a 
misspecified linear predictor in the sense that the model fitted uses only the first explanatory 
variable. The results of this study are given in Table 3. 

The results of Table 3 shows the same pattern of power as Table 2. 

5. Application to an Example

5.1 Description of the Example

The example dataset was taken from the inbuilt datasets of MLwiN software. This dataset 
was a sub-sample from the 1989 Bangladesh Fertility Survey (Huq and Cleland, 1990). The 
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Multilevel Logistic Model 11 

Table 4
Description of potential analytical factors 

Variable Variable description Base category 

Lc Number of living children at time of survey. None 
Age Age of woman at time of survey centered on the 

sample mean of 30 years 
— 

Urban Type of region of residence Rural 
Educ Woman’s level of education None 
Hindu Woman’s religion Muslim 
d lit Proportion of women in the district who are literate — 
d pray Proportion of Muslim women in the district who pray 

every day 
— 

response of interest is binary and refers to whether a woman was practicing contraception 
at the time of the survey or not. The dataset consisted of 7 explanatory variables spread 
across two main levels. The second level unit of the dataset can be identified as the district 
to which each woman belongs, while the first level unit comprises of an individual woman. 
Table 4 shows the potential analytical factors/covariates and their base categories. 

5.1.1 Data Preparation. The dataset consisted of 61 clusters. However, for our example, 
only 49 clusters were considered, omitting very sparse clusters with less than 20 obser
vations. In the original example, 12 clusters had observations numbering less than 20. In 
order to get proper parameter estimates, these 12 clusters were ignored and the remaining 
clusters were renamed. Thus our example consists of 49 clusters having a total of 2711 
observations. The data are included with the supplementary material. 

5.2 Model Fitting

Initially it is necessary to identify the variables that have a significant impact on the response 
variable. The forward selection method with significance level of 5% (0.05) was used to 
select a suitable model. (Blanchet et al., 2008). 

When selecting important variables to the model, the Wald statistic associated with 
the variable was used instead of the likelihood ratio (or deviance) test statistic, which is 
the standard statistic used in the basic logistic regression model. The reason for this is 
that for discrete response multilevel models the likelihood test is not available in MLwiN. 
Parameter estimates are obtained from the quasi-likelihood method PQL2. 

5.2.1 Final Main Effects Model. The final main effects model consists of six fac
tors/covariates. The logistic regression model selected by the forward selection procedure 
is 

logit(pij ) = β0j + 1.197lc 1ij + 1.504lc 2ij + 1.546lc 3ij + 0.239educ 2ij

+ 0.697educ 3ij + 1.99educ4ij
+ 0.539urbanij + 0.423hinduij

− 0.019ageij − 1.039d prayij

β0j = −1.626 + u0j (5.1) 
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12 Perera et al. 

Table 5
Parameter estimates, standard errors, Wald statistics and p-values of the main effects model 

Factor/Covariate Category β̂ (SE ( β̂)) Wald statistic p-value 

Lc Child 1.197(0.138) 75.237 < 0.0001 
2 children 1.504(0.151) 99.207 < 0.0001 
3 or more children 1.546(0.157) 96.966 < 0.0001 

Age — −0.019(0.007) 7.367 0.0033 
urban Urban 0.539(0.107) 25.375 < 0.0001 
Educ Lower primary 0.239(0.132) 3.278 0.0702 

Upper primary 0.697(0.147) 22.482 < 0.0001 
Secondary+ 1.199(0.131) 83.771 < 0.0001 

hindu Hindu 0.423(0.131) 10.426 0.0012 
d pray Pray −1.039(0.519) 4.008 0.0453 

where pij is the probability of practicing contraception at the time of the survey for the 
ith observation in the jth cluster. The terms within parentheses are the standard errors of 
the estimated parameters. Table 5 gives the parameter estimates, standard errors, Wald 
statistics, and fitted values of the main effects model. 

Results of Table 5 show that with increasing number of children, the odds of 
Bangladeshi women using contraceptives increases. With increasing age, the odds of 
Bangladeshi women using contraceptives decreases. The odds of Bangladeshi women 
using contraceptives are higher in urban areas compared to rural areas. As the education 
level increases, the odds of Bangladeshi women using contraceptives increases. Hindus 
have higher odds of contraceptive use than Muslims. Women who pray have lower odds of 
contraceptive use than those who do not pray. 

Adhering to the principal of parsimony, the main effects model is preferred over the 
interaction model, because the main effects model is less complex and more comprehensible 
than the interaction model. 

5.3 Goodness of the Fitted Model

In this section, the developed goodness of fit test for the multilevel clustered binary logistic 
model is applied to the final model for the example dataset as explained in section 3. 

In the example dataset, most of the clusters consisted of observations that were not 
divisible by 10. Therefore according to Abeysekara and Sooriyarachchi (2009), indicator 
variables were defined for this multilevel data as follows. 

gi = Number of observations in the ith cluster 

10 

If i ≤ a ∗gi then I = a for a = 1,2,3, . . . . . . ,10; where i = 1, 2, . . . , 49 and I represents 
the indicator variable. 

Therefore each cluster had a different count of indicator variables. In this goodness of 
fit test the null hypothesis is; 

H0: The model fits the data well. 
versus the alternative hypothesis; 
H1: The model does not fit the data well. 
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Multilevel Logistic Model 13 

Table 6
Parameter estimates, standard errors, Wald statistics and p-values of the Goodness 

of fit model 

Factor/Covariate Category β̂ (SE ( β̂)) Wald statistic p-Value 

Lc Child 1.129(0.255) 19.602 0.000010 
2 children 1.424(0.321) 19.679 0.000009 
3 or more children 1.453(0.337) 17.830 0.000024 

Age — −0.018(0.009) 4.000 0.045500 
Urban Urban 0.562(0.140) 16.114 0.000060 
Educ Lower primary 0.262(0.145) 3.265 0.070773 

Upper primary 0.774(0.199) 15.127 0.000101 
Secondary+ 1.220(0.241) 25.626 < 0.000001 

Hindu Hindu 0.459(0.149) 9.490 0.002066 
d pray Pray −1.022(0.518) 3.893 0.048488 
I g I 2 −0.333(0.258) 1.665 0.196930 

I 3 −0.160(0.283) 0.320 0.571608 
I 4 0.071(0.310) 0.052 0.819619 
I 5 0.114(0.327) 0.122 0.726875 
I 6 0.091(0.345) 0.070 0.791337 
I 7 0.033(0.365) 0.008 0.928730 
I 8 −0.056(0.393) 0.020 0.887537 
I 9 −0.065(0.439) 0.022 0.882087 
I 10 −0.137(0.523) 0.069 0.792798 

Then to assess the goodness of fit of the final main effects model, i.e., model (5.1), the 
alternative model (5.2) is constructed. 

logit(pij ) = β0j + 1.129lc 1ij + 1.424lc 2ij + 1.453lc 3ij + 0.262educ 2ij

+ 0.774educ 3ij + 1.220educ4ij
+ 0.562urbanij + 0.459hinduij

− 0.018ageij − 1.022d prayij +
10 �

g=2 

γgI gij

β0j = −1.557 + u0j (5.2) 

where I gij is the indicator variable of the gth group for the ith observation in the jth cluster. 

10 �

g=2 

γ1gI gij = −0.333I 2ij − 0.160I 3ij + 0.071I 4ij + 0.114I 5ij + 0.091I 6ij

+ 0.033I 7ij − 0.056I 8ij − 0.065I 9ij − 0.137I 10ij

If model (5.1) is correctly specified, then the H0: The model (5.1) fits correctly to the 
data is not rejected and it indicates that, γ2 = γ3 = . . . . . . .. = γ10 = 0. 
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14 Perera et al. 

Table 6 gives the parameter estimates, standard errors, Wald statistics and p-values of 
the goodness of fit model (model 5.2) 

By using the MLwiN software, the joint Wald statistic was calculated for model (5.2) 
in order to check the hypothesis, 

H0 : γ2 = γ3 = . . .  . . .  ..= γ10 = 0, that all the coefficients of the indicator variables 
are equal to zero. 

H1 : Not all the coefficients of the indicator variables are equal to zero. 
The joint Wald statistic obtained was 7.308 on 9 degrees of freedom giving a p-value 

of 0.6051. As the p-value is much larger than 0.05, it can be concluded thatγ2 = γ3 = .... =
γ10 = 0 is not rejected at 5% significant level and hence, it can be concluded that model 
(5.1) that is the model without indicator variables fits the data well. One might argue based 
on the results of Table 2 that if the coefficient of variance in the covariates are small for this 
example (e.g.: around 0.5) this corresponds to a maximum power in Table 2 for 61 clusters 
of 0.622 and the number of clusters in this example dataset is only 49 and thus the power of 
rejecting the null hypothesis of a well-fitting model when the model does not in reality fit 
well could be small for this example. However, Hoenig and Heisey (2001) explain that that 
this is a misconception about the relationship between observed power and p-value which 
often appears in the applied literature. 

6. Discussion and Conclusions

6.1 Discussion

Many of the tests proposed for goodness of fit of binary data can be used only under the 
assumption that the observations in the sample are independent, that is under the single 
level case (Liu, 2007). It is not always possible to deal with single level data structures 
and there are many instances in practice where the dataset is clustered or hierarchical, 
resulting in multilevel data structures. One of the methods of handling the within cluster 
correlation in multilevel data is by fitting a multilevel model (Steenbergen and Jones, 
2002). Although multilevel modeling can be used, for discrete responses, there are very 
few satisfactory techniques to assess the goodness of fit of the fitted multilevel models in 
specialized packages like MLwiN (Browne, 2004). 

Therefore, the main objective of this research was to develop a goodness of fit test to 
assess model adequacy of multilevel binary logistic models. The secondary objective was 
to identify the properties of the developed goodness of fit test under different scenarios; 
that is, to test the effect of different numbers of clusters, different numbers of observations 
per cluster and different intra cluster correlations on the power of the test and Type I error 
rates for the developed novel technique. 

In order to achieve the above-mentioned prime objective, this research extends the 
method of Hosmer and Lemeshow (1980) to the multilevel binary logistic regression 
model. To identify the properties of the developed test, a simulation study was used. This 
was subdivided into two main sections. These are simulations to determine the Type I error 
rate of the developed test and simulation to identify the power of the developed test. In 
the case of the simulation study for Type I error, the twelve different sets of simulations 
cover twelve different scenarios. These different simulation studies provide evidence that 
the Type I error holds for the novel goodness of fit test for eleven out of twelve conditions. 
In this simulation study, it is evident that when the number of clusters and the cluster 
size are both small, the convergence probability is marginal. The reason for this can be 
explained by the fact that a small number of clusters and a small cluster size results in poor 
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Multilevel Logistic Model 15 

estimation of the fixed and random coefficients leading to bias in the joint Wald statistics 
and hence marginal convergence probabilities (Maas et al., 2005). The study of Moineddin 
et al. (2007) explains the reason behind this phenomena well. The marginal Type I error 
rate for small sample size arising from a small number of clusters of small size can also 
be attributed to the fact that in the developed goodness of fit test, the method of indicator 
variable allocation works only for at least moderately large samples, as explained by Rosner 
et al. (2003). In the simulation studies for power, the developed goodness of fit test gave 
highest power against the mis-specified functional form when both the number of clusters 
and the number of observations per cluster were large, the standard deviation of the random 
effect was low and the coefficient of variation of the covariate was high. As the number of 
clusters and the number of observations per cluster decreases, the developed goodness of fit 
test tends to have smaller power. When both the number of clusters and the cluster size are 
small, the developed test shows lowest power for any given ICC value. This phenomenon 
of low sample size resulting in low power was also seen in Hosmer and Lemeshow (1980) 
original test. It was observed that as the standard deviation of the random effect increased 
from 1.0 to 2.0, the power of the test decreased by small amounts for all combinations. It 
was seen that as the coefficient of variation of the covariate increased, the power of the test 
also increased. 

The application to the dataset illustrated that this test can be easily generalized to the 
case of an unequal number of observations per cluster. 

6.2 Conclusions

The developed goodness of fit test is a direct generalization of the Hosmer and Lemeshow 
test (1980) for a single level logistic regression model. In order to apply the newly proposed 
goodness of fit test, explanatory variables can be categorical or continuous and from any 
distribution. The developed test can be applied with unequal cluster sizes. The developed test 
is not based on complex theories and anyone who can understand the single level Hosmer 
and Lemeshow test can easily understand this test. For the multilevel binary logistic model, 
the Type I error holds for the developed test for a large number of clusters with a large 
cluster size, a large number of clusters with a small cluster size and for a small number of 
clusters with a large cluster size. The developed goodness of fit test has low power when 
there is a small number of clusters with a small number of observations per cluster and 
high power for a large number of clusters with a large number of observations per cluster. 
The same phenomenon was observed in Hosmer and Lemeshow (1980) test for a single 
level binary logistic regression model and since this novel technique is an extension of the 
Hosmer and Lemeshow (1980) method it is so for this test also. The developed goodness 
of fit test is superior to all the goodness of fit tests considered by Archer et al. (2006) in 
terms of the Type I error rate. It is comparable to the goodness of fit test of Sturdivant and 
Hosmer (2007) in terms of Type I error but is far simpler and easier to understand. Also, 
Sturdivant and Hosmer (2007) have not studied the power of their test. 

6.3 Further Work

We are working towards applying this test to the random slope model and extending it to 
the ordinal categorical case and the proportional odds model. 
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