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The thioredoxin (Trx) system plays a significant role in cellular antioxidative defense by dismutating the
surpluses of reactive oxygen species. Thus, the role of thioredoxin reductase (TrxR) cannot be ignored, owing
to its participation in initiating the Trx enzyme cascade. Here, we report the identification and molecular charac-
terization of a teleostean TrxR (RbTrxR-3) ortholog that showed high similarity with the TrxR-3 isoforms of other
vertebrates. The complete RbTrxR-3 coding sequence comprised 1800 nucleotides, encoding a 600-amino acid
protein with a predicted molecular mass of ~66 kDa. RbTrxR-3 consisted of 16 exons separated by 15 introns
and had a total length of 12,658 bp. In silico analysis of the RbTrxR-3 protein sequence revealed that it possesses
typical TrxR domain architecture. Moreover, using multiple sequence alignment and pairwise sequence
alignment strategies, we showed that RbTrxR-3 has high overall sequence similarity to other teleostean TrxR-3
proteins, including highly conserved active site residues. Phylogenetic reconstruction of RbTrxR-3 affirmed its
close evolutionary relationship with fish TrxR-3 orthologs, as indicated by its clustering pattern. RbTrxR-3 tran-
scriptional analysis, performed using quantitative polymerase chain reaction (qPCR), showed that RbTrxR-3
was ubiquitously distributed, with the highest level of mRNA expression in the blood, followed by the gill, and
liver. Live bacterial and viral stimuli triggered the modulation of RbTrxR-3 basal transcription in liver tissues
that correlated temporally with that of its putative substrate, rock bream thioredoxin1 under the same conditions
of pathogenic stress. Finally, resembling the typical function of TrxR protein, purified recombinant RbTrxR-3
showed detectable dose-dependent thiol reductase activity against 5,5’-dithiobis (2-nitrobenzoic) acid. Taken
together, these results suggest that RbTrxR-3 plays a role in the host Trx system under conditions of oxidative
and pathogenic stress.
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1. Introduction

Abbreviations: Trx, thioredoxin; TrxR, thioredoxin reductase; PCR, polymerase chain
reaction; qPCR, quantitative real time PCR; NADPH, nicotinamide adenine dinucleotide
phosphate; ROS, reactive oxygen species; NADH, nicotinamide adenine dinucleotide;
FAD, flavin adenine dinucleotide; Cys, cysteine; Val, valine; Gly, glycine; Asn, asparagine;
bp, base pairs; GS-FLX, genome sequencer-FLX; cDNA, complementary DNA; gDNA,

Mariculture is a branch of aquaculture that is dedicated to the cul-
tivation of edible marine organisms, especially for human consump-
tion. This industry has increased in prominence, owing to the fact
that marine organisms are a suitable alternative for current terrestri-

genomic DNA; RNA, ribose nucleic acid; mRNA, messenger ribonucleic acid; BLAST, basic
local alignment search tool; SMART, simple modular architecture research tool; EXPASy,
Expert Protein Analysis System; MEGA, molecular evolutionary genetics analysis
software; BAC, bacterial artificial chromosome; NCBI, National Center for Biotechnology
Information; PBS, phosphate buffered saline; OD, optical density; IPTG, isopropyl-p3-
thiogalactopyranoside; DTNB, 5, 5’-dithiobis (2-nitrobenzoic) acid; SECIS, selenocysteine
insertion sequence; MBP, maltose binding protein; RBIV, rock bream irodovirus; NF-kB,
nuclear factor KB; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis;
p.i., post injection; SD, standard deviation; UTR, untranslated region; pl, microliter;
dNTPs, deoxynucleotide triphosphates; °C, degrees of Celsius; ng, nanogram; rpm,
revolutions per minute; h, hours; kDa, kilodalton.
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al resources, and can fulfill the daily nutritional requirements of an
ever-increasing global population. In this regard, marine fish cultiva-
tion represents a large segment of the mariculture industry, because
fish consumption has worldwide popularity. One such delicacy, rock
bream (Oplegnathus fasciatus), is a cultivable aqua-crop that current-
ly accounts for a considerable proportion of global commercial aqua-
culture yields, especially in East and South East Asian countries
including China, Japan, and Korea. However, marine teleost fish
such as rock breams, which are cultivated using intensified technol-
ogy and under high population densities, are regularly exposed to a
wide range of stress factors, most of which can negatively impact
on their growth and survival. Pathogenic infections as well as
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environmental perturbations such as temperature fluctuations,
xenobiotics, and hypoxic or hyperoxic conditions may have severe
consequences, as these are the main factors responsible for inducing
oxidative stress in these animals (Mohapatra et al., 2013). Thus,
investigation of naturally existing antioxidative defense mecha-
nisms, especially those elicited under conditions of pathogenic stress
in aquacultured fish species like rock bream, is required for the
development of a stress-free, sustainable, fish-based aquaculture
industry aimed at achieving high productivity.

The cellular antioxidative defense system plays a key role in main-
taining redox balance in organisms and preventing oxidative stress by
reducing excessive production of reactive oxygen species (ROS), such
as peroxides, superoxides, and hydroxyl radicals, which is triggered as
a primary host immune defense mechanism against pathogen invasion
(Nordberg and Arner, 2001). Endogenous antioxidants including super-
oxide dismutase, catalase, glutathione, thioredoxin, and glutathione
peroxidase play prominent roles in this process, participating in differ-
ent mechanisms that reduce ROS surpluses. Among these protective
mechanisms, the thioredoxin system, which includes nicotinamide
adenine dinucleotide phosphate (NADP), thioredoxin reductase
(TrxR), and thioredoxin (Trx) as its molecular components, has an in-
dispensable role in controlling oxidative stress and regulating apoptosis
(Lu and Holmgren, 2012).

Trx proteins are known to be involved in a wide range of functions in
their reduced forms. They provide reducing equivalents to enzymes
such as ribonucleotide reductase (Laurent et al., 2013) and thioredoxin
peroxidase (Chae et al., 1994), facilitating DNA synthesis and antioxi-
dant defense by reducing ribonucleotides to deoxyribonucleotides and
breaking down hydrogen peroxide, respectively. Moreover, extracellu-
lar Trx proteins and the truncated form Trx80 were found to participate
in inflammatory responses by acting as cytokines and co-cytokines
(Nordberg and Arner, 2001). In addition, cell growth induction
(Gasdaska and Powis, 1995) and apoptosis inhibition (Baker et al.,
1997) are two subsidiary functions of reduced Trx proteins. However,
in order to perform these vital functions, oxidized Trx must be reduced
by TrxR-mediated catalysis in the presence of NADH or NADPH as an
electron donor. To date, TrxR is the only known enzyme that can reduce
Trx proteins, reinforcing its essential role in the thioredoxin system.

TrxRs belong to the flavoprotein family of pyridine nucleotide-
disulfide oxidoreductases, which also includes several enzymes
involved in cellular oxidation and reduction, such as lipoamide dehy-
drogenase, glutathione reductase, and mercuric ion reductase
(Mustacich and Powis, 2000). Members of this family are homodimeric
proteins formed from monomers that each contains a flavin adenine
dinucleotide (FAD) prosthetic group, an NADPH-binding site, and a
redox-active disulfide located in the active site. In addition to Trx,
TrxR can act upon other substrates including lipoic acid (Nordberg
et al., 1996), lipid hydroperoxides (Bjornstedt et al., 1995), NK-lysin
(Andersson et al., 1996), vitamin K3 (Holmgren, 1979), dehydroascorbic
acid (May et al., 1997), ascorbyl free radical (May et al., 1998), and
tumor suppressor protein p53 (Casso and Beach, 1996). In the case of
NK-lysin, a prominent antibacterial cytotoxic compound in T lympho-
cytes, TrxR is required for its inactivation after it completes its defense
role, further highlighting the importance of TrxR for post-immune
functions.

Three TrxR isoforms, TrxR-1, TrxR-2, and TrxR-3, have been
identified from mammals. TrxR-1 and TrxR-2 are localized to the cytosol
and mitochondria, respectively, whereas TrxR-3 is exclusively
expressed in the testis, where it acts as a thiol regulator (Urig and
Becker, 2006). Mammalian TrxR proteins exhibit high sequence similar-
ity to glutathione reductase, especially at the conserved Cys-Val-Asn-
Val-Gly-Cys redox catalytic site. TrxR functions mostly relate to their
basic role in Trx reduction by using NADH and NADPH, which are
indirectly important in thioredoxin recycling (Mustacich and Powis,
2000). Thus, TrxR is apparently important in cell growth and apoptosis
regulation, as well as in antioxidative defense in organisms. In addition,

its function in the cellular environment is also important in recycling
ascorbate by producing ascorbyl free radical, which is used as a marker
of oxidative stress (Buettner and Jurkiewicz, 1993), in turn reducing the
risk of triggering oxidative stress in cells.

TrxRs are widely distributed among eukaryotic and prokaryotic
taxa; however, those found in prokaryotes and in some eukaryotes are
rather different from mammalian TrxRs with respect to their molecular
structure and substrate specificity. Low molecular weight TrxR variants
(~35-37 kDa per monomer) are found commonly in Archaea, Bacteria,
Fungi, and in some eukaryotes including plants and intracellular para-
sites (Brown et al., 1996; Bruchhaus and Tannich, 1995; Dai et al,,
1996; Ellis et al., 1994), whereas high molecular weight variants
(~55-56 kDa per monomer), which are analogous to glutathione reduc-
tases, are found prominently in mammals. However, to our knowledge,
fish TrxR was exclusively reported from rainbow trout (Oncorhynchus
mykiss) representing a teleost origin (Pacitti et al., 2014), in which
two isoforms were identified and characterized.

The light of this background prompted us to characterize a teleoste-
an TrxR ortholog (RbTrxR-3) from rock bream (O. fasciatus) at the
molecular level, and compare the temporal transcriptional patterns of
RbTrxR-3 and its putative substrate, rock bream Trx-1 (RbTrx-1), under
conditions of pathogenic stress. In addition, we investigated the func-
tional properties of RbTrxR-3 that are important for its basic role in
fish physiology, using its purified recombinant protein.

2. Materials and methods
2.1. Identification of complete RbTrxR-3 cDNA and genomic DNA sequences

A rock bream cDNA shotgun sequence database was established
based on sequence data from a cDNA library constructed previously
by using a next-generation sequencing technology, the GS-FLX titanium
system (DNA Link, Rep. of Korea). A complete cDNA sequence with high
sequence similarity to known TrxR-3 orthologs from other organisms
was identified using NCBI BLAST. The complete RbTrxR-3 genomic
DNA (gDNA) sequence was obtained from a custom-constructed
random-sheared BAC gDNA library (Lucigen®, USA). The library was
screened to identify a putative BAC clone that contained RbTrxR-3 by a
polymerase chain reaction (PCR)-based approach using gene-specific
primers: RbTrxR-3-qF and RbTrxR-3-qR (Table 1). RbTrxR-3 was
sequenced using the GS-FLX™ system (Macrogen, Korea).

Table 1
Primers used in this study.

Name Purpose

RbTrxR-3_qF BAC gDNA library
screening and qPCR
amplification of
RbTrxR-3

RbTrxR-3_qR BAC gDNA library
screening and qPCR
amplification of

Sequence (5’ - 3')

AGGGTGGCACTGAGAGACAAGAA

AGGTCGTCACTGGTGATGCAGTA

RbTrxR-3
RbTrx_qF qPCR amplification of GGCTGGTGGTGGTGGACTT
RbTrx-1
RbTrx_qR qPCR amplification of ACTCGGACACCTTCGCTTCATTCT
RbTrx-1
RbTrxR-3-F  Amplification of coding GAGA
region (EcoR I) GAgaattcATGCCTCCCATCGAAAGTGACAC
RbTrxR-3-R  Amplification of coding GAGA
region (Sal I) GAgtcgacTTAACCTCAGCAGCCGGCCTG
Rb-BF qPCR amplification of TCATCACCATCGGCAATGAGAGGT
rock bream 3-actin gene
Rb-BR qPCR amplification of TGATGCTGTTGTAGGTGGTCTCGT

rock bream R-actin gene
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2.2. RbTrxR-3 sequence profiles and phylogenetic analyses

The complete ¢cDNA sequence and corresponding amino acid
sequence of RbTrxR-3 were derived using DNAsist 2.2 software, and
the putative TrxR domain architecture was predicted using EXPASy-
prosite (http://prosite.expasy.org/), NCBI-CDS (http://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi), and SMART (http://smart.embl-
heidelberg.de/) online servers. Putative SECIS elements were predicted
using SECISearch online server (http://genome.unl.edu/SECISearch.
html). Several important physicochemical properties of RbTrxR-3
were determined using the ExPASy ProtParam tool (http://web.
expasy.org/protparam). The derived RbTrxR-3 sequence was compared
with those of its homologs by performing pairwise sequence alignment
and multiple-sequence alignment strategies, using EMBOSS Needle
(http://www.Ebi.ac.uk/Tools/emboss/align) and ClustalW2 (http://
www.Ebi.ac.uk/Tools/clustalw2) programs, respectively. The phyloge-
netic relationship of RbTrxR-3 with its vertebrate orthologs (including
isoforms) was determined using MEGA software version 5 (Tamura
et al., 2011), by the neighbor-joining method, supported by 1000
bootstrapped replicates. The exon-intron arrangement of the identified
RbTrxR-3 sequence was annotated using the NCBI-Spidey online server
(http://www.ncbi.nlm.nih.gov/spidey) based on its complete cDNA
sequence that has been identified previously.

2.3. Molecular cloning, over-expression, and purification of recombinant
RbTIxR-3 (rRbTIXR-3)

The complete RbTrxR-3 coding sequence was amplified by PCR using
gene-specific cloning oligomers (Table 1) containing EcoRI and Sall
restriction sites. PCR amplification was performed in a TaKaRa thermal
cycler (TaKaRa Korea Biomedical Inc., Korea) in a 50 L reaction volume
that contained 5 U of ExTaq polymerase (TaKaRa), 5 L of 10 x ExTaq
buffer, and 4 pL of 2.5 mM dNTPs, 80 ng of DNA template, and
20 pmol of each oligomer. The following cycling conditions were used:
an initial incubation at 94 °C for 3 min followed by 35 cycles of 94 °C
for 30 s, 57 °C for 30 s, 72 °C for 2 min, and a final extension at 72 °C
for 5 min. The resultant PCR product was ligated into pMAL-c2X vector,
and the recombinant vector was transformed into Escherichia coli DH5
cells. The identity of the insert was confirmed by sequencing. Next, the
recombinant vector was transformed into E. coli BL21 (DE3) cells, and
selected putative transformants were grown overnight in 500 mL of
Luria-Bertani broth, supplemented with 100 pg/mL of ampicillin and
0.5 mg/mL of glucose, at 37 °C with shaking (200 rpm). Once the
ODgqo of the culture reached 0.5, isopropyl-3-p-1-thiogalactopyrano-
side (IPTG) was added to a final concentration of 1 mM and the mixture
was then incubated for 3 h at 37 °C to induce protein expression. Cells
were subsequently chilled on ice for 30 min and harvested by cold cen-
trifugation. The obtained pellets were resuspended in column buffer
(20 mM Tris-HCl pH 7.4 and 200 mM NaCl) and stored at — 20 °C over-
night. Frozen cells were thawed on ice, lysed, and ruptured using cold
sonication in the presence of lysozyme (1 mg/mL). The resultant
whole cell lysate was centrifuged (9000 xg for 30 min at 4 °C) and the
supernatant (crude extract) was then purified to obtain rRbTrxR-3 by
using the pMAL protein fusion and purification technique (New England
Biolabs, USA). Finally, the concentration of the purified recombinant
protein was determined using the Bradford method, and its integrity
and purity were analyzed using 12% sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) under reducing as well as non-
reducing conditions.

2.4. rRbTrxR-3 thiol reductase activity analysis

Reducing activity of rRbTrxR-3 against thiol groups in 5,5'-
dithiobis(2-nitrobenzoic acid) (DTNB) was analyzed using a commer-
cially available colorimetric assay kit (BioVision, USA) according to the
manufacturer's instructions, with some minor modifications. Briefly,

rRbTrxR-3 was diluted to different concentrations with the assay buffer
(final volume of 50 pL) provided with the kit, and then combined with a
reaction solution containing 30 LL of assay buffer, 8 uL of DTNB solution,
and 2 pL of NADPH in 96-well microtiter plates. The samples were
immediately incubated at 25 °C for 20 min, and the OD4;; of each
reaction was measured. The same procedure was performed using
maltose-binding protein (MBP) and 50 pL of assay buffer in place of
RbTrxR-3 as controls. OD4q, values were calculated by subtracting
the mean 0Dy, value of three replicates of the negative control (assay
buffer) from that of each experimental sample.

2.5. Animal husbandry and tissue collection

Healthy rock breams, which were obtained from the Jeju Special
Self-Governing Province Ocean and Fisheries Research Institute (Jeju,
Republic of Korea), with an average body weight of 30 g were reared
in a controlled environment (salinity 34 + 1%, pH 7.6 &+ 0.5, and
22-24 °C). The animals were acclimatized for one week prior to exper-
imentation. Within the acclimatization period, fish were fed with a
commercially available fish feed. Whole blood (1 mL/fish) was collected
from the caudal fin by using a sterilized syringe and the samples were
centrifuged immediately at 3000 xg for 10 min at 4 °C to separate the
blood cells from the plasma. Collected cells were snap-frozen in liquid
nitrogen. The gill, liver, skin, spleen, head kidney, muscle, brain, heart,
kidney and intestine were excised from three animals and immediately
snap-frozen in liquid nitrogen. Tissue samples were stored at — 80 °C
until total RNA was extracted.

2.6. Pathogen challenge experiments

To gain insights into the modulatory effects of common and poten-
tially infectious pathogens on RbTrxR-3 mRNA expression, two live
bacterial pathogens, Edwardsiella tarda (E. tarda) and Streptococcus
iniae (S. iniae) as well as a well-known fish viral pathogen, rock bream
iridovirus (RBIV) were used to stimulate healthy rock breams, reared
as described previously (Section 2.5), in a time-course immune chal-
lenge experiment. The complete experiment was performed as
described in our previous report (Whang et al., 2011). Liver tissues of
the experimental animals were collected as described in Section 2.5.
At least three animals from each challenge group were sacrificed at
each time point.

2.7. Total RNA extraction and cDNA synthesis

Total RNA was extracted from each of the tissues collected from
healthy fish, as well as from the liver tissues from the immune-
challenged group by using Tri Reagent™ (Sigma-Aldrich, USA) accord-
ing to the vendor's protocol. The concentration of each extracted RNA
sample was measured at 260 nm in a UV-spectrophotometer (Bio-
Rad, USA) and diluted to 1 pg/pL. RNA (2.5 pg) from each tissue was
used to synthesize cDNA by reverse transcription using a cDNA synthe-
sis kit (TaKaRa, Japan) according to the manufacturer's instructions.
Synthesized cDNAs were diluted 40-fold (total volume of 800 pL) and
stored at — 20 °C for future analysis.

2.8. Measurement of RbTrxR-3 and rock bream Trx-1 (RbTrx-1) mRNA
expression levels in liver tissues by using quantitative PCR (qPCR)

RbTrxR-3 and RbTrx-1 transcripts levels were measured in the liver
tissues of infected fish as well as in the selected tissues of healthy fish
(Section 2.5) by performing qPCR using the synthesized cDNAs as
templates (Section 2.7). qPCR was perfomed using a Dice™ Real-time
System (TP800; TaKaRa, Japan) Each 15 [iL reaction contained 4 pL of
diluted cDNA, 7.5 pL of 2x TaKaRa Ex Taq™, SYBR premix, 0.6 uL of
each primer (RbTrxR-3_qF and RbTrxR-3_qR or RbTrx_qF and
RbTrx_qR; Table 1), and 2.3 pL of ddH-0, following essential MIQE
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Fig. 1. Multiple-sequence alignment of RbTrxR-3 and its vertebrate orthologs. Sequence alignments were obtained using ClustalW server. Conserved residues are shaded in gray. The
predicted glutaredoxin domain profile, glutaredoxin active site signature, and pyridine nucleotide-disulfide oxidoreductase class-I active site signature are indicated on the RbTrxR-3
sequence by a box, wavy underline, and normal underline, respectively. The putative FAD-binding signature is denoted in bold fonts and predicted pyridine nucleotide-disulfide oxido-
reductase dimerization domain is represented by red colored letters. The selenocystein residues positioned at the 3’ of the sequences were denoted by ‘U’ and shaded in green color.
Residues that form GSH-binding sites that are conserved in all the homologs are indicated by bold fonts (TVP and GGCD), and completely or partially conserved catalytic residues are

indicated by vertical boxes.
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Human CAGFLAGFGLDVTVMVRSILLRGFDQEMAEKVGSYMEQHGVKFLRKFIPVMVQQLEKGSP 408
Dog CAGFLAGIGLDVTIMVRSILLRGFDQEMAEKVGSYMEQHGVKFLRKEFVPVLVQQLEKGSP 351
Mouse CAGFLAGLGLDVTVMVRSVLLRGFDQEMAEKVGSY LEQQGVKFQRKFTPILVQQLEKGLP 417
Zebra finch CAGFLAGLGLDVTVMVRSILLRGFDQEMAEKVGAYMETHGVKFIRKEFVPVQVEQLEQGMP 372
Chicken CAGFLAGLGLDVTVMVRSILLRGFDQEMAEKIGAHMETHGVTFIRKFVPTQVERLEDGTP 371
Frog CAGFLAGIGLDATVMVRSIFLRGFDQEMANRAGAYMETHGVKFIKQFVPIKVELLEEGTP 363
Rock bream CGGFLAGLGLDVTVMVRSILLRGFDQDMANRAGEHMEEHGVKFLRKYVPVKVEELEAGTP 367
Seabass CGGFLAGLGLDVTVMVRSILLRGFDQDMANRAGEHMEEHGVKFLRKYVPVKVEELEAGTP 367
Zebrafish CGGFLAGLGLDVTIMVRSILLRGFDQDMADRAGEYMETHGVKFLRKFVPTKIEQLEAGTP 367
*.‘k‘k‘k** ‘k‘k* * * ok ok k . :‘k‘k‘k‘k‘k‘k ** . * ::* ** * . . . ** K *
Human GKLKVLAKSTEGTET IEGVYNTVLLAIGRDSCTRKIGLEK IGVKINEKSGKIPVNDVEQT 468
Dog GKLKVVAKSTEGPET IEEIYNTVLLAIGRDSCTRKIGLEKIGVKINEKSGKIPVNDVEQT 411
Mouse GKLKVVAKSTEGPETVEGIYNTVLLAIGRDSCTRKIGLEKIGVKINEKNGKIPVNDVEQT 477
Zebra finch GRLKVTAKSTEGPET LEEEYNTVLLAVGRDACTRNIGLQT IGVKINEKNGKVPVNDEERT 432
Chicken GRLKVTAKSTEGPEFFEGEYNTVLIAIGRDACTRNIGLQT IGVKINEKNGKVPVNDEERT 431
Frog GRIKVTAKSTQGDQI IEDEYNTVLIAVGRDACTRNIGLEKIGVKINERNGKIPVSDEEQT 423
Rock bream GRLKVTAKSTETDEI IEGEYNTVLIAVGRDACTDK IGLDK TGVKVNPKNGKIPVNDEEQT 427
Seabass GRLKVTAKSTESDEI IEGEYNTVLIAVGRDACTDK IGLDKAGVKVNPKNGKIPVNDEEQT 427
Zebrafish GRIKVTAKSTESEEVFEGEYNTVLIAVGRDACTGK IGLDKAGVKINEKNGKVPVNDEEQT 427
*::** ‘k‘k‘k*: . .‘k *****:*:***:** :***:. ‘k‘k‘k:‘k -.*‘k:‘k*.* *:*
Human NVPYVYAVGDILEDKPELTPVAIQSGKLLAQRLFGASLEKCDYINVPTTVEFTPLEYGCCG 528
Dog NVPYVYAVGDILEGKLELTPVAIQAGKLLARRLFAGRLEKCDYVNVPTTVEFTPLEYGCCG 471
Mouse NVPHVYAIGDILDGKPELTPVAIQAGKLLARRLFGVSLEKCDYINIPTTVFTPLEYGCCG 537
Zebra finch NVPYVYAIGDILDGKLELTPVAIQAGRLLAQRLYGGSSKKCDYINVPTTVFTPLEYGSCG 492
Chicken NVPYVYAIGDILDGKLELTPVAIQAGKLLARRLYGGSSTKCDYINVPTTVETPLEYGSCG 491
Frog SVPHVYAIGDILDGKLELTPVAIQAGRLLARRLYRGSKVKCDYINVPTTVFTPLEYGCCG 483
Rock bream NVPHIYAIGDILEGKWELTPVAIQAGKLLARRLYGGSKLKCDYVNVPTTVFTPLEYGACG 487
Seabass NVPHIYAIGDILEGKWELTPVAIQAGKLLARRLYGGSKLKCDYINVPTTVFTPLEYGACG 487
Zebrafish NVPHIYAIGDILEGKWELTPVAIQAGKLLARRLYAGATMKCDYVNVPTTVEFTPMEYGSCG 487
.**::‘k*:‘k**‘k:.* ********:*:***:**: ****:*:*******:***.**
Human LSEEKAIEVYKKENLEIYHTLFWPLEWTVAGRENNTCYAKIICNKFDHDRVIGFHILGPN 588
Dog LSEEKAIEMYKKENLEVYHTLEWPLEWTVAGRDNNTCYAKIICNKLDNYRVIGFHVLGPN 531
Mouse LSEEKAIEMYKKENLEVYHTLFEWPLEWTVAGRDNNTCYAKIICNKFDNERVVGFHLLGPN 597
Zebra finch YPEEKAISEYGEQNLEVYHTLFWPLEWTVPGRDNNTCYAKIICNKQDNNRVIGLHVLGPN 552
Chicken LAEEKAIEEYGKONLEVYHSLFWPLEWTVPGRDNNTCYAKIICNKLDGNRVVGFHVLGPN 551
Frog YAEEKAIEIYGEENLEVYHTLFWPLEWTVP SRDNNTCFAKIICNKQDNDRVIGFHVLGPN 543
Rock bream LSEERATELYGKDNIEVFHSLEWPLEFTVPNRDNNKCYGKIICNKLDSDRVIGFHYLGPN 547
Seabass LSEERATELYGQENIEVYHSLLWPLEFTVPGRDNNRCYSKIICNKLDNDRVIGFHYLGPN 547
Zebrafish HPEEKAIQMYGQENLEVYHSLFWPLEFTVPGRDNNKCYAKIICNKLDNLRVIGFHYLGPN 547
.**:* . * ::*:*::*:*:****:**.‘*:** *:'****** * ‘k‘k:*:* * Kk x x
Human AGEVTQGFAAAMKCGLTKQLLDDTIGIHPTCGEVFTTLEI TKSSGLDITQKGCUG 643
Dog AGEVTQGFAAAMKCGLTKQLLDDTIGIHPTCGEVFTTLEI TKSSGLDITQKGCUG 586
Mouse AGEITQGFAAAMKCGLTKQLLDDTIGIHPTCGEVFTTLEI TKSSGLDITQKGCUG 652
Zebra finch AGEVTQGFAAATIKCGLTKELLDETIGIHPTCAEVFTTMDI TKSSGQDITQKGCUG 607
Chicken AGEVTQGFAAATIKCGLTKELLDETIGIHPTCAEVFTTMDI TKSSGQDITQRGCUG 606
Frog AGEITQGFGAAMKCGLTKEKLDETIGIHPTCAEIFTTMDT SKSSGGDISQKGC-- 596
Rock bream AGEVTQGFGAAMKCGATKEQLDSTIGIHPTCAEIFTTLEVTKSSGGDITQAGC.G 602
Seabass AGEVTQGFGVAMKCGATKEQLDNTIGIHPTCAEIFTTLEVTKSSGGDIAQSGC-~- 600
Zebrafish AGEVTQGFGAAMKCGITKDQLDNTIGIHPTCAEIFTTMEVTKSSGGDITQSGC.G 602
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Fig. 1 (continued).

guidelines (Bustin et al,, 2009). The full-length RbTrx-1 coding sequence
was obtained from the NCBI-GenBank database (accession no.
AB603653) and used to design qPCR oligomers. The following qPCR
conditions were used: an initial denaturation at 95 °C for 10 s; followed
by 35 cycles of 95 °C for 5's, 58 °C for 10 s, and 72 °C for 20 s; and a final
cycle of 95 °Cfor 155,60 °C for 30 s, and 95 °C for 15 s. The base line was
set automatically by the Dice™ Real Time System software (version
2.00). RbTrxR-3 mRNA expression levels were determined using the
Livak (2724¢T) method (Livak and Schmittgen, 2001). The same qPCR
cycling conditions were used to amplify the internal reference gene,
rock bream (-actin (GenBank ID: FJ975146), using gene-specific
primers (Table 1). All data are represented as the mean 4+ standard

deviation (SD) of experiments performed in triplicate. Gene expression
levels were compared to that of the rock bream {3 actin gene to obtain
relative gene expression values at mRNA levels. The relative changes
in RbTrxR-3 and RbTrx-1 expression at mRNA level were determined
for the immune-challenged groups at various time points by normaliz-
ing the mRNA expression levels to those of the corresponding
phosphate-buffered saline (PBS)-injected control, to eliminate the
effect of the injection. Transcript levels in the uninjected control (0 h)
were considered as baseline. The statistical difference between the
experimental and uninjected control groups were analyzed using two
tailed unpaired Student's t-tests. P < 0.05 was considered statistically
significant.
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Table 2
Percent similarity and identity values of RbTrxR-3 and its homologs.
Organism Common Name Protein Accession number Identity (%) Similarity (%) Length in
amino acids
1. Dicentrarchus labrax European seabass Thioredoxin reductase 3 CBN80599 95.2 98.2 600
2. Danio rerio Zebrafish Thioredoxin reductase 3 NP898895 84.4 93.4 602
3. Xenopus laevis African clawed frog Thioredoxin reductase 3 NP001087660 75.8 89.0 596
4, Taeniopygia guttata Zebra finch Thioredoxin reductase 3 NP001245307 72.9 85.5 607
5. Gallus gallus Chicken Thioredoxin reductase 3 NP001116249 72.5 84.6 606
6. Canis lupus familiaris Dog Thioredoxin reductase 3 NP001116250 70.5 83.1 586
7. Pteropus alecto Black flying fox Thioredoxin reductase 3 ELK13077 68.1 81.2 636
8. Myotis brandtii Bat Thioredoxin reductase 3 EPQ08225 66.2 79.6 647
9. Mus musculus Mouse Thioredoxin reductase 3 NP001171529 64.5 78.0 652
10. Homo sapiens Human Thioredoxin reductase 1 NP001087240 64.5 77.0 649
11. Xenopus tropicalis Western clawed frog Thioredoxin reductase 1 NP001243400 62.1 741 653
12. Mus musculus Mouse Thioredoxin reductase 1 NP001035978 61.4 71.8 499
13. Homo sapiens Human Thioredoxin reductase 3 NP443115 55.0 66.5 643
14. Homo sapiens Human Thioredoxin reductase 2 NP006431 45.5 59.3 524
15. Mus musculus Mouse Thioredoxin reductase 2 NP038739 44.6 57.9 527

3. Results and discussion
3.1. Molecular properties and sequence similarity of RbTrxR-3

The full-length cDNA sequence of RbTrxR-3 comprised 3247 nucleo-
tides, consisting of an 1806-bp open reading frame (ORF) as well as
5" and 3’ untranslated regions (UTRs) that were 256 bp and 1182 bp,
respectively. As expected, we could identify an in-frame opal
codon ('79TGA'8%%) in RbTrxR-3 ORF which probably codes for a
selenocysteine amino acid (U in Fig. 1), positioned one amino acid
before the termination codon of RbTrxR-3, confirming the characteristic
feature of selenoproteins, including thioredoxin reductases. Moreover,
we could decipher the loose SECIS element pattern in 3’ UTR
(P4OGTGAC?4%°, 2468\ p2469 qnd 2497CGAT?>) which is known to direct
the insertion mechanism of selenocystein residue at the position of TGA
codon, using SECISearch server, based on non-canonical A-G pairs of
human TrxR-3 (Hatfield and Gladyshev, 2002). This evidence further
validates that the aforementioned opal codon likely encodes a U residue
in RbTrxR-3. Based on our in silico analysis, we determined that the

256 117 61 110 108 73 120 143 116 266 93 77

157

identified ORF encoded a 602-amino acid protein with a molecular
mass of ~66 kDa and theoretical isoelectric point of 5.8. Protein and
cDNA sequence information for RbTrxR-3 was deposited in the NCBI-
GenBank database under the accession number KF742679. Our compu-
tational domain analysis showed that RbTrxR-3 possesses typical TrxR
features including a proximal glutaredoxin domain (residues 14-114),
glutaredoxin active site (residues 28-43), pyridine nucleotide-
disulfide oxidoreductase class-1 active site (PYRIDINE REDOX_1; resi-
dues 159-169), putative FAD-binding domain (residues 117-193),
and pyridine nucleotide-disulfide oxidoreductase dimerization domain
(residues 473-586) (Fig. 1). Multiple-sequence alignments showed that
cysteine residues in the RbTrxR-3 active site (residues 34 and 37) were
completely or partially conserved, while the PYRIDINE REDOX_1 site
was conserved in all sequences examined. The predicted glutathione
binding sites in RbTrxR-3 (residues 77, 78, 79, 89, 90, 91, and 92) also
showed good conservation. Pairwise sequence alignments of RbTrxR-3
and its orthologs confirmed that it was a TrxR homolog, sharing
prominent percent identity and similarity values to other teleostean
TrxRs, especially to that of Dicentrarchus labrax (Table 2).
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Fig. 2. Genomic architecture of RbTrxR-3 and its vertebrate orthologs. UTR and coding regions are represented by empty and filled boxes, respectively. Introns less than 100 bp are denoted
using black lines and those >100 bp are depicted as A-shaped lines. The intron and exon lengths are indicated at the top and bottom of each structure, respectively. The genomic DNA
sequence information for each ortholog was obtained from the NCBI-GenBank database: Nile tilapia, 100702976; torafugu, 101068545; mouse, 232223; human, 114112; and chicken,

416031.
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Fig. 3. Phylogenetic reconstruction of RbTrxR-3. The evolutionary development of RbTrxR-3 was analyzed with its different homologs (including the isoforms of TrxRs) categorized under
different taxonomic groups based on the multiple alignment profile of the protein sequences generated by the neighbor-joining method using MEGA 5.0 software. Bootstrap support
values corresponding to each branch are indicated. The NCBI-GenBank accession numbers of each TrxR ortholog are listed in Table 2.

3.2. Comparative analysis of RbTrxR-3 gene architecture

Using the Spidey server, we determined that RbTrxR-3 consists of
16 exons and 15 introns spread along a 12658 bp sequence, according
to the canonical AG-GT splicing rule (Fig. 2). To gain a better under-
standing of the molecular evolution and genomic diversity of TrxR-3,
we compared the gDNA sequences TrxR-3 genes from a number of
vertebrate taxa (Fig. 2). With the exception of the lengths of exons 4
and 9, the architecture of the internal exons—those flanked by the first
and last exons were conserved among the different taxonomic groups,
which included teleosts, mammals, and birds. Interestingly, the size
of each exon was found to be conserved among teleosts; further tel-
eosts and mammals shared 13 exons with equal length (exon 2 to 15,
except exon 4). Notably, the number of exons (16) in lower vertebrates
(i.e., teleosts) and higher vertebrates (i.e., mammals and birds) were
highly conserved, confirming that no gain or loss of introns had oc-
curred during the molecular evolution of vertebrate TrxR-3 s. Moreover,
the splitting of the TrxR-3 into a relatively high number of exons could
indicate the existence of TrxR-3 splice variants in teleosts and other
vertebrates (Keren et al., 2010) and tightly regulated gene expression,
a process in which introns are known to be involved (Rose, 2008).
However, these predictions warrant further investigation. The overall
comparison of TrxR-3 gene architecture in vertebrates suggests that
the gene has a slow rate in genomic evolution and a greater potency
of eliciting significant diversity at protein level through formation of
spliced variants.

3.3. Phylogenetic reconstruction of RbTrxR-3

As expected, our phylogenetic reconstruction clearly separated the
different vertebrate TrxR orthologs into three main clusters according
to the basic isoforms: TrxR-1, TrxR-2, and TrxR-3. Within the TrxR-3
cluster, mammalian, bird, amphibian, and fish orthologs clustered
closely and independently, in which RbTrxR-3 clustered within the
fish (piscine) clade (Fig. 3). RbTrxR-3 subclustered with sea bass TrxR-
3 within the fish clade, with a supporting bootstrap value of 100.

However, zebrafish TrxR-3 showed a relatively distant evolutionary
relationship with the other two marine teleost homologs. Taken togeth-
er, our phylogenetic analysis, based on the TrxR protein sequences of
different species, confirmed that RbTrxR-3 is a vertebrate TrxR-3
isoform that has evolved from a common ancestral piscine gene.

3.4. Integrity of purified rRbTrxR-3
We performed SDS-PAGE analysis on samples collected at different

steps in the overexpression and purification procedure of rRbTrxR-3.
The recombinant RbTrxR-3-MBP fusion protein was successfully

Fig. 4. SDS-PAGE analysis of the rRbTrxR-3 fusion protein at different steps in the
overexpression and purification process. Lane 1, protein size marker (Enzynomics,
Korea); lane 2, total cellular extract from Escherichia coli BL21 (DE3) carrying the
rRbTrxR-3-MBP expression vector prior to the IPTG induction; lane 3, crude
rRbTrxR-3 fusion protein extract; lane 4, purified recombinant fusion protein
(rRbTrxR-33-MBP) under reducing conditions; and lane 5, purified recombinant
fusion protein (rRbTrxR-3-MBP) under non-reducing conditions.
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Fig. 5. In vitro DTNB-reducing activity of rRbTrxR-3. Reducing activities of rRbTrxR-3 and
MBP towards DTNB were measured using a colorimetric assay. The yellow-colored reduc-
tion product produced in each sample was quantified using OD4;, measurements. Error
bars represent SD (n = 3).

expressed in E. coli BL21 cells and purified (Fig. 4). A single band (Fig. 4,
lane 2) was observed at ~102.5 kDa, consistent with predicted molecu-
lar mass of reduced RbTrxR-3 (~66 kDa; mass of MBP is ~42.5 kDa),
confirming the purity and integrity of the recombinant protein. Interest-
ingly, two bands were resolved for the eluted fusion protein when the
polyacrylamide gel was run under non-reducing conditions (Fig. 4,
lane 5) suggesting that rRbTrxR-3 formed homodimers. Because
homodimerization is a characteristic of TrxRs, these data further
support our prediction on rRbTrxR-3's homology to known TrxR-3s.

3.5. Thiol-reductase activity of RbTrxR-3

In the presence of NADPH, rRbTrxR-3 reduced the thiol groups of
DTNB, producing 5'-thiol-2-nitrobenzoic acid (TNB2~), which gener-
ates a strong yellow color with an absorption maximum (Apax) of

250
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100

Relative mRNA expression

50

412 nm (Fig. 5). OD4;> values increased with increasing rRbTrxR-3
concentration. Thus, RbTrxR-3 possesses a typical functional property
of TrxR family members, suggesting their functional homology. Com-
pared to rRbTrxR-3, MBP had negligible reducing activity against
DTNB, as indicated by significantly lower 0Dy, values, suggesting that
MBP did not affect the function of the rRbTrxR-3 fusion protein. Consis-
tent with the dose-dependent thiol-reducing activity of RbTrxR-3
observed in this study, Entamoeba histolytica (Arias et al., 2012) and
Caenorhabditis elegans (Lacey and Hondal, 2006) TrxR proteins also
demonstrated marked concentration- and NADPH-dependent thiol
reductase activities against DTNB.

3.6. Distribution of RbTrxR-3 mRNA in rock bream tissues

RbTrxR-3 was ubiquitously distributed in rock bream tissues, with
blood tissue showing the highest mRNA expression level (Fig. 5). Gill
and liver tissues had moderately high RbTrxR-3 transcript levels. The
differential levels of RbTrxR-3 mRNA expression detected in the differ-
ent tissue types examined may reflect distinct levels of metabolic
activity in those tissues, which may in turn reflect differences in the
ROS levels in tissues, because TrxR has a known function in balancing
ROS levels. Blood cells, especially phagocytic cells, can produce exces-
sive amounts of ROS in response to invading pathogens as a first-line
host defense mechanism, eventually activating immune signaling path-
ways (Kohchi et al., 2009). Moreover, blood cells have a higher level of
oxygen consumption, which in turn potentiates ROS formation. There-
fore, we speculate that TrxRs are expressed at high levels in certain tis-
sues, such as in rock bream blood cells, to maintain an optimum redox
balance. TrxR can also directly act upon NK-lysin-like cytotoxic com-
pounds produced by T-lymphocytes to deactivate them after they
have completed their function (Andersson et al., 1996). This may also
explain the pronounced RbTrxR-3 mRNA expression in blood cells. Sim-
ilarly, one isoform of rainbow trout TrxR-3 (TrxR-3a) showed its highest
basal expression in blood cells whereas the other (TrxR-3b) was also
found to be pronouncedly expressed in blood (Pacitti et al., 2014). The
gills of fish are continuously exposed to the aquatic environment,

Tissue type

Fig. 6. Tissue distribution of RbTrxR-3 mRNA expression, analyzed using qPCR. Relative expression values were determined by comparing the expression in each tissue to that in the skin.

Error bars represent SD (n = 3).
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increasing the risk of frequent microbial infections. As mentioned
above, ROS are formed in response to invading pathogenic microorgan-
isms as a primitive immune defense strategy that is executed by
immune cells in tissues including the gills (Kohchi et al.,, 2009). There-
fore, to prevent harmful effects of oxidative stress on these cells, antiox-
idative defense mechanisms must be activated in host organisms, in
which the thioredoxin system plays an indispensable role. Therefore,
pronounced TrxR expression would be expected in gill tissues of teleost
fish, consistent with our findings. Moreover, the high levels of RbTrxR-3
in liver tissues can be attributed to the prominent metabolic activity of
liver cells, which contributes to ROS production (Martin et al., 2002).
In response to oxidative stress, liver cells can undergo apoptosis
(Kamata et al., 2005); thus, the abundant mRNA expression of RbTrxR-
3 in liver tissues may relate to the known anti-apoptotic function of
TrxRs. Although, pronounced expression of other fish TrxRs in the
liver have not been reported to date, it is not uncommon to find
abundant TrxR expression in the livers of higher vertebrates such as
rats (Lee et al., 1999).

3.7. Temporal transcriptional response of RbTrxR-3 to live
pathogenic stimuli

Liver tissues are known to play an important role in host immunity
(Sheth and Bankey, 2001); thus, we examined the transcriptional
response of RbTrxR-3 in the livers of rock breams exposed to live bacte-
rial and viral pathogenic stimuli. Moreover, in parallel, we investigated
the transcriptional responses of the putative substrate RbTrx-1 to the
same stimuli, in order to compare those with corresponding expression-
al modulation of RbTrxR-3, deciphering the expressional behavior of the
thioredoxin system under pathogen stress. Both stimuli significantly
increased RbTrxR-3 mRNA expression (P < 0.05) during the middle
(6 h and 12 h post-injection [p.i.]) and late phases (48 h p.i.) of the
experimental period (Fig. 6A). Interestingly, transcript levels of the
putative RbTrxR-3 substrate in rock breams, RbTrx-1, were also elevated
significantly (P < 0.05) during the middle (12 h p.i.) and late phase
(24 h, and 48 h p.i.) in response to the live pathogens RBIV and
E. tarda, while live S. iniae treatment was inducing its basal transcription
throughout the whole period of post immune challenge (Fig. 7). In con-
trast, RbTrx-1 transcript levels were found to be significantly (P < 0.05)
down-regulated at 6 h p.i. following RBIV challenge (Fig. 6B). Some
viruses are known to diminish the expression of antioxidant enzymes
to induce ROS formation in host cells in order to induce apoptosis and
spread the infection to the uninfected cell population (Borjesson et al.,
2005; Yang et al., 2010). Thus, the initial down-regulation of RhTrx-1
transcript may be part of the mechanism of RBIV infection.

Phagocytosis, a process associated with the innate immune system,
can efficiently mediate the recognition and elimination of pathogenic
invaders (Vatansever et al,, 2013). In this complex process, phagocytic
cells, such as macrophages and neutrophils in different immune
defense-related tissues including the liver engulf invading microbial
pathogens and destroy them using numerous chemical species, includ-
ing ROS. Therefore, immediately after microbial infection, ROS produc-
tion is expected to increase, leading to oxidative burst (Forman and
Torres, 2001). As a consequence, endogenous antioxidative defense
mechanisms (Nordberg and Arner, 2001) are activated to counterbal-
ance the ROS surplus. In this regard, it is not unexpected to observe
the activation of Trx system, especially in liver cells. Thus, the marked
increase we observed in RbTrxR-3 expression at mRNA level most likely
to be occurred in response to live pathogenic stress. Consistent with
these findings, RbTrx-1 transcript levels were elevated in response to
the same stimuli. The reduced form of Trx, which is produced as a result
of TrxR catalytic activity, was found to activate several transcriptional
factors, including NF-<B (Nishiyama et al., 2001), that are known to in-
duce the expression of cytokines and antimicrobial effectors (Hayden
et al., 2006). Moreover, TrxRs can act upon antimicrobial compounds
such as NK-lysin to inactivate them upon completion of their
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Fig. 7. Temporal mRNA expression of RbTrxR-3 (A) and RbTrx-1 (B) in the liver tissues of
rock breams, under live pathogen stress induced by Edwardsiella tarda, Streptococcus
iniae, and RBIV. The relative expression levels were calculated using the 2~ 24T method,
using rock bream (-actin as a reference gene. Expression levels were further normalized
to the corresponding expression levels in PBS-injected controls at each time point. The rel-
ative expression at 0 h post-stimulation (uninjected control) was set as the baseline. Error
bars represents SD (n = 3); *P < 0.05.

antimicrobial function (Andersson et al., 1996). These facts may also
explain the elevated levels of RbTrxR-3 transcript in liver tissue in rock
breams exposed to live bacterial and viral stimuli.

4. Conclusion

Here, we characterized a rock bream TrxR and investigated its tran-
scriptional response to the pathogen invasion, along with functional
properties that are important in host antioxidant defense. The results
of our in silico homology analysis and phylogenetic construction showed
that RbTrxR-3 is a TrxR family ortholog. The genomic architecture of
RbTrxR-3 suggests its potency to be contributed in diversity at protein
level, probably forming its spliced variants. Moreover, the ubiquitous
mRNA expression of this TrxR ortholog highlights its putative functional
importance in fish physiology. Interestingly, the transcriptional re-
sponse of RbTrxR-3 in the livers of rock breams under live pathogen
stress correlated with the temporal mRNA expression pattern of its
putative substrate, RbTrx-1, suggesting that it may play an important
role in immune or post-immune responses. In addition, the detectable
thiol reductase activity of RbTrxR-3 further hints its plausible involve-
ment in the rock bream Trx system. Overall, the findings of this study
indicate that RbTrxR-3 plausibly plays a role in defending against oxida-
tive stress.
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