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Deriving Comprehensive County-Level Crop Yield and Area Data for U.S. Cropland

Erandathie Lokupitiya,* F. Jay Breidt, Ravindra Lokupitiya, Steve Williams, and Keith Paustian

ABSTRACT

Ground-based data on crop production in the USA is provided
through surveys conducted by the National Agricultural Statistics
Service (NASS) and the Census of Agriculture (AgCensus). Statistics
from these surveys are widely used in economic analyses, policy
design, and for other purposes. However, missing data in the surveys
presents limitations for research that requires comprehensive data for
spatial analyses. We created comprehensive county-level databases for
nine major crops of the USA for a 16-yr period, by filling the gaps in
existing data reported by NASS and AgCensus. We used a combi-
nation of regression analyses with data reported by NASS and the
AgCensus and linear mixed-effect models incorporating county-level
environmental, management, and economic variables pertaining to
different agroecozones. Predicted yield and crop area were very close
to the data reported by NASS, within 10% relative error. The linear
mixed-effect model approach gave the best results in filling 84% of the
total gaps in yields and 83% of the gaps in crop areas of all the crops.
Regression analyses with AgCensus data filled 16% of the gaps in
yields and crop areas of the major crops reported by NASS.

C ROP STATISTICS are widely used in decision making and
policy formulation, and they provide important
information for economists and researchers in agricul-
tural and environmental fields. Crop statistics are useful
indicators of economic performance, technological ad-
vances in crop breeding, and improvements in overall
agricultural management practices. Crop statistics have
also been used in environmental research to estimate net
primary productivity (Prince et al., 2001). Such data can
also be used as input to other models to analyze spatial
patterns of regional scale C dynamics and/or for valida-
tion purposes; for example, to assess satellite-derived in-
formation on crop production (Lobell et al., 2002). Thus,
availability of complete and comprehensive crop data
at subregional scales, such as the county level, enhances
the usability of these data for a variety of purposes.
Currently, county-level crop yields in the USA are
collected in two surveys: one by NASS and the other by
the AgCensus. The NASS crop yield data are produced
annually using a survey done on selected farms, which is
extrapolated statistically to estimate county-level crop
yields. AgCensus estimates are produced every 5 yr
during the years ending in “2” and “7”; AgCensus fo-
cuses on collecting data by contacting every farmer
within a county; thus AgCensus data are generally more
complete and comprehensive for the years when the
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survey is conducted (Pawel and Fecso, 1988; USDA,
1998; R. Korkosh, personal communication, 2004).

However, missing data (i.e., gaps) in some counties in
certain years, and reporting of yield and crop area in-
formation only at the state level for certain states limits
the usability of these data for research that requires
comprehensive analyses involving single or multiple
years. Therefore, the aim of our study was to derive
complete county-level crop yield and crop area data-
bases by filling the gaps in the yield and crop area data
reported by NASS during the period 1982 to 1997, using
AgCensus data and statistical models incorporating ap-
propriate county-level environmental, management,
and economic variables.

Studies to estimate crop yields thus far include models
incorporating various agro-meteorological variables
(e.g., Berka et al., 2003) or combinations of agrometeo-
rological, hydrological, management, and economic var-
iables such as the EPIC model (e.g., Cavero et al., 2001;
Tan and Shibasaki, 2003). Some studies have used com-
binations of ground-based and satellite-based informa-
tion (Lobell et al., 2002; Doraiswamy et al., 2003, 2004,
2005; Yang et al., 2004; Tao et al., 2005) to estimate
yields. In some of these studies, yields have been esti-
mated through combining agrometeorological variables
with remotely sensed information in statistical models
(e.g., Rudorff and Batista, 1990, 1991; Smith et al., 1995).
In certain other studies, remotely sensed information
has been combined with crop models such as EPIC (e.g.,
Doraiswamy et al., 2003; Yang et al., 2004) and FAO
Crop Specific Water Balance Model (CSWB; Reynolds
et al., 2000) to estimate yields. These models have been
mostly used in field- or regional-scale estimation of
crop yields.

In studies for crop area estimation, either remotely
sensed information (Bauer et al., 1978; Hixson et al.,
1981; MacDonald and Hall, 1980; Csornai et al., 2002) or
purely statistical models (Griffith, 1999) have been used.
Remotely sensed information has also been used in
improving the precision of ground-sampled data for
area estimates (Gonzalez-Alonso et al., 1997; Allen
et al., 2002).

In this study, we first evaluate the existing national
crop yield and area databases of NASS and AgCensus,
their characteristics, and their compatibility. We describe
the methods used for the imputation of missing data for
crop yields and area and evaluate the appropriateness

Abbreviations: AIC, Akaike Information Criterion; AgCensus, Census
of Agriculture; CRP, Conservation Reserve Program; FIPS, Federal
Information Processing Standard, codes to identify U.S. counties; ITA,
irrigated/total crop area ratio; LRR, land resource region; MST, mean
monthly summer temperature; NASS, National Agricultural Statistics
Service; NASSus, the final database created after filling the gaps in
NASS data using AgCensus and linear mixed effect models incorpo-
rating environmental and economic data; NRI, National Resources
Inventory; P, precipitation; PET, potential evapotranspiration.
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of these methods in imputing long-term data gaps in
national crop statistics.

METHODS

Evaluation of the Available National Crop
Statistics for Major Crops in the USA

Yields and crop area of alfalfa (Medicago sativa L.) hay, bar-
ley (Hordeum vulgaris L.), corn (Zea mays L.) for grain, corn
for silage and green chop, oat (Avena sativa L.), other hay (hay
other than alfalfa; i.e., tame hay, small grain hay, wild hay),
sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and
wheat (Triticum aestivum L.) were included in this study. Col-
lectively, these crops make up >90% of the harvested cropland
area of the USA.

NASS has reported crop statistics at the state level for
>100 yr and at the county level for >70 yr, for most of the
USA. The AgCensus was started in 1840, and has collected
county-level information every 5 yr since 1920. When our study
was initiated, data were available in digital form for 1982, 1987,
1992, and 1997 from AgCensus and digital data were avail-
able annually from NASS, so that 1982 to 1997 was chosen as
the time period for constructing the new database. Data re-
ported include planted and harvested crop area, yield and total
production, and management practices (e.g., irrigation, summer-
fallowing). The data were organized using MS Access (Microsoft
Corp., Redmond, WA) and all statistical analyses were per-
formed using SAS v. 9.1 (SAS Institute, Cary, NC).

Compeatibility of the crop yield and crop area estimates by
NASS and AgCensus were evaluated by mapping (in ArcGIS
v. 8.2, ESRI, Redlands, CA) the number of years AgCensus
and NASS have each reported data for each crop for the pe-
riod 1982 to 1997, and by mapping the absolute differences and
percentage differences (e.g., the difference in NASS crop yield
as a percentage of the yield reported by AgCensus) in the crop
yields and crop area for the two databases. Percentage differ-
ences were used to find the distribution of data represent-
ing extreme differences (i.e., outliers) between the NASS and
AgCensus databases.

Synthesis of Comprehensive Crop Yield and
Area Databases

Following the preliminary analyses of discrepancies be-
tween the data reported by NASS and AgCensus, a step-wise
procedure was used to fill data gaps in crop yields and areas
(Fig. 1). Because NASS data is collected each year, it was
chosen as the foundation database and data from AgCensus
served in adjusting and filling certain missing data, as de-
scribed below. The final synthetic database we produced by
filling all the gaps for the relevant major crops in the NASS
database is referred to as NASSus.

Filling Gaps in Crop Yields and Areas Reported by
NASS Where AgCensus Data Were Available

In earlier work, leave-one-out and leave-k-out procedures
were used to determine the most suitable statistical method
for imputing NASS data (Lokupitiya et al., 2006). Regression
analyses between NASS and AgCensus crop yield data and
multiple imputation technique were found to be the best meth-
ods. Spatial statistical analyses such as the Kernel regression
and kriging were less suitable (Lokupitiya et al., 2006). There-
fore, regression analyses between NASS and AgCensus yield
data were performed to replace extreme data or outliers in
NASS yields and fill in the gaps. To detect outliers, a criterion

NASS yields and crop area AgCensus yields and crop area

Regression adjustment

A 4

NASS and AgCensus combined yields and crop area

Linear mixed-effect models
(environment, irrigation,
weather and economic
covariates)

A4
Complete yield and crop area databases
(NASSus)

Fig. 1. Flowchart outlining the database construction steps.

based on the lower quartile (Q1; 25th percentile), upper quar-
tile (Q2; 75th percentile), and interquartile distance (IQ) was
used; any value < (Q1 — 3 X IQ) and any value > (Q2 + 3 X
IQ) was removed. Regression analyses of AgCensus and
NASS yields for each crop and each of the years 1982, 1987,
1992, and 1997 were used to replace outliers and fill the gaps in
NASS yield data. Crop areas reported in AgCensus that were
missing for corresponding years and counties in the NASS data
were added to the NASSus database without adjustment.

Using Environmental Variables to Fill Remaining Gaps
in Crop Yields

Linear mixed-effect models (Littell et al., 1996) were used
for filling remaining gaps in the yields in NASSus data, uti-
lizing environmental and management factors such as irriga-
tion to predict yields. County-level weather and irrigation data
were chosen as the covariates in the mixed models, with yields
as the dependent variable. Mean monthly summer tempera-
ture (MST), annual precipitation (P), precipitation/potential
evapotranspiration ratio (P/PET), and irrigated/total crop area
ratio (ITA) were the variables that represented fixed effects
in the models. County FIPS (Federal Information Processing
Standard) code was the only variable representing any ran-
dom effects, where the random effect represents variation
among counties due to factors other than the fixed effects.

Determination of Environmental Data for Linear Mixed
Effect Model Runs

Annual PET was calculated for 1982 to 1997 using the
method by Thornthwaite (1948), with weather data from the
gridded PRISM (Daly et al., 1994) dataset (www.ocs.orst.edu/
prism/, verified 2 Feb. 2007) for the conterminous USA (Fig. 2).

The USA has a total of 20 Land Resource Regions (LRRs),
which delimit contiguous areas with similar geographical, cli-
mate, and land use conditions (Fig. 3). County-averaged yield
data from different major crops and county weather variables
were grouped by LRRs across the entire time series and sorted
by year and county. In addition, ITA for a county was used as
a conditional variable to determine whether moisture limi-
tations would be included in the model. If a county had an ITA
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Precipitation/ potential evapotranspiration Precipitation

cm -
C112-70
[ 70-100
I 100-130
I 130-160
I 160-340

Mean monthly summer temperature

’c

1715

1520

I 20-22

I 22-25

I 25-30

Fig. 2. The main environmental variables used in the mixed models for
filling the gaps in yields (only the data from 1982 are shown here).

greater than 0.5 (i.e., majority of cropland is irrigated), then P
and P/PET were not used in the prediction of yield.

NASS typically reports separate explicit categories for irri-
gated and nonirrigated cropland where both are present as
significant land area fractions. In some arid counties, the entire
area for a particular crop is likely to be irrigated, and hence
NASS may only report total area for that crop. Similarly, in
many eastern U.S. counties where irrigation is minimal, NASS
may only report total crop area. In such instances, crops were
designated as primarily irrigated or nonirrigated based on lo-
cation, type of crop, and long-term climate averages.

Selection Criteria for the Best Linear Mixed Effect Models
and Quality Control Measures for the Predicted Crop Yields

Equation [1] gives the basic model used in the linear mixed-
effect models for crop yields:

Y=XXB+ZXu+es, [1]

where Y = yield; X = design matrix of covariates (or fixed
effects, including the intercept, P, P/PET, ITA, MST, and
interactions between these variables); B = vector of coeffi-
cients corresponding to the fixed effects; Z = design matrix of
Os and 1s for the random effects for each FIPS, with 1 in

Fig. 3. U.S. Land Resource Regions (LRRs; USDA, 1981). The bound-
aries of LRRs have been rectified to county boundaries in the map.

column j indicating that observation is from county j; u =
vector of coefficients corresponding to the random effects for
each FIPS; and € = error vector (which may be autocorrelated
with time).

The linear mixed-effect models were run separately for each
LRR with autoregressive order 1 (AR1) covariance structure,
with time as repeated measures, to fill in the remaining yields in
counties. Thus, for each crop, several models with different
combinations of the above covariates and the crop yield as
the response variable were run on each LRR. The model with
the lowest Akaike Information Criterion (AIC) was chosen
as the best model for each LRR; the chosen model was used
in filling the county-level yield gaps in different LRRs under
different crops. Altogether, 10 models were attempted on each
LRR per crop; if convergence criteria were not met, or the
final Hessian was not positive definite, either AR(1) or ran-
dom effects had to be dropped to satisty the convergence criteria.

The predicted yields from the linear mixed-effect models
were compared against a default method that used the mean of
the observed values within a county as the predicted value. A
few counties had only one observed (reported) yield or crop
area value across the entire time series in an LRR under cer-
tain crops, while the other counties had several observations
with relatively large variation in crop area or yields over the
time series. Hence, no single standard statistical method could
be adopted to screen for outliers. Therefore, the following
procedure was adopted for identifying outliers. First, where
predicted values fell outside plus/minus three times the mean
of the observed values, they were given an initial designation
as potential outliers. Where potential outliers (in predicted
values) also fell outside the range of the observed values for
the particular counties, they were given a final designation
as outliers, and were replaced with the mean of the observed
values (i.e., the default option). Final data screening was done
considering the occurrence of the crop at county level; that
is, imputed data were removed from counties that had no re-
ported occurrence of the crop.

Using Environmental and Economic Variables in
Gap-Filling for Crop Area Data

The mixed models for crop area data included economic
and weather variables from the previous year as fixed-effect
predictor variables: P, crop price, fertilizer cost (unit cost of an-
hydrous ammonia), and diesel cost. County area and cropland
area set aside in the Conservation Reserve Program (CRP) for
the current year were also used as fixed effect variables. County
FIPS served as the only variable for random effects.

Data Preparation

Crop price data for the previous year were obtained from
NASS (www.nass.usda.gov/Data_and_Statistics/index.asp, ver-
ified 2 Feb. 2007). Available state-level prices of the crops were
extracted for the period 1981 to 1996. Where state-level price
data were not available, the mean price of the multistate crop
production region was used. Since no price data were available
for corn for silage in NASS, corn for silage price per ton was
estimated by multiplying the per-bushel price of corn grain by
nine (Barkley, 2002). All crop prices were adjusted for infla-
tion using the Gross Domestic Product-Implicit Price Deflator
(GDP-IPD; S.R. Koontz, 2005, personal communication).

Fertilizer and diesel price data of the previous year were
extracted from the USDA Agricultural Prices Annual Sum-
mary reports for the period 1981 to 1996 (USDA, 1982-1997),
and adjusted for inflation using the GDP-IPD. Previous year’s
P was extracted from the PRISM data grid described above.
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Cropland area enrolled in CRP since the beginning of the
program in 1986 to 1997 was obtained from the Economic
Research Service (2005) and A. Barbarika (2005, personal
communication). County-level crop area data and the data
from all the predictor variables for the entire time series for
the period 1982 to 1997 were then compiled and organized in a
similar structure as detailed above for yield data.

Selection Criteria for the Best Linear Mixed-Effect Models
and Quality Control Measures for the Predicted Crop Area

Linear mixed-effect model analyses were performed with
auto regressive order 1 (AR1) covariance structure with crop
area as the dependent variable, county FIPS as the random ef-
fect, and different combinations of the following variables as the
fixed effects: previous year’s P, previous year’s crop price,
previous year’s fertilizer price, previous year’s diesel price, CRP
crop area, and county area. The analyses were performed under
the following model options: (i) crop area as the response (y)
variable, and diesel price, fertilizer price, crop price, CRP crop
area, and county area as regression (x) variables; (ii) crop area/
county area as the y variable, and the rest of the variables as x;
(iii) crop area/county area as the y variable, with rest of the
variables standardized (by dividing the value of each variable by
the standard deviation of each variable), as x variables; (iv)
taking all the variables standardized including the y variable in
(iii) above; (v) log-transformed crop area as the y variable, log-
transformed county-area as an x variable, and all the other x
variables standardized (by dividing by the standard deviation);
predicted y values were exponentiated back to get the predicted
crop area values from the models.

Linear mixed effect models were run on each different crop
at LRR level, considering the entire time series. The model
with the lowest AIC was selected as the best model for filling
the gaps in crop area data.

Detection of any outliers and quality control of the pre-
dicted crop area were performed in the same way as for the
yields. The total of the crop area aggregated at state-level was
compared against the state-level cropland crop area based on
the information collected by National Resources Inventory
(NRI), as an additional quality control measure.

RESULTS
Preliminary Analysis of Data

Except for a few outlying values, AgCensus and NASS
crop data were very similar, although some significant
deviations were found. When all the crops were con-
sidered together across all the years, 80 to 99% of coun-
ties reported crop yields with <30% difference between
NASS and AgCensus and 15 to 70% of counties had dif-
ferences < 5% in reported crop yields (Table 1).

The number of outliers was relatively small (<1 to 5%)
for each crop within each year. For instance, Fig. 4 shows
the deviation of NASS wheat yields from those reported
by AgCensus for 1997. Since NASS collects information
from a sample of farmers within a county and extrapo-
lates that information to the entire county, it may create
occasional anomalous values that were obvious during
the years when both NASS and AgCensus data are re-
ported. Extreme differences between AgCensus and
NASS for the same crop were infrequent even when the
absolute differences between the yields were compared.
For instance, the corn yields reported by NASS and
AgCensus for most counties had an average difference
of <0.6 Mg ha™".

Existing Gaps in the Crop Yields Reported by NASS

Although NASS reports annual data, NASS does not
report crop yields in certain states and counties that are
known to contain particular crops, especially hay crops.
For instance, NASS does not report alfalfa crop yields
in the counties of 21 states, while AgCensus does (Fig. 5).
Similarly, AgCensus has not reported county-level
yields and/or crop area of barley, corn for grain, corn
for silage, oat, other hay, sorghum, soybean, and wheat
for some counties where NASS has reported data. Even
in the years that both AgCensus and NASS have re-
ported data, we found that there are missing values in
some counties.

Synthesis of Comprehensive Databases of Crop
Yields And Crop Area

Filling Initial Gaps in NASS Data Using AgCensus

For alfalfa hay, barley, corn for grain, oat, sorghum,
soybean, and wheat, close to 90% of the variation in the
data reported by NASS were explained by AgCensus
data (Table 2). However, corn for silage and nonalfalfa
hay showed a weaker relationship between NASS and
AgCensus (lower R? values). For all the crops, the slope
of the regression was close to 1.0 and the intercept was
close to zero in the majority of crops (except for corn
for silage and green chop, oat, and sorghum, which
could be due to the underrepresentation of the data in
either of the databases). These regression models were
used to replace outliers in the NASS data, and fill in
the gaps during the above 4 yr when both NASS and
AgCensus have reported crop yield and area. Using this

Table 1. Percentage of counties having < 30% and < 5% difference, respectively, in NASS yield data compared with AgCensus.

1982 1987 1992 1997
Crop <30% <5% <30% <5% <30% <5% <30% <5%
Barley 92 37 93 40 91 23 99 60
Wheat 94 50 93 29 93 26 98 42
Alfalfa hay 82 19 80 15 78 13 92 37
Corn 95 37 96 46 95 35 99 71
Corn for silage 94 46 91 35 88 24 96 48
Sorghum 89 45 91 35 84 17 91 39
Other hay 77 24 81 19 80 17 88 36
Soybean 97 59 97 60 97 47 929 77
Oat 95 50 93 51 92 23 98 40
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Fig. 4. Difference in NASS wheat yield as a percentage of AgCensus
data for 1997. FIPS = Federal Information Processing Standard.

process, 16% of the gaps in NASS yields and crop areas
were filled.

Environmental Variables as Covariates in Linear
Mixed-Effect Models for Filling Remaining Gaps
in County-Level Crop Yields

Quality Control/Quality Assurance of Final Yields

The number of outliers in the predicted data was ex-
tremely low (i.e., <0.1% across all crops) and only three
crops (i.e., alfalfa hay, barley and corn) contained them;
these few outliers were replaced with the mean of the
observed values for the county. All predicted yields had
relative errors < 10%. During the 16-yr period, the
majority of the missing data in NASS were for alfalfa
hay (21% of the total gaps), other hay (25%), and corn
for silage (11%); the percentage missing data in the rest
of the crops ranged between 5 and 10% of the total gaps
in the yields reported by NASS. Eighty-four percent of
the total gaps in NASS (and 99.998% of the gaps in the
NASS and AgCensus combined data) were filled using
the mixed models. Only 0.02% of the gaps in NASS were
filled with the default option (i.e., where the imputed
values were designated as outliers).

Figure 6 shows the alfalfa yields from initial NASS
database, NASS and AgCensus combined, and the com-

Counties reported by AgCensus Counties reported by NASS

Fig. 5. NASS and AgCensus differences in the reported counties—
alfalfa hay. The darkened areas represent the counties where the
crop has been reported. The bottom map shows the additional
counties that AgCensus has reported compared with NASS.

Table 2. Regression models obtained for AgCensus and NASS
crop yields for 1997.

Crop Regression model R?
Alfalfa hay NASS = 0.2497 + 1.006 AgCensus 0.86
Barley NASS = —0.1863 + 1.030 AgCensus 0.97
Corn for grain NASS = 0.9819 + 1.009 AgCensus 0.97
Corn for silage and NASS = 9.7973 + 0.865 AgCensus 0.73
green chop
Oat NASS = 4.7180 + 0.974 AgCensus 0.90
Other hay NASS = 0.3297 + 0.907 AgCensus 0.71
Sorghum NASS = 5.8482 + 0.967 AgCensus 0.92
Soybean NASS = 0.2880 + 1.018 AgCensus 0.98
Wheat NASS = 0.3128 + 1.051 AgCensus 0.96

pleted alfalfa yields, with the imputed values (NASSus
database). About 21% of the gaps in alfalfa yields re-
ported by NASS were filled using the AgCensus in-
formation, and =78% of the gaps were filled using the
linear mixed effect models; the remaining 1% of the
gaps were filled with the default option. Figure 7 il-
lustrates the yield trend across time with inclusion of the
predicted values for corn in two counties, depicting the
compatibility of the predicted (for the missing years)
and the observed yields.

Using Environmental and Economic Variables in
Filling Remaining Gaps in Crop Area Data

Out of the mixed model options attempted, the final
option (i.e., log-transformed crop area as y variable and
all the other x variables standardized with log-transformed
county-area as an x variable) gave the best results
(Table 3). No universal trends could be observed in the
response of the crop area to the fixed effect variables,
but the crop area in the majority of the LRRs under
each crop seem to have the best models with the com-
binations of three variables: diesel price, fertilizer price,
and crop price of the previous year. When the impor-
tance of each single fixed effect variable is concerned,
the diesel price of the previous year seems to be the most
important predictor, being the sole predictor (other than
the county area) for at least one LRR in a majority (five
out of nine) of the crops. The area under CRP, either
alone or in combination with the other variables, seemed

NASS NASS and AgCensus combined

Fig. 6. Original NASS, NASS and AgCensus combined, and final gap-
filled database (i.e., NASSus) of crop yields in 1997 alfalfa hay.
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Fig. 7. Trend in corn yields with observed (continuous line) and pre-
dicted (broken line and filled squares for the values; for years with
no data) values, for two counties in two different states during the
16-yr period.

to be more powerful in predicting the crop area when the
area under CRP was high. This was particularly true for
LRR G, having close to 30% of the cropland in CRP
during most of the 16-yr period, and >95% of counties in
the LRR containing land in CRP. However, other LRRs
(e.g., B, F, and H) having an even greater percentage of
counties with CRP, did not have CRP area as a predictor
in most of the best models for any of the crops. The rea-
son could be that CRP area was about =20% of the total
cropland area of those LRRs.

Quality Control/Quality Assurance of Final Crop Area

The relative errors produced from the mixed models
were much lower than the default option (i.e., if the gaps
were simply filled with the mean of the observed crop
area; Table 4). Occasionally, using the best mixed model
yielded outliers, especially if only one or very few ob-
served data were present during the entire time series.
This trend was obvious for certain counties in LRR U
for alfalfa hay, LRR O for corn for silage, and LRR K

Table 3. Akaike Information Criterion (AIC) values from different
model options for wheat area in some land resource regions
(LRRs). The AIC values of the best models are shown in italics.

Modelf LRRA LRRB LRRC LRRD LRRE
All variables 419.38 316.36 539.72 3408.63 2506.07
Diesel$, County_area 43548 41298 567.88 3404.77 2506.39
Fert$, County_area 44597 418.20 567.67 3409.26 2502.34
Crop$, County_area 420.17 324.38 542.40 3414.19 2509.87
P, County_area 445.06  420.50 566.93 3426.76 2510.64
CRP, County_area 44550 41499 566.84 3428.41 2514.13

Diesel$, Fert$, Crop$, 417.47 313.08 536.78 3406.57 2505.17
County_area

Diesel$, Fert$, Diesel$ X 419.05 313.72 536.05 3408.50 2506.90
Fert$, Crop$,

County_area

Crop$, P, CRP, 421.95 32838 54546 341579 2510.45
County_area

Diesel$, Fert$, Crop$, 419.42 31449 537.80 3408.34 2505.24
CRP, County_area

Diesel$, Fert$, Crop$, P, 417.42 31496 538.70 3406.89 2505.87
County_area

T Diesel$ = diesel price of the previous year; Fert$ = fertilizer price of the
previous year; Crop$ = crop price of the previous year; CRP = crop area
set aside under the Conservation Reserve Program during the current year;
County_area = area of the county; P = precipitation of the previous year.

Table 4. Percentage relative errors [i.e., (observed — predicted) X
100/observed] for predicted values of crop area from the mixed-
effect model runs compared with predicted values from the
default method (i.e., mean of all the observed values).

Relative error with the Relative error with the

Crop mixed model default option
Alfalfa hay -2.6 -10.4
Barley -10.5 —41.8
Corn for grain -73 —26.8
Corn for silage —8.2 -21.1
Oat —10.0 —41.2
Other hay -34 —16.1
Sorghum -9.9 —52.7
Soybean —6.3 —33.5
Wheat -89 -30.3

for sorghum. However, the number of outliers in each
crop was <1% of the total predicted values.

The gaps in the few counties that had outliers were
filled using the default method (mean of the observed
values). Overall, 83% of the total gaps in the crop areas
reported by NASS (and 98.5% of the remaining gaps in
NASSus database) were filled with the linear mixed
effect model approach and only 1% of crop area gaps in
NASS were filled using the default method. Thus, by
filling the missing annual data in those counties where
the crops are present (Fig. 8), we were able to create
complete yield and area data for all the major crops
concerned (Fig. 8). Table 5 provides a summary of the
gaps filled in the crop area of each crop.

While significant at the national level, the conse-
quence of gap filling of crop areas was even greater for
certain crops and local areas. The impact was mostly
obvious for alfalfa hay, other hay, and corn for silage.
The gap filling increased the county-level total alfalfa
hay area accounted for by 26 to 46% for most years;
similarly, the total area of other hay increased by >50%
and that of corn for silage increased by up to 26% across
the different years. In comparing the final crop area with
the cropland area reported by NRI points at state level,
we found that out of the 48 states in the USA, 13 states
had total crop area (all the crops combined together)
that marginally exceeded the NRI cropland area. How-

NASS NASS and AgCensus combined

NASSus

No. of years
0

C1-a
;-
-
-

Fig. 8. NASS, NASS and AgCensus combined, and NASSus counts of
years with data on alfalfa hay yields and crop area.
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Table 5. Percentage gaps filled by the different methods.
% gaps filled

by combining % gaps in % gaps in
NASS + NASS filled  NASS filled
Gaps in AgCensus by mixed by the default
Crop NASS databases models option:
Alfalfa hay 23017 20.8 77.8 1.4
Barley 7049 3.2 95.0 1.9
Corn 7822 10.9 87.8 1.3
Corn for silage 12417 18.6 81.0 0.5
Oat 9626 7.5 89.9 2.7
Other hay 27554 24.8 751 0.0
Sorghum 8938 2.5 94.6 2.9
Soybean 5854 7.8 89.0 3.2
Wheat 7371 10.5 89.4 0.1

T Gaps correspond to the number of missing data in different years during
the 16-yr period in all the counties where each crop is grown.

$Only the outliers of the predicted values from the mixed models were
filled with the default option (i.e., means of the observed values).

ever, the final total cropland area aggregated at state
level was very close to the state-level cropland area ac-
cording to the NRI, with an R* exceeding 99%. This was
observed for 1982, 1992, and 1997, during years which
NRI had also reported data (Fig. 9).

DISCUSSION

Out of the 3111 counties in the conterminous USA,
only 67 counties had no crops reported. An initial
evaluation of the existing discrepancies between the two
main crop statistical databases, NASS and AgCensus,
showed that most of the data were very close and com-
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NRI cropland area (ha)

c. 1997

1.20x107
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8.00x100
i = 1,00075x + 70964
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0.00)6]06 X L L N R )
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T

Fig. 9. Final cropland area (NASSus) of all the major crops for 1982
(top), 1992 (middle), and 1997 (lower), aggregated at state-level,
plotted against the state-level U.S. total cropland area according to
the National Resources Inventory (NRI).

parable (Table 1). However, the difference in the survey
methods yielded occasional, extremely different values
in NASS compared with AgCensus. Certain differences
in the county-level crop statistics could also be attrib-
uted to the way NASS and AgCensus reports the farm
(or farmer) information; if a farmland extends over
several counties, NASS surveys use the location of the
household as the location of the farmland. However, for
AgCensus, the county in which the operator earns most
of his income is reported. This discrepancy becomes vis-
ible in those counties with little agriculture (R. Korkosh,
2004, personal communication). For some crops, NASS
does not report county-level data for certain states
where the crop is present, and overall, NASS has a sig-
nificant number of missing data at county level. NASS
reporting is also restricted by Title 13 of the U.S. code
that stipulates that data are not to be published if it
would disclose the operations of a single farm within a
county, but it is permitted to release the number-of-
farms information observed for a county (Griffith, 1999).
This is another reason for county-level missing data in
NASS. Initially, we filled the gaps in NASS using the data
from AgCensus; however, <20% of the total gaps in NASS
data could be filled using the AgCensus information.

Using linear mixed-effect models with environmental,
management, and economic variables to impute missing
data yielded lower relative errors compared with a de-
fault method of simply using the mean of the observed
values for a county. Overall, the linear mixed effect
model approach filled >80% of the total gaps in NASS
data. In a few instances, where county data were very
sparse, models needed to be modified by dropping
either autoregression or random effects to meet the
convergence criteria. Less than 1% of the missing or
imputed values were filled using the county-level means
as a default method. Availability of a very low num-
ber of observations has been problematic in certain
other studies as well. According to Tao et al. (2005), the
CASA model overestimated yields in areas with few
observations, while it performed better in areas with
dense crop coverage.

Using the AR(1) covariance structure yielded pre-
dicted values that showed a good time correlation or
trend in the predicted yields (Fig. 8). Overall, the mixed
model approach seemed to perform well, and only a
handful of outliers had to be replaced with the means of
the observed values. Compared with other complex sim-
ulation models, our approach was simpler, with fewer
parameters. It also incorporated essential environmen-
tal and economic factors, in addition to spatial and tem-
poral autocorrelation effects.

Incorporation of the county area was essential in the
models for predicting the crop areas. In our study, we
incorporated log-transformed county area as a predic-
tor variable, while Griffith (1999) had considered the
density of area (by dividing by the county area) to in-
corporate any effect from the size of a county. Griffith
(1999) had taken the relationship between an agricul-
tural commodity and the number of farms producing
that commodity, along with the spatial autocorrelation in
the statistical models used in small area estimation in
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Michigan and Tennessee. With the model options having
log-transformed county area, we got better relative er-
rors compared with having the area density as the de-
pendent variable.

Since no other ground-based database is available
(except for NASS and AgCensus) to compare the final
results at county-level, we aggregated the predicted crop
area at state-level, and compared those with the state-
level cropland area based on the NRI. The final crop
area for different crops at state-level was very close, al-
though there were slight differences in certain crops
at state level. This could be mostly due to differences
in the reporting by NRI and NASS or AgCensus, espe-
cially in terms of the differences of small grain crops
(due to differences in sampling time), and differences in
reporting hay crop categories. The total cropland from
all the major crops according to our final crop area (after
filling all gaps) were very close to the cropland area
from NRI estimates (R* = 0.99).

CONCLUSIONS

Overall, the methodology we used in this study en-
abled us to reach the goal of creating complete county-
level yield and acreage datasets for major crops in the
USA. The effect of gap-filling was greater for certain
counties and certain crops, especially for hay crops in
states where NASS does not report county-level data,
and certain counties with small crop areas. The use of
environmental, economic, and management variables
in linear mixed models, while taking the spatial and
temporal correlation into account, allowed filling the
largest proportion of the data gaps; regression analyses
with AgCensus also helped fill a significant portion of
the gaps during 1982, 1987, 1992, and 1997.

The new NASSus database provides an improved
ground-based estimate of cropland productivity that can
be used to compare with remote-sensing based estimates
and/or to assess temporal and spatial trends in primary
productivity and carbon cycling in U.S. cropland.
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