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Crop biomass and residue production are major components of cropland carbon

dynamics that can be estimated using yield data from ground-based surveys. In the

USA, surveyed yield data are available at county level and have been widely used

for various research, economic and policy purposes, in addition to biomass esti-

mation. However, survey data may be unavailable for certain times and/or loca-

tions and thus biomass estimates using remotely sensed data might be used to fill in

any missing biomass data for estimating residue production and carbon dynamics

in croplands. Compared to ground-based surveys, remotely sensed data are col-

lected on a regular schedule and may also provide more spatially resolved data. We

analysed composite biweekly Normalized Difference Vegetation Index (NDVI)

data obtained using the Advanced Very High Resolution Radiometer (AVHRR)

sensor and crop aboveground biomass (AGBM) estimated from available county-

level yield data reported by the National Agricultural Statistics Service (NASS) for

three crops (corn, soybean and oats) during 1992, 1997 and 2002. The aim of the

study was to explore the relationships between NDVI and crop biomass to com-

plete the missing biomass data in counties where no NASS-reported yields are

available for biomass estimation.

AGBM was estimated from Pathfinder biweekly NDVI, using canonical correla-

tion analysis (CCA) and best subset multiple regressions incorporating canonical

variates from NDVI time series. Cross-validation of model estimates was performed

by randomly splitting the dataset into training and application subsets, simulating a

10–40% range of missing values. NDVI and crop biomass in Iowa during a given

year were well correlated, with coefficient of determination (R2) values . 0.8 in

most cases. Using the available (training) data from a single year or a combination

of years to derive models for filling the missing (validation) data within the same

time period yielded a mean estimated biomass with , 1% relative error and bias.

However, models applied to out-of-sample years had lower (, 0.4) R2 values for the

relationships between biomass and NDVI, although the mean residuals were low.

1. Introduction

The use of remote sensing for crop forecasting dates back to the early 1970s

(reviewed in MacDonald and Hall 1980). Since then, agricultural agencies in

various countries (e.g. Canada, Hungary and the USA) have used sensors such
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as the National Oceanic and Atmospheric Administration Advanced Very High

Resolution Radiometer (NOAA AVHRR) and Landsat imagery to forecast crop

yields and crop conditions (Csornai et al. 2002, Reichert and Cassey 2002,

NASS 2009). Several studies have used multispectral and hyperspectral data

for spatially explicit crop forecasting and yield estimation. Many have used the
Normalized Difference Vegetation Index (NDVI) to estimate biomass (Lozano-

Garcia et al. 1991, Hansen and Schjoerring 2003) and crop yields (Tucker et al.

1983, 1985, Quarmby 1993, Senay et al. 2000, Yang et al. 2000, Doraiswamy

et al. 2003, 2004, 2005, Hill and Donald 2003, Knudby 2004), with most

applications at the field scale. Some of these studies have used integrated

NDVI over the crop growth period to estimate biomass (e.g. Tucker et al.

1983, 1985, Quarmby 1993).

The NDVI is a vegetation index that ranges between -1 and þ1, and is the
difference between near infrared (NIR) and red (R) channels normalized by their

sum [i.e. NDVI ¼ (NIR - R)/(NIR þ R)]. Increasing positive values indicate

increasing greenness and negative values indicate non-vegetated surface features

such as water, ice, snow and clouds. The relationship between vegetation indices

such as the NDVI and biomass depends on the relationship between the vegetation

index and the Leaf Area Index (LAI) and the relationship between LAI and bio-

mass. According to Curran (1981), NDVI is related directly to biomass when

biomass is linearly correlated with LAI. In comparing several vegetation indices
for plants in salt marshes, Modenese et al. (2005) found NDVI to give the highest

correlation with aboveground biomass (AGBM). NDVI time series from the

AVHRR have been used to study changes in vegetation properties over time

(Myneni et al. 1998, Shabanov et al. 2002, Xiao and Moody 2005). Currently, the

National Agricultural Statistics Service (NASS) of the United States Department of

Agriculture (USDA) uses biweekly composite NDVI images from AVHRR to

monitor crop condition and for crop forecasting, while Landsat imagery is mainly

used to estimate crop areas at the county level, under its Cropland Data Layer
Program (Allen et al. 2002).

Our study was carried out as part of an attempt to assess the carbon dynamics of

agricultural soils in the conterminous US. Crop residues are the main component of

carbon inputs to agricultural soils, and include about 50–60% of the total crop

AGBM produced in a given year. Crop yields can be used to estimate above- and

below-ground biomass (and hence residue carbon inputs) based on allometric rela-

tionships for different crops (Buvanovsky and Wagner 1986, Campbell and Jong

2001, Prince et al. 2001, Williams and Paustian, submitted). In our earlier study
(Lokupitiya et al. 2007) we considered a 16-year period from 1982 to 1997, during

which digital databases were available from both the NASS (annual data) and the

Census of Agriculture (data reported every 5 years); these data sets were combined to

derive a comprehensive county-level crop yield database. Such county-level data have

been widely used for both research and policy applications, including analyses of

carbon cycling and greenhouse gas inventories in agriculture. One limitation of using

the available survey data for estimating biomass (and residue carbon production) is

the missing data for certain years in certain counties. Therefore, in this study we
explored the potential use of a combination of remote sensing and statistical

approaches in estimating annual AGBM production in those counties that do not

have yield information for estimating biomass. In doing this, we used the county-level

crop production in Iowa as a test bed.
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2. Materials and methods

2.1 Data used

The remotely sensed data consisted of NOAA AVHRR biweekly NDVI images

(1 km, i.e. ,100 ha resolution) of the conterminous US and the 1992 National
Land Cover Dataset (NLCD) produced by the US Geological Survey (USGS) using

Landsat images. Biweekly AVHRR NDVI images, which have been corrected for

cloud-contaminated pixels, were obtained from the Pathfinder dataset (James and

Kalluri 1994) for the years 1992, 1997 and 2002. Currently, global-scale NDVI time

series are also available from the MODerate Imaging Spectroradiometer (MODIS).

MODIS has advantages over AVHRR with regard to its onboard calibration ability,

and higher spatial (250 m), spectral (i.e. narrower bandwidth in the near-infrared

(NIR) and red range compared to AVHRR) and radiometric (12-bit) resolution.
However, we used AVHRR NDVI time series rather than MODIS because our

objective was to derive county-level biomass estimates for several years starting

from 1992, at a time when MODIS was not operational. Annual yield data reported

by NASS for 1992, 1997 and 2002 were used as the ground data for estimating annual

AGBM production. These years were chosen for both the remotely sensed and ground

data because they were the most recent years that both NASS and the Census of

Agriculture have reported crop yields, and because the use of multiple years allowed

us to evaluate the impact of differences in crop phenology and/or other temporal
variability in crop biomass in different years. The state of Iowa was chosen for the

study because annual crops dominate the state’s land cover and it is among the states

with the most comprehensive reporting of yields and crop areas by NASS, with few

missing data, thus making it a suitable place to cross-validate and evaluate relation-

ships between crop AGBM and NDVI.

For three years (1992, 1997 and 2002), biweekly images collected during the grow-

ing season (beginning of April to end of October) were combined as bands within a

single multitemporal image. A county map of the USA (source: www-atlas.usgs.gov/)
was used to obtain the county boundaries and extract composite NDVI images for

Iowa. The NLCD coverage for Iowa was recoded to exclude non-crop areas and mask

the composite NDVI images from the three years. The cropland areas selected con-

sisted of the NLCD categories for small grains (i.e. oats in Iowa) and row crops (corn

and soybean). As the NLCD coverage with crop layers had 30 m resolution, pixels

from NLCD crop layers were aggregated to 1000 m resolution for masking the NDVI

images. If 75% of the area of an AVHRR pixel (1 km spatial resolution) was classified

as cropland in the NLCD (30 m resolution), then the AVHRR pixel was classified as
annual cropland, otherwise the pixel was classified as non-cropland. Average

biweekly NDVI pixel values (from the separate biweekly layers of the composite

image) were then calculated for each county. Image processing was performed using

Erdas Imagine 8.6 (Leica Geosystems) and ArcGIS 8.1 (Environmental Systems

Research Institute, Inc. (ESRI)).

NASS reports annual county-level yields by extrapolating yield data collected

from a representative sample of farms in each county. Crop yields and areas for the

years 1992, 1997 and 2002 reported by NASS (www.nass.usda.gov/
Data_and_Statistics/index.asp) were used to estimate the percentage crop area

and AGBM production in a given year. In Iowa, the major crops in all three years

(1992, 1997 and 2002) were corn (Zea mays L.) and soybean (Glycine max L.); oats

(Avena sativa L.) was also considered in this study as a third major crop. Iowa has 99
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counties; for each county, the percentage of the county’s total area occupied by any

of the three crops and the percentage of each crop within the total annual crop area

were estimated.

AGBM was calculated from the county-level yield data reported by NASS, using

allometric equations relating grain yield to biomass for each crop, based on informa-
tion from past studies (Lawes 1977, Wych and Stuthman 1983, Buvanovsky and

Wagner 1986, Russel 1991, Bolinder et al. 1997, Bruce and Langdale 1997, Juma

et al. 1997, Peters et al. 1997, Pierce and Fortin 1997, Vanotti et al. 1997, Campbell

and Jong 2001, Prince et al. 2001, IPCC 2006). In doing so, the crop yields were

corrected for moisture content and converted to biomass, dry matter yield (equation

(1)); this yield was then used in crop-specific allometric equations incorporating

harvest indices (S. A. Williams, personal communication) to estimate the above-

ground non-harvested dry biomass (equations (2), (3) and (4)). The estimated total
AGBM (i.e. both grain and residue dry biomass) was used for developing model

relationships with NDVI values. The grain dry mass for a particular crop (GDMcrop

in kg ha-1) is given by:

GDMcrop ¼ Y � Fu � FDM � 1:12 (1)

where Y is the yield reported by NASS (bushels acre-1), Fu is the unit conversion

factor for converting bushels to pounds, and FDM is the fraction of dry biomass (i.e.

after removal of the fraction of moisture); lb acre-1 was converted to kg ha-1 by

multiplying by 1.12. The corresponding residue dry mass (RDM) for each crop (corn,

soy and oats) is then given by:

RDMcorn¼ ðGDMcorn � 1:03Þ þ 610 (2)

RDMsoybean¼ ðGDMsoybean � 0:93Þ þ 1350 (3)

RDMoats¼ ðGDMoats � 1:06Þ þ 849 (4)

2.2 Dependent and independent variables

As the aim of the study was to derive general relationships between remotely sensed

data and annual crop biomass production estimated from yield statistics, the follow-

ing crop variables were considered as the dependent variables:

1. Mean annual AGBM per hectare of each crop (i.e. [C,S,O]AGBM kg ha-1,

where C,S,O denote corn, soybean and oats, respectively)
2. Area-weighted biomass (AWBM in kg ha-1). This is the sum of the AGBM of

the crops, weighted by their area fraction: AWBM ¼
P

([C,S,O]AGBM �
[C,S,O]AF), where AF is the area of the particular crop as a fraction of the total

crop area.

AWBM from the three crops was included, assuming it would match better with the

NDVI signal at the pixel level, as it represents the mixed-crop biomass per hectare.

Biomass data for the above variables were estimated for three different years (i.e.

1992, 1997 and 2002).

The NDVI pixel values for 2-week periods encompassing the growing season (April

to October) of 1992, 1997 and 2002 were extracted at county level, and considered as
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the independent variables. As there were slight differences in the beginning and end

dates of the biweekly time intervals in the three years, biweekly periods of the growing

season in 1997 and 2002 were matched with the corresponding 1992 periods that had

the greatest date overlap for the analyses and interpretation of the results.

Initial analyses of the data showed significant correlations between temporally
adjacent NDVI values, such that the values from different time periods cannot be

treated as independent (i.e. they exhibit multicollinearity). To address the problem of

multicollinearity, we used canonical correlation analysis (CCA) to model crop bio-

mass as a function of NDVI.

2.3 CCA

CCA is a statistical approach that summarizes multiple variables from two datasets as
pairs of canonical variates. Although CCA treats both sets of variables identically, it

is convenient to label one dataset as independent and the other as dependent; in this

case these are the remotely sensed NDVI values and crop biomass values, respectively.

Pairs of canonical variates are created as linear combinations of the original variables

in each dataset. CCA maximizes the correlation between linear combinations of

variables from one set with linear combinations of variables from the second set.

The advantage of CCA is that it quantifies the redundancy in each set of variables.

This, makes it possible to analyse both X and Y variables in terms of their relation-
ships to other variables within their own dataset and to variables in the other dataset.

In the CCA, biweekly NDVI values were considered as one set of variables, and

county-level corn aboveground biomass (CAGBM), soybean aboveground biomass

(SAGBM), oats aboveground biomass (OAGBM) and area-weighted biomass

(AWBM) were considered as a second set of variables. As mentioned above, one

advantage of CCA is it eliminates the multicollinearity associated with biweekly

NDVI values. It also provides more interpretable results, as the patterns of correla-

tion within and between datasets are reduced to a smaller number of variates that are
ranked by their importance in explaining variance in each dataset. As an example, we

could have used separate multiple regression analyses to predict AGBM for corn and

soybean from NDVI values. However, doing so would obscure the fact that corn and

soybean AGBM covary because of two effects: the limitation on total area of crop-

land in each county, and the fact that good years for corn are generally good years for

soybean as well. In addition, the coefficients for the resulting regression equations

would be difficult to interpret, as they would combine numerous effects into a single

linear combination of the independent variables, whereas CCA separates out effects
into separate canonical variates.

Best subset multiple regression analyses were performed to estimate each dependent

variable using the canonical variates derived from the NDVI dataset. To obtain the

model with the highest predictive power, the best subset of the entire set of indepen-

dent variables was chosen based on Mallows’ Cp value (a measure of model fit) and

coefficient of determination (R2) values for each subset of the independent variables;

the subset that gave the lowest Cp (with Cp� 1, when p¼ number of parameters) and

the highest R2 was chosen as the best.
These analyses were performed using datasets in which 10, 20 or 40% of the data

were randomly removed to represent missing data (the validation dataset), and the

remaining data were used as a training data set to derive regression equations. To

obtain results that were insensitive to the particular selection of missing data,
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canonical correlations and best subset multiple regression analyses were performed

iteratively 100 times for cross-validation. Analyses were performed in the IDL soft-

ware package (Research Systems 2005). The following scenarios were evaluated:

1. Analyses were carried out separately for each year: 10, 20 and 40% of the

county-level biomass data from that year were removed from the dataset for

each year and treated as missing data; as there were 99 counties, biomass data
within 10, 20 and 40 counties were randomly removed for each iteration.

Regression equations developed using the remaining (training) dataset in each

iteration were then applied to the reserved counties. In addition, to determine

the year-to-year consistency of the equations, these same equations for any

single year were extrapolated to estimate AGBM values for the other two years.

2. Data from two years were combined and separated into training and validation

sets with 10, 20 and 40% data missing (i.e. 20, 40 and 80 county-level data points

missing from the combined data from the two years, for each iteration). The
unused year’s data were used to check the ability to extrapolate the regression

equations beyond those years.

3. Data from all three years were combined; 10, 20 and 40% of the missing data

from the same set (i.e. 30, 60 and 120 biomass data points were randomly

removed from 297 data points created when the county-level data for all three

years were combined, for each iteration) were considered as the validation data

set for the models obtained using the remaining (training) data.

The above three levels of missing data (i.e. 10, 20 and 40%) were chosen for this

study to test the usability and validity of the model relationships at different levels of

missing data.

3. Results

The final composite NDVI images for the crop layers in 1992, 1997 and 2002 are

shown in figure 1. The analyses included all 99 counties in Iowa and the average

number of cropland pixels per county was 926� 367. When the temporal variation in

NDVI was studied for each year, we found that NDVI increased from the beginning

of April, and remained high from mid-June to early October in 1992 and 2002 and

from mid-June to mid-September in 1997. The highest NDVI in all three years was
observed from the end of July or early August until early September. The highest

county-averaged NDVI observed for Iowa cropland was 0.63, 0.71 and 0.79 in 1992,

1997 and 2002, respectively. The increasing trend over the years was more conspic-

uous during the period of high NDVI; however, NDVI in 1997 was lower in certain

biweekly periods towards the end of the growing season, compared to the correspond-

ing periods in 1992 (figure 2).

According to the crop area information reported by NASS, about 80% of the

counties (78 out of 99) in Iowa had more than 50% land cover with these crops, and
the average crop area in the counties was 89%. The percentage areas occupied by corn

within the cropland of a county were in the range 52–88% in 1992, 43–79% in 1997 and

38–70% in 2002. The percentage areas for soybean were 3–48% in 1992, 14–55% in

1997 and 24–59% in 2002, and those for oats were 0–12% in 1992, 4–9% in 1997 and

0–6% in 2002. In 1992, the average percentage crop areas for corn, soybean and oats

were 61, 37 and 2%, respectively; in both 1997 and 2002, the average percentage annual

crop areas for corn, soybean and oats were 53, 46 and 1%, respectively (figure 3).
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The county-level average yields reported by NASS for these three crops were slightly

different between the three years, and the highest yields and estimated biomass values

were found in 2002; average corn yields were 9, 8.5 and 10 Mg ha-1, soybean yields

were 2.9, 3 and 3.2 Mg ha-1, and oats yields were 2.4, 2.6 and 2.7 Mg ha-1in 1992, 1997

and 2002, respectively. Thus the yields of the crops increased over time, and this

increased trend in yields was also reflected in the increased NDVI, with 2002 having

higher overall NDVI than the other two years (figure 2).

Figure 1. Images used in the data analyses. False-colour composites of (a) NDVI images
during the crop season and (b) the same images after being masked for crop layers using the
NLCD Landsat image for the years 1992, 1997 and 2002. Blue (B), green (G) and red (R) layers
in the images correspond to the biweekly NDVI from the following periods within each year:
1992: 17–30 April (B), 1–14 May (G) and 15–28 May (R); 1997: 11–24 April (B), 25 April–8 May
(G) and 9–22 May (R); 2002: 19 April–2 May (B), 3–16 May (G) and 17–30 May (R).
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3.1 CCA

For any of the years or combination of the years, the highest correlation between the

first NDVI and crop biomass canonical variates ranged between 0.9 and 0.95; the
corresponding p-values of , 0.0001 rejected the null hypothesis that all the canonical

correlations are zero. The results of the multivariate statistical tests also confirmed the

significance of the canonical correlations obtained from the analyses.

Of the four NDVI canonical variates that contributed towards the observed model

relationships with crop biomass (tables 1 and 2), the first canonical variate (CV1) had

the highest loadings from the original NDVI dataset; CV1 had positive loadings from

NDVI pixel values of the biweekly periods in early April to mid/end June, and early

September to the end of October in all three years (figure 4). In all the models, CV1
was negatively correlated with crop biomass (tables 1 and 2). As CV1 has the highest

(positive) loadings from NDVI at the early and end phases of the crop growth cycle,

the negative coefficient of CV1 with biomass in all the models indicates that NDVI is

negatively or less correlated with biomass during the early and final phases of the crop

growth cycle. Thus CV1 seemed to represent a less green or non-green component of

the crops, as it had the highest loadings when NDVI values were low. There was a

positive correlation between crop biomass and original NDVI pixel values during the

period from late June to late August; however, this correlation varied in value among
the crops and different years, and ranged from 0.1 to 0.84. The loadings from the

original NDVI pixel values on the second, third and fourth canonical variates were

very low, except for the relatively high loadings on the second canonical variate in

1997 (figure 4). However, all four canonical variates seemed to follow the same

pattern of variation. All four canonical variates contributed towards the model

Figure 2. Variation in NDVI averaged for the whole state of Iowa during biweekly time
periods in 1992 and corresponding time periods in 1997 and 2002. The same trend was observed
at individual county level.
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relationships with the biomass of each individual crop and area-weighted total

biomass; different coefficients derived for each canonical variate in the model rela-

tionships (tables 1 and 2) predicted the biomass values separately for each specific

crop.

3.2 Model relationships between NDVI-derived canonical variates and crop biomass in
relation to the extent of missing data

Model relationships were obtained for 10, 20 and 40% missing data in biomass

under the scenarios (1) data from a single year, (2) two years of data combined,

Figure 3. Box plots for crop area occupied by each crop as a percentage of total crop area in
1992, 1997 and 2002.
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and (3) all three years of data combined. In general, relatively high R2 values

were obtained for the models where both training and validation data sets were

from the same year (e.g. tables 1 and 2, figure 5). However, when these model

relationships were extrapolated to a different year or a combination of years

other than those used in the model derivation, the same model relationships

yielded relatively low R2 values (figure 5). The extent of the difference between

the mean estimated and observed values varied depending on the observed
values in the year or the two years combined in the training dataset. For

instance, under scenario 2, when the models for CAGBM from combined data

in 1992/1997 were applied on the extrapolated data in 2002, the mean estimated

values were 12% lower than the observed values [i.e. relative error 12%, where

relative error ¼ (observed – estimated)/observed]. When models from the 1992/

Table 1. Best subset multiple regression models between the canonical variates (CV1–CV4)
from the relevant NDVI pixel values from different biweekly periods and AGBM in 1992 data

when 10, 20 and 40% data were missing.

R2

40% data missing
CAGBM ¼ 25 941.4 – 354.7 � (CV1) – 144.2 � (CV2) – 174.4 � (CV3) – 132.7 � (CV4) 0.83
SAGBM ¼ 15 324.9 – 72.8 � (CV1) – 27.4 � (CV2) – 8.2 � (CV3) – 27 � (CV4) 0.62
OAGBM ¼ –12 382.4 – 244.1 � (CV1) – 22.7 � (CV2) – 22 � (CV3) þ 4.4 � (CV4) 0.92
AWBM ¼ 25 422.5 – 141.7 � (CV1) – 15.1 � (CV2) – 193 � (CV3) – 172.3 � (CV4) 0.61

20% data missing
CAGBM ¼ 29 598.2 – 324.8 � (CV1– 114.3 � (CV2) – 220.3 � (CV3) – 187 � (CV4) 0.81
SAGBM ¼ 17 267.1 – 66.6 � (CV1) – 22.5 � (CV2) – 1.9 � (CV3) – 39.3 � (CV4) 0.59
OAGBM ¼ –12 223.1 – 223 � (CV1) þ 18.5 � (CV2) þ 52.6 � (CV3) – 12.5 � (CV4) 0.92
AGBM ¼ 28 438 – 128 � (CV1) – 21 � (CV2) – 237 � (CV3) – 191 � (CV4) 0.59

10% data missing
CAGBM ¼ 29 069.5 – 313.1 � (CV1) – 97.4 � (CV2) – 221.8 � (CV3) – 200.4 � (CV4) 0.81
SAGBM ¼ 17 136.9 – 64.6 � (CV1) – 16.1 � (CV2) þ 0.01 � (CV3) – 38.7 � (CV4) 0.58
OAGBM ¼ –12 885.2 – 215.3 � (CV1) þ 10.7 � (CV2) þ 61 � (CV3) þ 9 � (CV4) 0.92
AWBM ¼ 28 509.7 – 124.4 � (CV1) – 26 � (CV2) – 251.1 � (CV3) – 228.8 � (CV4) 0.58

CAGBM, corn aboveground biomass; SAGBM, soybean aboveground biomass; OAGBM, oats
aboveground biomass; AWBM, area-weighted biomass.

Table 2. Best subset multiple regression models between the canonical variates (CV1–CV4)
from NDVI pixel values from different biweekly periods and AGBM in 1997 and 2002 for

training data with 10% data missing.

R2

1997
CAGBM ¼ –16 067 – 1372.9 � (CV1) – 186.3 � (CV2) – 124.7 � (CV3) þ 196.6 � (CV4) 0.83
SAGBM ¼ –4869.7 – 375.7 � (CV1) þ 171.8 � (CV2) þ 194.7 � (CV3) þ 39.2 � (CV4) 0.78
OAGBM ¼ –9096.1 – 557.1 � (CV1) – 79.7 � (CV2) þ 9.4 � (CV3) – 191.2 � (CV4) 0.55
AWBM ¼ 25 422.5 – 141.7 � (CV1) – 15.1 � (CV2) – 193 � (CV3) – 172.3 � (CV4) 0.84

2002
CAGBM ¼ –100 639.1 – 824.4 � (CV1) – 29.4 � (CV2) þ 45.3 � (CV3) þ 4.3 � (CV4) 0.85
SAGBM ¼ –43 935.6 – 221.4 � (CV1) – 35 � (CV2) – 22.1 � (CV3) – 1.3 � (CV4) 0.83
OAGBM ¼ 29 324.2 – 216.8 � (CV1) – 23.1 � (CV2) – 23 � (CV3) þ 17.8 � (CV4) 0.24
AWBM ¼ –84 203.4 – 652.6 � (CV1) – 41.6 � (CV2) þ 30.9 � (CV3) – 0.7 � (CV4) 0.86

CAGBM, corn aboveground biomass; SAGBM, soybean aboveground biomass; OAGBM, oats
aboveground biomass; AWBM, area-weighted biomass.
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2002 combination were applied on the 1997 data, the mean estimated values

were 3% higher than the observed values (i.e. relative error – 3%). The ratio of

the root mean square error to the mean estimated value (RMSE/MPRED) was

in the range 0.1–0.2 for corn, 0.05–0.2 for soybean, 0.1–0.3 for oats and 0.1–0.2

for AWBM, for the extrapolated datasets under the first and second scenarios.

Under the third scenario, when the data from all three years were combined for

the analyses, the model relationships estimated biomass values with , 1%
relative error and values of , 0.05 for RMSE/MPRED in both training and

validation data sets when 10, 20 and 40% data were missing. Thus the mean

estimated values were very close (within 4% across all the biomass variables) to

Figure 4. The correlation between the original NDVI pixel values from different biweekly
periods and canonical variates with 90% data in the training dataset.
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the mean observed values for each biomass variable (table 3; figure 6). However,

the R2 values were slightly lower than those obtained for the training and

validation data sets under the first two scenarios (i.e. the single year scenario

and with combined data for two years; figure 5); the observed R2 for the

validation data under the third scenario was in the range 0.45–0.5 for AWBM,

0.6–0.7 for CAGBM, 0.5–0.6 for SAGBM and 0.2–0.3 for OAGBM.

We analysed the average bias (i.e. average residuals) for all three scenarios. Soybean
always had the lowest bias (mostly within 5 kg ha-1; figure 7). However, oats, being a

minor crop with minimum crop area, showed the highest bias (still within 20 kg ha-1)

in relation to the mean observed biomass values. Corn had very low biases (, 7 kg

ha-1) in 1992 and 1997, but the bias was slightly higher (close to 15 kg ha-1) in 2002, in

a year when the average corn biomass was much higher compared to the other two

years; but this bias was negligible because the average observed corn biomass in 2002

was 18 353 kg ha-1.

4. Discussion

We tested the feasibility of using remotely sensed AVHRR NDVI to estimate county-

level crop biomass as a complement to ground-survey based data (e.g. to fill in missing

data). Using raw NDVI pixel values as independent variables in models to estimate

biomass was determined to be inappropriate because of the presence of multicolli-

nearity among NDVI values for certain time periods, especially during early crop

Figure 5. Adjusted R2 values for the estimated model relationships between NDVI canonical
variates and biomass of each crop (corn, soybean, oats) and area weighted biomass (AWBM)
under the three data scenarios: single year data (top), two years combined (middle), and all three
years combined (bottom). R2_train is R2 for the models derived using the training data when 10,
20 and 40% of the data were missing; R2_valid is R2 when the model from training data is
applied on a data set with 10, 20 and 40% data missing randomly; R2_extrap_1 and R2_extrap_2
are R2 when the model/s obtained using the training data from any single year or combination
of years is/are applied on the data of the remaining year/s. R2_extrap_1 corresponds to the
earlier year of the remaining year/s, and R2_extrap_2 corresponds to the later year of the
remaining years.
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Table 3. Mean values with standard errors from the observed and estimated values for training
and validation biomass data when the data from all three years are combined for developing

model relationships using canonical correlation analysis.

Variable

Mean observed
biomass for

all data (kg ha-1) Missing data (%)

Mean estimated
values for training

data (kg ha-1)

Mean estimated
biomass for

validation data
(kg ha-1)

CAGBM 17 281 � 1880 10 16 910 � 32 16 912 � 262
20 16 916 � 51 16 894 � 168
40 16 916 � 94 16 888 � 132

SAGBM 6933 � 523 10 6945 � 8 6950 � 65
20 6948 � 14 6943 � 46
40 6948 � 25 6942 � 33

OAGBM 5085 � 1231 10 5090 � 21 5105 � 96
20 5095 � 36 5096 � 85
40 5091 � 52 5087 � 75

AWBM 12 646 � 1292 10 12 407 � 26 12 405 � 169
20 12 411 � 43 12 400 � 110
40 12 412 � 67 12 387 � 94

CAGBM, corn aboveground biomass; SAGBM, soybean aboveground biomass; OAGBM,
oats aboveground biomass; AWBM, area-weighted biomass.

Figure 6. County-level mean observed biomass data compared against the biomass estimates
from models based on different levels of missing data in (a) training data and (b) validation
data, when all the data (i.e. from all three years) were combined.
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growth. Multicollinearity problems were avoided by using canonical correlation

analyses that combined information from closely related, county-averaged biweekly

NDVI pixel values during the crop growth period into separate canonical variates.

AGBM variables derived from NASS yield data served as the dependent variables. As

biomass was estimated using linear relationships incorporating observed yields, any

spatial or temporal variation in crop production due to environment factors such as

precipitation and temperature was directly reflected in the estimated biomass.
In analysing the correlations between original NDVI and individual crop biomass

variables, the biomass of all three crops was positively correlated with NDVI from the

end of June to the end of August when the NDVI was at a maximum. As corn and

soybean had the highest crop areas (mostly . 90%) and biomass, the largest con-

tribution to NDVI must have come from these two crops. The usual harvest time for

corn and soybean is October, and harvest dates for oats normally fall in July in Iowa.

After the end of August, the NDVI was negatively correlated with biomass, during a

period when highest biomass should be found in the crops, especially for soybean and
corn, due to maturation and end phase of grain filling. The grain-filling period, which

allocates 40–50% of the biomass to grain, usually falls within the past 50–60 days of

the growth cycle in corn plants. Thus the maximum NDVI was observed near the

beginning of the grain-filling period of the corn plants. The negative coefficient of the

first canonical variate with biomass (and the observed correlation between biomass

and original NDVI) denotes that biomass was negatively correlated with NDVI when

the crop was close to harvest (in September–October). These results are in accordance

with a study by Curran (1981), in which a negative correlation was found with high
biomass in vegetation and NDVI. Canopy opening and similar reflectance from drier

or senescing vegetation towards the end of the crop cycle and soil in the NIR and

visible range (Todd et al. 1998, Campbell 2002) probably led to lower NDVI and the

negative correlation with biomass.

Figure 7. Average bias (i.e. average residuals) of the estimated values from 100 iterations
when 10, 20 and 40% data were missing within a single year.
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The coefficients obtained for the first canonical variate for different crops and

different years were distinct, indicating the differences among the crop growth cycles

and the differences in the biweekly periods in terms of crop phenology in different

years. Both NDVI and biomass depend on external environmental factors such as

precipitation and temperature; crop biomass depends on the number of growing
degree-days and the temperature during the grain filling. Therefore, when such

environmental factors vary between different years, it makes it less accurate to use

the model derived from one year or a combination of two years for predictions during

a different year. Our study confirmed this by showing low R2 values when the models

from scenarios 1 and 2 were extended to a different year, although the mean residual

values were low. Overall, the best results were obtained when the models from the

training data were applied for the missing data within the same period (i.e. single year

or the combination of years). According to the results of the analyses, the mean
estimated values or R2 values were not very dependent on the extent of the missing

data; the results obtained for cross-validation using all levels (i.e. 10, 20 and 40%) of

missing data were very close, indicating that our method could be used with even more

than 40% of the values missing (i.e. as the basis for crop biomass estimates with a

smaller quantity of training data).

Although the first canonical variate was the most useful canonical variate in

predicting and interpreting the NDVI–biomass relationship, the purpose of the

current study was to derive model relationships between NDVI and crop biomass.
Thus the other canonical variates were also considered in the best subset multiple

linear regression analyses, to select the subset of the canonical variates that would give

the best model fit between the NDVI and biomass of each individual crop. The current

study shows that CCA followed by best subset multiple regression analyses is a viable

approach for predicting biomass from NDVI, when there are missing data in the

reported crop statistics.

The mean estimated values for training data and validation data from 100 runs for

the three selected levels of missing data were very close, within 5% relative error.
When models were derived from the available data within the same time period

(within the same year or the combination of the years that are relevant to the missing

data), this approach was highly successful. R2 values gradually decreased when we

increased the time period for choosing training and validation data from one, two or

three years. However, using the data from all three years was the best single approach

to estimate missing data for all of the participating years, as there was no significant

drop in the R2 value when the models based on the training data were applied on the

validation (i.e. missing) data (figure 5, bottom graphs), and the model relationships
yielded the lowest relative errors. Although the single-year scenario had higher R2

values for the model relationships, the fall in R2 when the models were applied on the

validation data was higher, making it less suitable in application for filling missing

data. The deviation of the predicted biomass from the observed data was also higher

for the single-year scenario, compared to the scenario that had the data from all three

years combined. When using only one or two years’ data to predict the missing data in

a third year, R2 values were low. As Iowa has fairly comprehensive reporting by

NASS on crop production, the data set was well suited to validate the model relation-
ships between NDVI and biomass under several ‘forced’ scenarios of missing data at

the county level. As the method used gave promising results, further testing of this

approach using states of more variable climate is warranted.
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5. Conclusions

Overall, the method used in the current study yielded model relationships between

NDVI canonical variates and biomass variables with high R2 values, and estimated

values with low relative errors (and RMSE/MPRED ratios). CCA between NDVI

pixel values and biomass data and subsequent best subset regressions incorporating

canonical variates were used as a methodology for avoiding the effect from multi-

collinearity among adjacent biweekly NDVI pixel values. The results show that the

model relationships derived from this approach are valid in predicting biomass values

for up to 40% of the missing data. However, the missing data should be filled only with
the models derived from the available data pertaining to the same time period, to

better account for the specific phenological changes over the corresponding time

period. Application of the models based on a single year or a combination of years

on out-of-sample year/s proved to be less valid (with low R2), suggesting an impact

from the weather variability (e.g. drought conditions) and other external factors

corresponding to the out-of-sample year/s. Of the scenarios considered in the study,

the best results were found when the models based on the training data from all three

years were used in filling the validation (missing) data for that period. CCA revealed
that NDVI and crop biomass are well correlated during the middle of the crop growth

from mid-June to the end of August, and the use of all the canonical variates from the

original biweekly NDVI pixel values in subsequent best subset multiple regression

analyses was needed in determining model relationships for biomass of individual

crops. Overall, we found this approach suitable for filling missing biomass data at the

county level, to be used in estimating residue carbon inputs or for similar purposes. As

it incorporates low-resolution AVHRR NDVI data and available county-level yield

data as the input data for model derivation, we find this is a better approach for
regional- or national-scale studies than for field-scale studies. This approach could be

further enhanced in the future, by using MODIS NDVI data that have higher spatial,

spectral and radiometric resolution.
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