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Variance-Corrected Proportional Hazard
Models for the Analysis of Multiple Failures in
Personal Computers
A. A. Sunethra and M. R. Sooriyarachchi∗†‡

Proportional hazard (PH) modeling is widely used in several areas of study to estimate the effect of covariates on
event timing. In this paper, this model is explored for the analysis of multiple occurrences of hardware failures in
personal computers. Multiple failure events consist of correlated data, and thus the assumption of independence
among failure times is violated. This study critically describes a class of models known as variance-corrected PH models
for modeling multiple failure time data, without assuming independence among failure times. The objective of this
study is to determine the effect of the computer brand on event timings of hardware failures and to test whether
this effect varies over multiple failure occurrences. This study revealed that the computer brand affects hardware
failure event timing and that further, this effect of the brand does not change over the multiple failure occurrences.
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1. Introduction

Computers play a prominent role in modern society. Among several types of computers, personal computers (PCs) have
appeared to be the most popular over the decades.1 In line with the rapid growth of PC usage, the industry faces the
challenge of maintaining its reliability factor. PCs are repairable and hence may have multiple failures within its usage.

Basically, PCs experience hardware failures and software failures. This study only focuses on modeling hardware failures in PCs.
Although there are several types of hardware failures that could occur, for simplicity all of these are considered as a single failure
type. Thus, in this study ‘multiple events’ correspond to repeated failures of the same type.

The primary objective of this study is to explore an empirical application of analyzing multiple failure time data without
incorporating the assumption of independence among failure events. The application of the study includes failure occurrences
in PCs and the effect of the computer brand on the failure event time is evaluated. Thereby, a clear understanding of the brand
effect on failure event timing can be achieved.

The methods of analyzing failure type data can be basically classified into parametric and non-parametric methods. The
correlated structure of multiple failure time data makes it complicated to use parametric models to model multiple failure time
data. Therefore, non-parametric methods in which no distributional assumption is required would be better in this context. The
Cox proportional hazard (PH) model developed by Cox2 is a popular semi-parametric method that has been excessively used to
model failure time data and it mainly focuses on evaluating the effect of covariates on event timing. According to Lim et al.3,
the conventional analysis used by several authors in the past, to study multiple failure times, consisted of using the usual Cox
model; for the time to the first event or for the overall survival time. However, analytic approaches adjusting for the correlations
between recurrent failure times within a system are needed to obtain efficient inferences and this requires the modification of
the usual Cox model.

The variance-corrected proportional hazards (VCPH) model proposed by the authors is an extension of the PH model, which
takes into account the lack of independence between failure times. The VCPH is semi-parametric in the sense that no assumption
is made about the distribution of failure times and the only assumption made is that of proportionality of hazards between the
levels of the covariates. These models obtain parameter estimates by first fitting a Cox PH model that ignores the dependence
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structure and then replace the naïve standard errors with estimates from an empirical sandwich variance estimator4 in order to
incorporate the non-independence of times between failures. Analogous to the generalized estimating equations of Liang and
Zeger5 and Zeger and Liang6, these estimators are asymptotically normal and consistent in sample size n, provided that the
models are correctly specified.7--11 This study applies the VCPH models to model multiple occurrences of hardware failures in
PCs.

The data were collected from a reputed computer solution company in Sri Lanka, which sells two brands of PCs and maintains
a service unit for the PCs sold by the company. The two types of PCs are denoted by brand 1 and brand 2 as original brand
names cannot be divulged owing to reasons of confidentiality. The date on which each PC was reported for repair is taken as
the failure date and the number of days between the sales date of the respective PC and the repair date is taken as the time
to failure of that PC. The data consist of repetitive dates of failures and the study is limited to a maximum of five failure events.
Thereby, the effect of the brand of PC on failure occurrences is evaluated over multiple failure times.

To assess the goodness of the model fitted, Information Matrix (IM) test of White12 is used. Finally, this study identifies the
most appropriate model that depicts the multiple failure structure of PCs.

VCPH models have previously been used by Wei et al.11 to model bladder cancer data and by Michael et al.13 to model arrest
data of a sample of California Youth Authority parolees, although there has been no application of this model in the area of
reliability. This study can therefore be regarded as a novel application of VCPH models to reliability data. In addition, in many
research papers dealing with multiple failure time data, no goodness-of-fit testing of the model is done. In rare instances when
goodness-of-fit is tested, it consists of plots of Cox–Snell residuals, Schoenfeld residuals and Martingale residuals. However, these
plots cannot be used with multiple failure times as events are dependent. In our study the goodness-of-fit of the model is tested
using White’s12 IM test.

A literature review of data analysis for repairable systems is given in the next section. A detailed description of the VCPH models
is presented in Section 3. The model-checking procedure is outlined in Section 4 and the example is illustrated in Section 5.
Section 6 gives the conclusions and a brief discussion on the outcome of the study. Section 7 consists of an appendix which
includes the SAS programs used for modeling.

2. A literature review of data analysis for repairable systems

In the majority of situations, most of the elements or components constituting a system can be repaired or replaced, so that the
system can be restored for satisfactory operation. Such a system is termed as a repairable system.14--16. To provide a reliability
context for such a system, consider the process of successive failures and repairs of the system. We measure time in terms
of operating time, thus ignoring the repair times. Frequently, time between failures will neither be independent nor identically
distributed. Usually, interest centers around modeling the probability structure of time between failures and the probability
structure of time to failures as a function of system age.

One common failure model is the homogeneous Poisson process (HPP) discussed by Cinlar17 and Tan et al.18. Thompson19

shows that a process is HPP if and only if the times between failure are independent with common exponential distribution.
Thompson19 goes on to discuss that renewal theory20--22 generalizes the HPP by allowing the times between failure to have
other distributions other than exponential. However, it still requires the independence assumption and for repairable systems a
renewal process is not capable of modeling a system that is becoming more prone to failure with time. The non-homogeneous
poisson23 is one process that is capable of modeling repairable system aging. Although the non-homogeneous Poisson process
(NHPP) model is appealing as a general wearout model, in the past19 it has been found to have some non-intuitive features; for
example the distribution of the first failure determines the entire process. However, this is not the case for most general NHPP
models discussed in the recent literature. Ascher and Feingold24 criticize NHPP models for repairable systems stating that these do
not give enough detail or realism for satisfactory results. Zhao and Xie25, Jeske and Pham26 and Nayak et al.27 have each found
that for all estimators (not limited to MLEs) of parameters of all NHPP models, with the expected number of failures over infinite
testing time is finite, are inconsistent. Cook and Lawless28 explain how to incorporate covariates in the models discussed thus far.
The PH model2, 29 can include the effect of covariates in the reliability function. This model requires two assumptions, namely,
the proportionality of hazard rates between the different levels of the covariates and the independence of failure times. Peña and
Hollander30 proposed a general class of models for repairable systems, which comprise a general synthesis of several repairable
systems models such as the modulated renewal process of Cox31, extended Cox PH model considered by Prentice et al.32 and
the well-known VCPH models of : (i) Anderson–Gill; (ii) Wei, Lin and Weissfeld; and (iii) Prentice, Williams and Peterson as reported
in Therneau and Grambsch.4 Peña et al.33 examined the properties of the estimators of the parameters of the model proposed
by Peña and Hollander30 and the consequences of misspecifying the model and reported that misspecification of the model has
unacceptable consequences. There is also no goodness-of-fit and model-validation procedure available for the model. Another
drawback is the unavailability of well-known software for fitting these models. Pan and Rigdon34 consider Bayesian models that
are a compromise between NHPP models and Renewal process models. However, covariate adjustment is not considered in their
models. Some other less well-known models for repairable systems include Markov models.35 The problems with this type of
model are that it cannot model the repair behavior and it is cumbersome for a large number of states. Another approach to
analyzing repairable systems is time-series models.36 Though this method has some appealing features it requires a large amount
of failure data.
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In a repairable system prone to multiple failures, times between failures will rarely be independent and/or identically distributed.
Thus the HPP model, the Renewal process model and the PH model will generally not suffice in the case of repairable systems.
The NHPP model though appealing as a general wearout model has been found to have some drawbacks. This leads us to
search for other alternatives. The VCPH model introduced in Section 1 and explained in more detail in Section 3 is an appealing
alternative to the NHPP model for modeling repairable systems.

3. VCPH models

The Cox PH models2 discussed in this paper are hybrid versions of the single-event Cox model and are specified in one of the
two ways:

hik(t) = h0(t)exp(�′Zik) (1)

hik(t) = h0k(t)exp(�′
kZik) (2)

In these specifications, Zik is a p- dimensional vector of measured covariates (j =1, 2,. . . , p) for the kth event, and � and �k
are vectors of regression parameters to be estimated. In Equation (1), h0(t) is a non-negative baseline hazard function that is an
arbitrary function of time and common to all events (i.e. h0k(t)=h0(t) for k =1, 2,. . . , K). In the second specification, the baseline
hazard function h0k(t) is allowed to vary over each of the events as an arbitrary function of time. hik(t) refers to the hazard
function of the ith subject on the kth failure event at time t. Model (2) is known as a stratified Cox PH model and in the models
discussed in this paper, the stratification is over k failure events. The stratification is important because it allows the baseline
hazard function to vary over each of the k events.

Another two key components that systematically differentiate these models are the way the risk intervals are defined with
reference to the starting point and the compilation of risk sets at each distinct failure time. Risk intervals refer to the time scales
used to define when a unit is at risk of experiencing a specific event37. There are three possible ways of defining a risk interval
and each of these describes a different substantive type of risk process. These three intervals are namely, gap time, total time
and counting process risk intervals.

The models used in this study use the partial likelihood function; they differ in the composition of the risk sets at each
observed failure time38. The risk set at time t is composed of all individuals currently at risk (i.e. under observation) of a failure
at the observed failure time t. The composition of the risk set used in the partial likelihood function at the time of each failure
is a direct result of both whether the model is ‘stratified’ by the event number and the type of risk interval specified37. As Kelly
et al.37 discuss, there are three possible types of risks set: unrestricted, restricted and semi-restricted.

The vector of parameter estimates for both the models is calculated via Cox’s2 partial likelihood function. The partial likelihood
is based only on the rank ordering of the failure times (i.e it ignores the precise timing of failures) and, in essence reduces to a
series of conditional logistic regression analysis of the conditional probability of observing the covariate pattern of the individuals
that fail at time t, given the weighted covariate pattern of the individuals that were at risk of failing39.

For the remainder of this paper, we denote the true failure times and censoring times of the ith subject for the kth event
(k =1, 2, 3,. . . , K) as random variables Tik and Cik , respectively, and assume that, conditional on the possibly time-dependent
covariate vector, Zik(t), Cik is independent of Tik for all i and k.11 The observed random failure time is defined as xik =min(Tik, Cik )
and the censoring indicator is defined as �ik = I(Tik<Cik), where I(·) is the indicator function. The risk process denoted by Yi(t) is
equal to 1 if the ith subject is under observation just prior to time t and if it is at risk of a failure event just prior to time t , and
is equal to 0 if it not under observation or not at the risk of a failure just prior to time t.

Assuming that there are no tied failure times, the partial likelihood function for Equation (1) is,

PL(�)=
n∏

i=1

K∏
k=1

⎡
⎣ exp(�′Zik(xik ))∑j=n

j=1
∑i=K

i=1 Yji(xik)exp(�′Zji(xik))

⎤
⎦

�ik

(3)

The score function that corresponds to Equation (3) is:

U(�)=
n∑

i=1

K∑
k=1

�ik

⎡
⎣Zik(xik)−

∑K
k=1

∑n
j=1 Yik(xik)exp(�

′
Zjk(xik)Zjk(xik))∑K

k=1
∑n

j=1 Yjk(xik)exp(�
′
Zjk(xik))

⎤
⎦ (4)

and the maximum partial likelihood estimates �̂ are obtained by taking the partial derivatives of the log-partial likelihood with
respect to �,

U(�̂)= � ln PL(�̂)

��̂
(5)
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For stratified Cox model such as Equation (2), the partial likelihood is

PL(�)=
n∏

i=1

K∏
k=1

⎡
⎣ exp(�

′
kZik(xik))∑j=n

j=1
∑i=K

i=1 Yji(xik)exp(�
′
kZji(xik))

⎤
⎦

�ik

(6)

and the corresponding score function is:

U(�)=
n∑

i=1

K∑
k=1

�ik

⎡
⎣Zik(xik)−

∑K
k=1

∑n
j=1 Yik(xik)exp�

′
kZjk(xik )Zjk(xik)∑K

k=1
∑n

j=1 Yjk(xik)exp(�
′
kZjk(xik))

⎤
⎦ (7)

The overall log-partial likelihood in a stratified model is actually a sum of the log-partial likelihoods obtained within each of
the distinct k strata

log PL(�)=
K∑

k=1
log PLk(�) (8)

The corresponding score function is also a sum of the score functions from each stratum; the derivatives of these score functions
are found by summing the derivatives across each of the K stratums and maximum partial likelihood estimates are the numerical
estimates that solve the score vector according to Equation (5).40 In essence, a stratified model fits K sub models and only
subjects who are both observed at time t and in the same kth strata as the subject who failed at time t contributes information
to the stratum-specific likelihood function. Stratification of the Cox PH model is one way to handle the problem of dependence
through the formulation of a ‘conditional’ partial likelihood function, whereby a subject is only included in the partial likelihood
of higher-order events upon the occurrence of each of the lower-order events.39, 41

Lin and Wei42 discuss the robust inference for the Cox PH model. When the usual Cox model is used to model multiple
failures, which results in non-independent failure times, then the model is misspecified. Struthers and Kalbfleisch43 show that in
this case the estimates �̂ converge to a well-defined constant vector �∗. They explain that n1/ 2(�̂−�∗) is asymptotically normal
with zero mean and covariance matrix estimated by V̂(�̂) the so-called sandwich estimator. This is the intuitive reason for using
the sandwich method for variance correction to adjust the standard errors of the parameter estimates in the Cox model in order
to incorporate the non-independence of times between failures. For this misspecified model they show that �∗ =0 under the null
hypothesis (H0) that there is no linear effect of covariates on failure time. Thus, it is possible to construct a valid Wald test based
on �̂ for testing H0. If the model is correctly specified �∗ =�, but in the case of a misspecified model �∗ is generally unequal to
�. However, Wei et al.11 and Lin and Wei42 indicate that for large samples the difference between �∗ and � is negligible (that is
asymptotically �̂ is unbiased for �) and thus �̂ is appropriate for practical use, under a wide range of misspecified Cox models.
Thus, � parameters are estimated without considering data dependence in the VCPH model.

3.1. Modified sandwich variance estimator

In a standard Cox model with independent observations, the variances of estimated parameters are calculated by inverting the
observed information matrix (IM):

V(�)= I−1 =−
[

�2 ln PL(�̂)

��̂��̂
′

]−1

(9)

The standard errors of the parameter estimates are the square roots of the diagonal elements of the model-based variance
covariance matrix resulted from Equation (9); these standard errors are often referred to as naïve standard errors. These estimates
of the variances of the parameter estimates are not consistent estimators of the true asymptotic variances when the data contain
correlated observations.11, 44, 45 In such cases, the method of calculating standard errors from Equation (9) overestimates the
number of independent data points in the sample. For example, two random observations from the same subject over time
are more likely to be similar in both covariate pattern and event timing than the two randomly sampled individuals from the
population. Thus, much of the within-subject information is redundant; the end result is that if the event times are positively
correlated, then the computed standard errors will be biased downward. This will produce inflated tests of significance, especially
for fixed covariates.46, 47

To correct the variance for dependence among the observations, an ‘empirical’ estimate of the variance of the parameter
estimates is obtained using a ‘modified sandwich’ variance estimator that allows for within-subject correlation. This estimate
is based on the robust variance estimator of Lin and Wei42, who derived their estimator for the independent failure data by
applying the sandwich variance estimator of Huber48 and White49. The Lin and Wei42 robust estimator for single, independent
event data is

VR(�̂)= I−1(U′U)I−1 (10)

where U is a n×p matrix of coefficient score residuals with elements

uij =
∫ t

0
[Zij (s)−Z̄j(s)]dM̂i (s) (11)
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Z̄j(s) is the mean of covariate j(j =1, 2,. . . , p) at time s defined as

Z̄j(s)=
∑

Yi(s)Zi(s)exp(�̂
′
(Zi(s))∑

Yi(s)exp(�̂
′
Zi(s))

(12)

and dM̂i(s) is the change in the martingale residual at time s for the ith subject.
This estimator is often referred to as the sandwich estimator because the data-based ‘correction’ or ‘adjustment’ factor (i.e.

the U’U component) is ‘sandwiched’ between the two naïve variance estimates obtained from Equation (9).
As derived by Lin and Wei42, the sandwich estimator in Equation (10) assumes that there are n independent observations that

are used to calculate the elements in the U matrix. In case of multiple failure time data, there are not n independent observations,
but rather there are m independent clusters (c1, c2,. . . , cm), ni correlated observations within the ith cluster. Assuming that the
observations are independent across the clusters, the overall efficient score residuals are calculated by summing the efficient
score residuals within each of the m independent clusters prior to being entered in the calculation of the sandwich standard
errors.44, 50 That is, U is now a collapsed m×p matrix of efficient score residuals that consist of the uijk ’s of Equation (11) (here
suffix k refers to the kth observation in the ith cluster) summed within each of the m clusters

uij =
ni∑

k=1
uijk ; (i=1,. . . , m) and (j =1,. . . , p) (13)

By summing the efficient score residuals within each of the clusters in Equation (12), the U matrix now takes into account the
fact that the score contributions are correlated within kth subject but are independent across the m clusters.44, 51 Hardin and
Hilbe44 refer to this type of variance estimator as the ‘modified sandwich’ variance estimator (MSVE). Wei et al.11 are credited
with deriving the MSVE for the analysis of multivariate survival data. Wei et al.11 found that the MSVE to be a consistent estimator
of the variance of the parameter estimates even under the misspecification of the dependence structure (see also Lee et al.8).

3.2. Wei, Lin and Weissfeld (WLW) marginal model and its variants

3.2.1. Wei Lin Weissfeld Marginal Model (WLW Model). The WLW marginal model is specified with an event-specific baseline hazard
function in which it allows the baseline hazard function to vary over each of the separate failure events and a semi-restricted risk
set in which it allows the given individual to contribute information to the partial likelihood function of the kth event at time t
as long as they have not experienced the kth event prior to time t and are still under observation at time t. Stated in another
way, subjects are considered at the risk of kth event prior to experiencing the (k−1)th event. This is the risk set of choice for
the analysis of unordered data where the risks are developing simultaneously.9

Therefore, WLW models can be specified as follows:

hik(t)=h0k (t)exp(�′
kZik) (14)

(Note that Equation (14) is the same as Equation (2)).
Models using the semi-restricted risk sets are often referred to as marginal or population-averaged models because all individuals

are at risk of experiencing all of the events from the time of the initial onset of risk.37

This is achieved by incorporating a total time risk along with an event-specific baseline hazard function. The risk set for this
model is Yik(t)= I(xik ≥ t). In this model, Yik(t) is equal to 1 for the kth event for the entire time that the individual is under
observation and only upon the occurrence of kth event it become equal to 0.

This model focusses on the distribution of each response as a distinct ‘marginal’ distribution and that the model is ‘averaging’
over all of the event times from the previous (k−1)th events.52 As Therneau and Hamilton53 note, the use of the term ‘marginal’
is to indicate ‘what would result if the data recorder ignored all information except the given event type’.

3.2.2. LWA variant of the WLW model. Lee et al.8 proposed the LWA variant of the WLW model.8 This model is defined with a
total time risk interval, an unrestricted risk set and with a baseline hazard function common to all k events. Thus the model can
be specified as follows:

hik(t)=h0(t)exp(�′Zik) (15)

4. Assessment of the fit of the WLW model

The most frequently applied methods for assessing the goodness of PH models require examining the Cox–Snell residual54 plots.
Crouchley and Pickles55 explain that in the case of multivariate survival data (e.g. multiple failure data), the Cox–Snell residuals
are no longer unit exponential. Consequently, standard residual plots based on the unit exponential distribution are no longer
appropriate. They go on to explain that inspite of these problems visual inspection of such plots remains the standard check
of model specification. Crouchley and Pickles55 provide a clear example of a case where the Kaplan–Meier plot of Cox–Snell
residuals contradicts the IM test suggested here.
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This paper applies the IM test of White12 for the checking of the PH model specification with multivariate failure time data.
White’s12 paper on inference from misspecified models presented the IM test as a test for correct model specification. The IM
test is based on the sum of the mean of the cross-product of the first derivatives of the log-likelihood and the mean of the
second derivatives. Both these terms are calculated at the estimated parameter values. If the model is correct, the sum of these
two alternative measures should be asymptotically zero.

With multivariate failure time data, three different tests can be formed.55 The different tests arise from the treatment given
to the dependence between the univariate margins and the over-dispersion within them. According to Crouhcley and Pickels55,
a test that examines homogeneity in the effect of the covariate �, in the univariate margins and can also be used for checking
model specification, takes the form

D̄c(�̂)=n−1

[∑
i

∑
k

[−ĥik (t)]+∑
i

∑
k

[�ik −ĥik(t)][�ik −ĥik(t)]

]

where D̄c(�̂) follows a chi-square distribution with one degree of freedom under the correct model specification.
Here, the subscript k distinguishes each of the failure times from sample unit i.

5. Example

5.1. Description

We now present an empirical application to investigate which brand of PCs is preferred based on the impact of the brand on
the timing of hardware failures. The data used in this study are from two groups of PCs sold from 4 April 2004 to 29 December
2006 on which a data set of 17 438 sales of PCs was obtained. Their failure times were observed until 25 May 2007 and only
the hardware failures (which were assumed to be of a single type) occurring within this period were considered in this study.
Together with the observed and censored observations over five failure events, 87 190 observations (5376 actual observations
and 81 814 censored observations) were used. The only explanatory variable considered is the brand of the PC.

5.2. Descriptive statistics

For the 17 438 PCs, an overall 80% of the PCs survived without any report of a hardware failure, about 13% had only one failure,
4% had two failures and about 1% failed three times within the study period.

Figure 1(a)–(e) depicts the variation in the failure pattern between each brand for each of the five failure events, respectively,
taking into account the time at which failures occur.

When Figure 1 is examined, a clear distinction between the failure patterns of the two brands can be observed. For the
first two failures (1(a)–(b)), brand 1 shows a larger percentage of failures in each of the time points. This distinction is not so
clear in the third and fourth failures (1(c)–(d)), where the curves are quite closer together. When considering the fifth failure
event (1(e)), the failure curves cross each other indicating that brand 1 has a slightly lower percentage of failures at early time
points of the study period while this pattern is reversed later on in the study period. These indications elucidated by Figure 1
suggest that there is a distinct difference among the failure curves of the two brands in each failure event, and further it
can be seen that the failure pattern of a particular brand is not similar in all the failure events. From this arises the need for
investigating the effect of the computer brand and whether this effect is the same in multiple failure occurrences of hardware
failures.

5.3. Univariate tests

Under the methods explained for modeling multiple failure times, different approaches were discussed. The significant differences
among these models were the way in which the risk sets were constructed and the way the risk intervals were defined. As
stated by Hannan et al.56, ‘the programming to rearrange the data for the correct analysis requires a clear understanding of the
implicit definition of the separate risk sets’. A procedure for identifying the proper structure of the risk interval suitable for the
data set considered in this study is suggested by using log-cumulative hazard (LCH) plots based on Kaplan–Meier estimates for
different types of risk intervals. The type of risk interval, which does not show a significant departure from the proportionality
of the hazards, will be considered as the suitable data structure for the modeling session. When the suitable risk interval is
identified in this way, the allocation of varied risk sets and baseline hazard functions would be done within the modeling
session.

The models that are being used in this study are multivariate generalizations of the Cox PH model. The only assumption in
Cox PH models is that the hazards are proportional over the strata variables. In this study, the only strata variable involved is
the brand of PCs. Thus before applying PH models, the assumption of proportionality of hazards will be checked over the two
brands of PCs for the five separate failure events.

This graphical test is a univariate approach and is not so reliable in the case of multivariate failure times since the
dependence among the failure events cannot be grasped very clearly by this method. Thus, the indications illustrated
by the LCH plots will be regarded as tentative and the validity of assumption will further be assessed in the modeling
session.
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Figure 1. Percentage of failures for each failure event: (a) first failure; (b) second failure; (c) third failure; (d) fourth failure; and (e) fifth failure.

The two types of risk intervals used by the PH models explained earlier are total time risk intervals and gap time risk intervals,
in which the kth total time considers the duration between the kth failure date and the installation date of the particular PC and
the kth gap time risk interval considers the duration between kth failure date and the repair completion date of the (k−1)th
failure as the risk interval for each failure. Therefore, an investigation will be done by using LCH plots to look for the risk set that
comparatively secures the PH assumption. Figure 2(a)–(c) gives LCH plots for the first three gap time risk intervals, respectively.

When Figure 2(a) is examined, it is seen that the LCH curves for the first failure do not depart too much from being parallel.
Thus, it can be concluded that the PH assumption is secured for the first failure when the risk interval is formed as gap time
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Figure 2. LCH plots for the gap time risk interval: (a) 1st failure; (b) 2nd failure; and (c) 3rd failure.

risk interval. However, it should be noted that both the gap time risk interval and the total time risk interval are the same for
the first failure as both take the duration between the first failure date and the installation date of the particular PC. Therefore,
it can be concluded that for the first failure event both types of risk intervals secure the PH assumption.

In case of the second failure (Figure 2(b)), it can be noted that the assumption of proportionality of hazards is slightly violated
since the LCH curves of the two brands show one crossing. In the case of the third failure (Figure 2(c)), this assumption is fairly
violated as the two LCH curves cross each other several times. Based on this investigation of Figure 2, further examination of gap
time risk interval will be halted and the validity of the total time risk interval with respect to the PH assumption will be checked.

Figure 3(a)–(d) illustrates the LCH plots for the separate brands over the 2nd, 3rd, 4th and 5th total time risk intervals,
respectively.

In Figure 2(a), it was identified that for the first failure both gap and total time risk intervals secure the PH assumption and
from Figure 3(a) it can be seen that in case of second failure too the total time risk interval secures the PH assumption somewhat
better than the gap time risk interval. When the third failure is concerned, here too the total time appears to be preferred over
the gap time risk interval as the violation of PH assumption is slight. The same fact that the violation of PH assumption is not
severe is elucidated in case of 4th and 5th failures also when the risk interval is constructed as the total time risk interval. These
graphical tests thus point out that the total time risk interval is preferred to the gap time risk interval. Further, the appropriateness
of the total time risk interval is checked using the Schoenfeld global test for PH.57 The p-Values obtained for this test are listed
in Table I along with the results of the log-rank test58, which was done to test whether there is a significant difference among
the performance of the two brands at each failure.

The p-Values for the log-rank test are all significant at 5% for each of the failures, indicating that the performance of the two
brands has a significant difference at each of the five failure events. Further, the p-Values of the test for PH assumption appeared
to be non-significant at the 5% level in each of the five failures. Thus, it can be concluded that the assumption of proportionality
of hazards is prevalent in each of the failure instances under the total time risk interval.

With the findings of the univariate tests, it was decided to use the total time risk interval as the preferred structure of data
for the data set of this study. But, as these univariate tests take into account each failure event separately, further validation will
be done in the modeling session.
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Figure 3. LCH plots for the total time risk interval: (a) 2nd failure; (b) 3rd failure; (c) 4th failure; and (d) 5th failure.

Table I. Summary of log-rank tests and the test for PH assumption over total time risk interval

Failure event Log-rank statistic (LR) df p-Value for LR test p-Value of test for PH Proportionality of the hazards

First 8.513 1 0.0035 0.5989 Good
Second 14.7035 1 0.0001 0.6608 Good
Third 5.2116 1 0.0224 0.3108 Good
Fourth 4.0579 1 0.044 0.1698 Slight departure
Fifth 7.7012 1 0.0055 0.1794 Slight departure

5.4. Model fitting

Among the VCPH models described, the main differences were the definition of risk sets, definition of risk intervals and the
form of the baseline hazard function. Rather than fitting all the VCPH models, it was considered sensible to identify a model
(or models) that would be comparatively better than the rest of the models for the given data set and apply only the identified
models. For this purpose, LCH plots for each failure event using both the gap time risk interval and the total time risk interval
were drawn and presented in Section 5.2. These plots showed that the total time risk interval is preferred over the gap time risk
interval as the PH assumption was approximately valid for the former but not for the latter. Therefore, only the models that are
defined with a total time risk interval are applied in this study.

The WLW marginal model and the LWA variant of the WLW models are specified with a total time risk interval. The only
difference among these two models is that the WLW model is defined with an event-specific baseline hazard and a semi-restricted
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Table II. Details of the fitted models

Parameter Hazard ratio Std. error 95% Conf. limits of the hazard

Model estimates (�̂) exp(�̂) of �̂ ratio exp(�) P-Value

Model-1 −0.18590 0.83 0.03676 0.773 0.892 <0.0001
Model-2 −0.12409 0.883 0.04233 0.813 0.96 0.0002

−0.27732 0.758 0.07222 0.658 0.873 0.0001
−0.27294 0.761 0.12022 0.601 0.963 0.0231
−0.36738 0.693 0.18331 0.484 0.992 0.0451
−0.6773 0.508 0.2524 0.31 0.833 0.0073

risk set, whereas the LWA marginal model is defined with a common baseline hazard and an unrestricted risk set. Initially, the
LWA model (Model 1), which assumes a common baseline hazard for all the failure events is fitted to the data set. Then, a WLW
marginal model (Model 2) which assumes five different baseline hazards for the five failure events, is examined. Table II gives the
details of the fitted models.

The p-Value of the Wald test for model 1 indicates that the effect of the brand is highly significant (p-Value <.0001). A hazard
ratio of 0.83 indicates that the instantaneous failure rate of brand 2 PCs is less than that of brand 1 PCs and that the failure rate
of brand 2 PCs is about 17% less than the failure rate of the brand 1 PCs. However, further assessment of the fit of the model is
required before concluding the final model to model the multiple failure occurrences of PCs. The IM test is carried out on model 1
to find out the goodness of the model specification.

The D̄c(�) statistic for the LWA model, which assumes a common � for all the five failure events, is 1.72052 on 1 degree of
freedom. A p-Value of 0.1896 indicates that the model is correctly specified. Therefore, it is reasonable to assume that the ratio
between the instantaneous failure rates of the two brands of PCs is common in all the five failure events. That is, the chance of
a failure in brand 1 PCs is higher than that of the brand 2 PCs is consistent over all five failure events.

Model 2 given in Table II gives the details of the WLW model fitted to the data set. The p-Values of the Wald test statistics
given indicates that the brand effect is significant over all event times. The 95% confidence intervals given separately for the five
failure events appear to be overlapping, thereby further indicating that assuming the baseline is changing over the five failure
events is unnecessary. Thus, it can be concluded that the LWA model fits the data set well.

The parameter estimates obtained for the LWA model indicate that the chance of a hardware failure in brand 2 Pcs is less
than the chance of a failure in Brand 1 PCs and it remains the same in all five failure events.

6. Conclusion

The analysis carried out in this study showed that the computer brand affects failure event timings. Further it was identified
that this effect of the computer brand remains constant over the multiple failure occurrences. The failure rate of brand 2 PCs is
approximately 17% less than that of brand 1 PCs.

The VCPH models discussed in this paper give an appropriate analysis of multiple failure occurrences in which dependence
between the failure events is captured. The conventional method of checking the goodness-of-fit of a Cox proportional model
(Cox–Snell residuals, martingale residuals, etc) is not appropriate in the event of multiple failure occurrences due to the dependence
among failure events.

In contrast to the usual methods that have been frequently used to check the goodness-of-fit of PH models, the IM test
proposed by White12, which is preferred in the presence of multiple failures is used in this study.

Lin and Wei42 have performed extensive simulation studies to evaluate the sensitivity of the PH assumption to sample size, in
both the usual Cox model and in the VCPH Cox model. Their study indicates that both the model-based Wald and score tests will
exceed the nominal level when the true model has non-PH irrespective of the sample size. However, the robust Wald and score
tests maintain their size near the nominal level for large samples. This indicates that the validity of the PH assumption is vital
for the usual Cox model irrespective of sample size; however, the VCPH model is fairly robust to departures from PH for large
samples (as is the case in this example). Lawless and Thiagarajah59 use a simulation study to show that for HPP and renewal
process models the size of both Wald and score tests exceed the nominal value and do not vary systematically as the sample
size increases when applied to repairable systems. They also show that the Laplace test indicates that the NHPP process performs
better in the sense that the size of the test is closer to the nominal value; however, the size does not vary systematically with
respect to the sample size when applied to repairable systems.

In a repairable system prone to multiple failures, times between failures will usually not be independent nor identically
distributed ruling out the use of HPP and renewal process models. The VCPH model proposed here avoids both these assumptions
as does the NHPP model. The only assumption in the VCPH model is that the hazards between levels of the covariates are
proportional. While this assumption should be checked, the model is fairly robust to departures from this assumption for large
samples. The NHPP model on the other hand has been found to have inconsistent estimators and there is some criticism about
its use for repairable systems. Thus, the VCPH model is seen as preferable to the NHPP model.
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Appendix A

/*Read the data set into SAS*/

PROC IMPORT OUT= WORK.REPAIR
DATAFILE= ‘E:\project\final_data.csv’

DBMS=CSV REPLACE;
GETNAMES=YES;
DATAROW=2;

RUN;

/* Re-arrange the data set in a suitable way for modeling*/

data com_repairs;
set repair;
keep id tstart tstop status brand_name visit;
array ff F1-F5;
array cc C1-C5;
infile datalines missover;
ff[1]= first;
ff[2]= second;
ff[3]= third;
ff[4]= fourth;
ff[5]= fifth;
cc[1]= first_out;
cc[2]= second_out;
cc[3]= third_out;
cc[4]= fourth_out;
cc[5]= fifth_out;
id+1;
count=0;
tstart=0;
k =0;
do i=1 to 5;
k =k+1;
visit= i;

if ff[i]= . then do;
count=count+1;
tstop=follow_up_time;
status=0;

end;

else do;
tstop=ff[i];
status=1;

end;
output;

if count>0 then do;
tstart=follow_up_time;

end;
else do;

tstart=cc[k];
end;

end;

if(tstart<follow_up_time) then delete;
run;

/*Fitting the LWA model */

proc phreg data=com_repairs;
model tstop*status(0)= brand_name ;
strata visit;
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run;

/* construct a data set that consist of interaction terms of brand and failure event*/

data com_repairs2;
set com_repairs;

if visit < 6;
failure1= brand_name * (visit=1);
failure2= brand_name * (visit=2);
failure3= brand_name * (visit=3);
failure4= brand_name * (visit=4);
failure5= brand_name * (visit=5);

run;

/* Fitting the WLW model*/

proc phreg data=com_repairs2;
model tstop*status(0)= failure1-failure5;
strata visit;
id id;

run;
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