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Abstract 

 

Automobiles do fail repetitively owing to different types of failures. Modeling of such products should 

concern dissimilar recurrent failure types. Failure types are habitually correlated to each other. This study 
has utilized variance corrected proportional hazard models (VCPH) for modeling multiple failure 

occurrences of different failure types of automobiles taking into account the correlated nature of the 

failures. Though original Cox proportional hazard (PH) models require failure events to be independent, 
VCPH can handle non independency. In this study, this model is utilized for the analysis of multi-type, 

multiple occurrences of failures in automobiles, where the assumption of independence among failure 

times is violated. The VCPH model obtains parameter estimates by first fitting a Cox PH model that 
ignores the dependence structure and then replaces the naive standard errors with estimates from 

empirical sandwich variance estimation in order to incorporate the non-independence of times between 

failures. This study applies the Prentice, Williams and Petersen (PWP) models to model multiple 
occurrences of different failures in automobiles as proportionality among failure events were well 

demonstrated when risk interval is taken as ‘gap time’ and since PWP models are specified with a gap 

time risk interval. The Information Matrix (IM) test of White is applied for the checking of the PH model 

specification with multivariate failure time data. White’s paper on inference from missspecified models 

presented the IM test as a test for correct model specification.  The objective of the study was to find out 

how automobile type and type of failure affect the time to failure. Applying the best suitable VCPH 
model to the data, it was revealed that both automobile and failure type have an impact on timing of 

failure however this effect doesn’t change over multiple failure occurrences of the automobile.   
 

Keywords: VCPH models; multiple type failures; automobile failures; PWP model; information matrix 

test 
 

Abstrak 

 
Kereta gagal secara berulang bergantung kepada jenis kegagalan. Pemodelan produk tersebut harus diberi 

perhatian yang berbeza terhadap jenis kegagalan yang berulang. Jenis kegagalan adalah lazimnya berkait 

rapat antara satu sama lain. Kajian ini telah menggunakan model berkadaran bahaya yang diperbetulkan 
(VCPH) untuk memodelkan kejadian kegagalan pelbagai dengan mengambil kira sifat hubungan 

kegagalan tersebut. Walaupun model asal cox bahaya berkadaran (PH) memerlukan peristiwa kegagalan 

untuk menjadi bebas, VCPH boleh mengendalikan bukan ketidakbersandaran. Dalam kajian ini, model ini 
digunakan untuk analisis pelbagai, kepelbagaian kejadian kegagalan dalam kereta, di mana andaian 

ketidakbersandaran antara masa kegagalan dilanggar. Model VCPH mendapat anggaran parameter 

dengan pemasangan pertama model COX PH yang mengabaikan struktur bersandaran dan kemudian 
menggantikan ralat piawai yang naïf dengan anggaran daripada anggaran varian emperik sandwich untuk 

menggabungkan bukan ketidaksandaran masa antara kegagalan. Kajian ini menggunakan Prentice, 

William and Petersen (PWP) model untuk memodelkan kejadian pelbagai daripada kegagalan yang 
berbeza di dalam kereta sebagai perkadaran antara peristiwa kegagalan adalah menunjukkan apabila 

selang risiko diambil sebagai ‘jurang masa’ dan model PWP dispesifikasikan dengan jurang masa selang 

risiko. Maklumat Matrik (IM) ujian White digunakan untuk memeriksa spesifikasi model PH dengan data 
masa multivariate kegagalan. Kesimpulan kertas White daripada model tidak tepat dibentangkan ujian IM 

sebagai ujian bagi spesifikasi model yang betul. Objektif kajian ini adalah untuk mengetahui bagaimana 

jenis kereta dan jenis kegagalan yang mempengaruhi masa kegagalan. Penggunaan model VCPH yang 
paling sesuai untuk data, menunjukkan bahawa kedua-dua faktor jenis kereta dan jenis kegagalan 

mempunyai kesan ke atas masa kegagalan. Walau bagaimanapun kesan ini tidak berubah terhadap 

pelbagai kegagalan kereta.  
 

Kata kunci: Model VCPH; kegagalan pelbagai cara; kegagalan kereta; model PWP; ujian maklumat 

matriks 
© 2013 Penerbit UTM Press. All rights reserved. 

 

 



66                                                      Nuwani S. Amarasinghe et al. / Jurnal Teknologi (Sciences & Engineering) 63:2 (2013), 65–70 

 

 

1.0  INTRODUCTION 

 

There is a large scale impact of warranty policies on product 

sales, brand reputation and competitiveness in today’s business 

world. Especially in the automobile industry, manufacturers are 

currently facing huge product recalls, increased warranty claim 

rates that lead to sinking profits, and loss of market capitalization. 

Failures over the warranty period are closely linked to product 

reliability. Automobiles fail repetitively in different failure modes 

and this study focus on modeling those recurrent multiple failures 

modes. The primary objective of this study is to explore an 

empirical application of analyzing recurrent multiple mode failure 

time data without incorporating the assumption of independence 

among failure events. The application of the study includes 

recurrent failure occurrences in automobiles manufactured by a 

particular company and the effect of the type of automobile and 

failure mode occurred on the failure event time is evaluated. 

Thereby a clear understanding of the type of automobile and 

failure mode on failure event timing can be achieved.  

  The methods of analyzing failure type data can be basically 

classified into parametric and non-parametric methods. The 

correlated structure of multiple failure time data makes it 

complicated to use parametric models to model recurrent multiple 

mode failure time data. Therefore, non-parametric methods which 

require no distributional assumptions would be more suitable in 

this context. The variance-corrected proportional hazards (VCPH) 

model proposed by the authors is an extension of the Proportional 

Hazard (PH) model, which takes into account the lack of 

independence between failure times. The VCPH is semi-

parametric in the sense that no assumption is made about the 

distribution of failure times and the only assumption made is that 

of proportionality of hazards between the levels of the covariates.  

  These models obtain parameter estimates by first fitting a 

Cox PH model that ignores the dependence structure and then 

replace the naive standard errors with estimates from an empirical 

sandwich variance estimator in order to incorporate the non-

independence of times between failures. This study applies the 

VCPH models to model recurrent multiple mode failure of 

automobiles. In this study the time (mileage) to failure of an 

automobile product is modeled considering selection of failure 

types that can occur for three different types of automobiles 

manufactured by the company and six types of failures are 

considered. The PH model can include the effect of covariates in 

the reliability function. This model requires two assumptions, 

namely, the proportionality of hazard rates between the different 

levels of the covariates and the independence of failure times. 

Peña et al.[11] proposed a general class of models for repairable 

systems, which comprise a general synthesis of several repairable 

systems models such as the modulated renewal process of Cox[3], 

extended Cox PH model considered by Prentice et al.[12] and the 

well-known VCPH models of: (i) Anderson–Gill (AG); (ii) Wei, 

Lin and Weissfeld (WLW); and (iii) Prentice, Williams and 

Peterson (PWP) as reported in Therneau et al.[14]. Ezzell et al. [6] 

have discussed about variance-corrected proportional hazards 

models that have been developed by statisticians taking into 

account a lack of independence among failure times. There is 

considerable controversy about how to model multiple failure 

time data, especially ordered data, and thus they have offered 

general guidelines for choosing among these models. Analyzing 

several failure modes separately and merging has been suggested 

by Doganaksoy et al. [5]. Analyzing by individual failure modes is 

not possible for every situation often because of lack of data or 

because the failure modes are not independent. Therefore in this 

study correlation between, failure types and failure events will be 

considered. 

To assess the goodness of the model fitted, Information Matrix 

(IM) test of White [18] is used. Finally, this study identifies the 

most appropriate model that depicts the recurrent multiple failure 

structure of automobiles. In many research papers dealing with 

multiple failure time data have used plots of Cox-Snell residuals, 

Schoenfeld residuals and Martingale residuals. However these 

plots cannot be used with multiple failure times as events are 

dependent. Sunethra and Sooriyarachchi [13] has used White’s IM 

[18] test as a goodness-of-fit test for the analysis of recurrent 

hardware failures in personal computers. In our study the 

goodness-of-fit of the model is tested using White’s IM [18] test.  

  A detailed description of methods and model checking 

procedure are presented in Section 2 and the example is illustrated 

in Section 3. Section 4 gives the results of the study. Section 5 

gives the conclusion and a brief discussion on the outcome of the 

study.  

 

 

2.0  MATERIALS AND METHODS 

 

Sunethra and Sooriyarachchi [13] have modeled hardware failures 

of personal computers (PCs) using VCPH models which has 

considered single type of recurrent failures. They have considered 

brand of PCs as the only covariate. They have used the Cox 

proportional hazards models discussed below to model single type 

recurrent failures, which are hybrid versions of the single-event 

Cox model and are specified in one of two ways: 

 

ℎ𝑖𝑘(𝑡) =  ℎ𝑜(𝑡) exp(𝛽′𝑍𝑖𝑘)     (1) 

ℎ𝑖𝑘(𝑡) =  ℎ𝑜𝑘(𝑡) exp(𝛽𝑘
′ 𝑍𝑖𝑘)     (2) 

 

  In these specifications, 𝑍𝑖𝑘 is a p- dimensional vector of 

measured covariates ( j = 1, 2,. . . p) for the kth event, and 𝛽 and 

𝛽𝑘  are vectors of regression parameters to be estimated. In 

Equation (1), ℎ𝑜(𝑡) is a non-negative baseline hazard function that 

is an arbitrary function of time and common to all events 

(i.e. ℎ𝑜𝑘(𝑡)= ℎ𝑜(𝑡) for k =1, 2,. . . , K). In the second 

specification, the baseline hazard function ℎ𝑜𝑘(𝑡) is allowed to 

vary over each of the events as an arbitrary function of time. 

ℎ𝑖𝑘(𝑡) refers to the hazard function of the ith subject on the kth 

failure event at time t. Model (2) is known as a stratified Cox PH 

model and in the models discussed follow, the stratification is 

over k failure events. The stratification is important because it 

allows the baseline hazard function to vary over each of the k 

events. In this study which is an extension of above study, 

recurrent multiple failure modes have been considered. This 

results the data to be correlated among each other.  

  When the above usual Cox model is used to model multiple 

failures, which results in non-independent failure times, then the 

model is misspecified. Therefore it is needed to use alternative 

procedure to accommodate for correlation. Since then, as used by 

Sunethra and Sooriyarachchi[13] modified sandwich variance 

estimator (MSVE) is used for modeling multiple failures. Wei et 

al.[17] found that the MSVE to be a consistent estimator of the 

variance of the parameter estimates even under the 

misspecification of the dependence structure (see also Lee et 

al.[8]). 

  The two key components that systematically differentiate 

AG, WLW and PWP models are the way the risk intervals are 

defined with reference to the starting point and the compilation of 

risk sets at each distinct failure time. Risk intervals refer to the 

time scales used to define when a unit is at risk of experiencing a 

specific event. There are three possible ways of defining a risk 

interval and each of these describes a different substantive type of 

risk process. These three intervals are namely, gap time, total time 
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and counting process risk intervals. Selecting suitable risk interval 

and checking the PH assumption is done using Schoenfeld’s 

Global Test. Schoenfeld’s test is used because “it has the power to 

detect the insufficiency of covariates in describing the relative 

risks and the assumption of PH” as noted by Abeysekera and 

Sooriyarachchi [1]. 

 

2.1  Prentice, Williams and Peterson (PWP) Model (Ezzell et 

al. [6])  

 

PWP model will be used to analyze the data because of following 

features of the data set: gap time risk interval, event specific 

baseline hazard and restricted risk set. The gap time model the 

corresponding indicator is Yik(t)=((xik-xi,k-l)≥ t)  where xik denotes 

the total time failure of ith unit at kth event, xi,k-l denotes the total 

time failure of ith unit at k-1th event and Yik denotes the gap time 

failure of ith unit at kth event. These models attempt to account for 

the dependence among event times by, stratifying the model by 

the event number (Wei and Glidden [16]). Because the PWP 

models allow individuals to join new strata upon event 

occurrence, "the individual's baseline hazard function is allowed 

to change discontinuously from one non-parametrically modeled 

function to another" (Clayton [2]). Clearly, however, the strengths 

of the PWP models are that the models both take into account the 

explicit ordering of the failure times of a recurrent event process 

and allow for the estimation of event-specific parameters. 

However, simulations have shown the PWP models are sensitive 

to unobserved heterogeneity and misspecification (Lin [10], 

Therneau et al. [14], Therneau et al. [15]). 

  Depending on how the starting point of the risk interval is 

set, there are two variations of PWP models: PWP total time 

model and PWP gap time model.  Here the ‘total time’ means the 

time from the start of treatment, and ‘gap time’ is the time from 

the prior event. The PWP total time model is similar to the 

counting process model but stratified by event. Let ℎ𝑜𝑘  be the 

event-specific baseline hazard for the kth event. PWP total time 

model has the form of ℎ𝑖𝑘(𝑡) =  ℎ𝑜𝑘(𝑡) exp(𝛽𝑘
′ 𝑍𝑖𝑘)  and PWP 

gap time model has the form ofℎ𝑖𝑘(𝑡) =  ℎ𝑜𝑘(𝑡 −
𝑡𝑘−1) 𝑒𝑥𝑝(𝛽𝑘

′ 𝑍𝑖𝑘). 

  The PWP gap time model is specified with an event-specific 

baseline hazard function in which it allows the baseline hazard 

function to vary over each of the separate failure events and a 

restricted risk set in which it allows the given individual to 

contribute information to the partial likelihood function of the kth 

event at time t as long as they have not experienced the kth event 

prior to time t and are still under observation at time t. Stated in 

another way, subjects are considered at the risk of kth event prior 

to experiencing the (k−1)th event. This is the risk set of choice for 

the analysis of unordered data where the risks are developing 

simultaneously. Therefore, PWP models can be specified as 

follows: 

 

ℎ𝑖𝑘(𝑡) =  ℎ𝑜𝑘(𝑡 − 𝑡𝑘−1) exp(𝛽𝑘
′ 𝑍𝑖𝑘)                                           (3) 

 

  Lim and Zhang, [9] have defined PWP model with common 

parameter estimates with different baseline hazards for PWP 

Model. This model is defined with a gap time risk interval, a 

restricted risk set and with different baseline hazard function with 

common parameter estimates for all k events. This model allows 

the baseline hazard function to vary over each of the separate 

failure events but with common parameter estimates. 

 

ℎ𝑖𝑘(𝑡) =  ℎ𝑜𝑘(𝑡 − 𝑡𝑘−1) exp(𝛽′ 𝑍𝑖𝑘)                                          (4) 

 

 

 

2.2  Goodness of Fit of the Model  

 

This study applies the IM test of White [18] for the checking of the 

PH model specification with multivariate failure time data 

because usual Kaplan Meier methods cannot be used because of 

correlated failure data. White’s paper on inference from miss 

specified models presented the IM test as a test for correct model 

specification. The IM test is based on the sum of the mean of the 

cross-product of the first derivatives of the log-likelihood and the 

mean of the second derivatives. Both these terms are calculated at 

the estimated parameter values. If the model is correct, the sum of 

these two alternative measures should be asymptotically zero. 

With multivariate failure time data, three different tests can be 

formed. The different tests arise from the treatment given to the 

dependence between the univariate margins and the over-

dispersion within them. According to Crouhcley and Pickels [4] a 

test that examines homogeneity in the effect of the covariate β, in 

the univariate margins and can also be used for checking model 

specification, takes the form, 

 𝐷𝑐
̅̅ ̅(�̂�) =

 𝑛−1 [∑ ∑ [−ℎ𝑖�̂�(𝑡)] +𝑘𝑖 ∑ ∑ [𝛿𝑖𝑘 − ℎ𝑖�̂�(𝑡)] [𝛿𝑖𝑘 − ℎ𝑖�̂�(𝑡)] 𝑘𝑖 ]    (5)  

 

  where 𝐷𝑐
̅̅ ̅(�̂�), follows a chi-square distribution with one 

degree of freedom (for one parameter estimate) under the correct 

model specification. Here, the subscript k distinguishes each of 

the failure times from sample unit i. 𝛿𝑖𝑘 is the censoring indicator 

taking the value 1 if failure occurs and 0 otherwise. 

 

2.3  Example 

 

In this study the time (mileage) to failure, of an automobile 

product is modeled considering a selection of failure types that 

can occur for three different types of automobiles. The three types 

of automobiles are denoted by type A, type K and type R as 

original brand names cannot be divulged owing to reasons of 

confidentiality. Six types of failures are considered and described 

below: Wheels/ Tyres and Vehicle Alignment, Brakes – 

Hydraulics/ Regulator/ Servo, Engine - Craft shaft Group/ Pistons, 

Ventilation / Exhaust System, Front Suspension/ Drive Shafts and 

Doors/ Locking Systems and each has been denoted by failure 

type 1 to 6 and any other type of failure as failure type 7, for easy 

reference. Thereby, the effect of the type of vehicle and failure 

type occurred, on failure occurrences are evaluated over multiple 

failure times. Vehicles which were sold from March 2009 to April 

2011 are taken in to study and failure times are recorded for those 

vehicles from March 2009 to May 2011. In total 2532 vehicles 

were contained in the sample which was used for the study. Data 

gathered, presented a dynamic total number of failures as vehicles 

which come to get repaired are only recorded and vehicles not 

visited are not recorded. 14 stratums (repetitive failures) will be 

considered, considering maximum number of failure occurrences. 

Each failure type will be measured for fourteen events and seven 

failure types will be considered for each vehicle. Therefore each 

vehicle will account for 98 records. 

 
2.4  Descriptive Statistics 

 

Table 1 gives the percentages of failed automobiles at each failure 

event for 3 different types of automobiles and it has ignored the 

type of failure which has occurred. When failure event increases 

percentage of failed vehicles have deteriorated. When it comes to 

seventh failure event only 10% of automobiles have failed and in 

the first failure event almost 95% of vehicles were failed. In all 

the failure events three types of automobiles have recorded almost 

similar percentages of failed vehicles (table 1). After 8th failure 
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event failed percentage falls below 10% for all types of 

automobiles. Therefore it can be considered that first seven failure 

events play a prominent role. 

 
Table 1  Percentage of failed automobiles at each failure event 

 

 

 

 

 

 

 

 

 

 

  Since mileage is not considered above, median survival 

mileages are considered next. Table 2 gives the median survival 

mileages of each automobile at each failure event and it has 

ignored the type of failure which has occurred.  In first three 

failure events Model R has been outperforming A and K since 

median survival is higher, but after failure event three, all the 

models are performing evenly with slight changes.  

  Median survival time changes drastically from failure 

events 1 to 2, 2 to 3 and 3 to 4 but after fourth failure event 

changes occur are miniature (Table 2). It can be seen that the 

failure pattern of the automobile model is not similar in all the 

failure events. From this arises the need for investigating the 

effect of the automobile model and whether this effect is the 

same in multiple failure occurrences of different failure modes. 

 
Table 2  Median survival mileage (km) of each automobile model at each failure event 

 

 

 

 

 

 

 

 

 

 

2.5  Univariate Tests 

 
Among the VCPH models described, the main differences were 

the definition of risk sets, definition of risk intervals and the 

form of the baseline hazard function. As stated by Hannan et 

al.[7], ‘the programming to rearrange the data for the correct 

analysis requires a clear understanding of the implicit definition 

of the separate risk sets’. A procedure for identifying the proper 

structure of the risk interval suitable for the data set considered 

in this study is suggested by using Schoenfeld’s Global Test. 

The type of risk interval, which does not show a significant 

departure from the proportionality of the hazards, will be 

considered as the suitable data structure for the modeling 

session. When the suitable risk interval is identified in this way, 

the allocation of varied risk sets and baseline hazard functions 

would be done within the modeling session. Table 3 gives the p 

values of Schoenfeld’s test for PH assumption under total time 

and gap time.  

  The p-Values of the test for PH assumption for total time 

appeared to be significant at the 5% level in second and nearly 

significant at thirteenth and fourteenth failures. Thus, it cannot 

be concluded that the assumption of proportionality of hazards 

is prevalent in each of the failure instances under the total time 

risk interval. From Table 3, it can be concluded that the 

assumption of proportionality of hazards is prevalent in each of 

the failure instances under the gap time risk interval 

comparative with the total time risk interval. 

  With the findings of the univariate tests, it was decided to 

use the gap time risk interval as the preferred structure of data 

for the data set of this study. But, as these univariate tests take 

into account each failure event separately and ignore the 

correlation effects under multivariate failure times, further 

validation will be done in the modeling session. 

Table 3  Summary of Schoenfeld's Test for PH assumption 

 

Failure 

Event 

Total Time Gap Time 

P value 

Comment

s P value 

Comment

s 

First 

0.51463918

9 Good 

0.51463918

9 Good 

Second 0.00456312 Departure 0.07996794 
Slight 

Departure 

Third 

0.76882513

8 Good 

0.50798252

1 Good 

Fourth 

0.15866696

2 

Slight 

Departure 

0.15157351

3 Good 

Fifth 
0.36638275

9 Good 
0.60825555

8 Good 

Sixth 

0.84678870

3 Good 

0.34634613

5 Good 

Seventh 

0.49065947

4 Good 

0.59444057

8 Good 

Eighth 
0.87761673

6 Good 
0.30943886

7 Good 

Ninth 

0.43597865

9 Good 

0.86375761

3 Good 

Tenth 

0.12823257

2 

Slight 

Departure 

0.13132206

5 

Slight 

Departure 

Eleventh 
0.66988725

7 Good 
0.10712151

3 
Slight 

Departure 

Twelfth 

0.15514982

3 

Slight 

Departure 

0.06207401

6 

Slight 

Departure 

Thirteenth 

0.07476939

4 

Slight 

Departure 

0.06466162

5 

Slight 

Departure 

Fourteenth 
0.07451162

2 
Slight 

Departure 
0.08533052

0 
Slight 

Departure 

 

 

Type of 

Automobile 

Failure Event 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 

A 96.90 87.20 59.50 40.70 26.70 17.90 11.40 6.30 3.50 2.40 1.80 1.20 0.80 0.60 

K 94.90 79.40 58.50 39.90 26.40 16.20 9.80 5.40 3.00 1.50 0.50 0.20 0.20 0.10 

R 94.30 74.00 56.90 41.10 24.80 16.90 9.30 5.10 2.70 0.70 0.10 0.00 0.00 0.00 

Type of 
Automobile 

Failure event 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 

A 6352 14980 30740 51230 57840 57840 60870 53900 76070 55980 54950 

K 6944 15300 28900 54250 53640 51830 54590 54590 54160 50610 50130 

R 10350 19830 34250 52420 56820 60080 58980 57600 65610 64690  
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3.0  RESULTS AND DISCUSSION 

 

In Section 2.5, it was identified that the gap time risk interval is 

preferred over the total time risk interval as the PH assumption 

was approximately valid for the former but not for the latter. 

Therefore, only the models that are defined with a gap time risk 

interval are applied in this study. The PWP model is specified 

with a gap time risk interval. Gap time model can be fitted with 

common parameter estimates and different baseline hazards or 

with uncommon parameter estimates with different baseline 

hazards.  

  Initially, the PWP model was fitted with uncommon 

parameter estimates. It was found that 10th to 14th failure events 

seem to be insignificant and was considered as a common event. 

A model was developed with 80 parameter estimates. Since 

then, it is more worthwhile to check whether all events can be 

estimated with a common parameter without losing the 

accuracy. Therefore, PWP model is fitted with common 

parameters for and appropriateness of it is checked using 

White’s IM test. The chosen model can be specified as in 

equation 6 along with parameter estimates (Table 4). 

 

ℎ𝑖𝑘(𝑡) =  ℎ0𝑘(𝑡 − 𝑡𝑘−1). exp (𝛽1𝑥1 + 𝛽2𝑥2 +  𝛼1𝑦1 +  𝛼2𝑦2 +
 𝛼3𝑦3 + 𝛼4𝑦4 + 𝛼5𝑦5 +  𝛼6𝑦6)                                              (6) 

 

where 𝑥1- type A automobile relative to type R automobile,  𝑥2- 

type K automobile relative to type R automobile 

 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 𝑎𝑛𝑑 𝑦6 are failure type 1, 2, 3, 4, 5, 6 relative 

to failure type 7 respectively.  

  The p- value of the Wald test in the above model indicates 

that the effect of the model of automobile and failure types is 

highly significant (p- value <0.0001).Both type A and K 

automobile’s instantaneous failure rates are 1.574 times and 

1.395 times higher than the type R automobile, respectively.  

 
Table 4  Parameter estimates of the fitted final model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Instantaneous failure rates of different failure types when 

compared with failure type 7(any other type of failure that isn’t 

captured under six failure types) of three automobile types are 

identified in Table 5. For all three vehicle types wheel failures 

are more frequently occurred. 

  However, further assessment of the fit of the model is 

required before concluding the final model to model the 

multiple failure occurrences of automobiles. The IM test is 

carried out on above model to find out the goodness of the 

model specification. The 𝐷𝑐
̅̅ ̅(�̂�) statistic was computed for the 

above model, which assumes common effects for all the events 

considering all the parameter estimates. 𝐷𝑐
̅̅ ̅(�̂�) Statistic was 

5.8167 on 8 degrees of freedom (since model estimates eight 

parameter estimates). A p-value of 0.66775 indicates that the 

model is correctly specified. Therefore it is reasonable to 

assume that the above model suits significantly well to model 

the instantaneous failure rate of automobiles in all the 14 events.  

 
Table 5  Instantaneous failure rate of different failure types when compared with failure type 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0  CONCLUSION 

 

The analysis carried out in this study showed that the 

automobile model and failure types occurred affects failure 

event timings. Further it was identified that this effect of the 

automobile model remains constant over the multiple failure 

occurrences. The VCPH models discussed in this paper give an 

appropriate analysis of multiple type recurrent failure 

occurrences in which dependence between the failure events is 

captured. The conventional method of checking the goodness-

Included 

Covariates  

Parameter 

Estimates 

Hazard 

Ratio 

Std 

Error 

95% Confidence 

Limit 
P-Value 

Type of 
automobile 

A 0.4534 1.574 0.031 1.481 1.672 <.0001 

K 0.33313 1.395 0.02573 1.327 1.467 <.0001 

Failure type 

occurred 

1 2.97105 19.512 0.09399 16.23 23.459 <.0001 

2 2.84304 17.168 0.0943 14.271 20.653 <.0001 

3 2.92342 18.605 0.0941 15.471 22.373 <.0001 

4 2.40321 11.059 0.09572 9.167 13.341 <.0001 

5 1.62939 5.101 0.10025 4.191 6.208 <.0001 

6 0.61449 1.849 0.11379 1.479 2.311 <.0001 

Type of 

Automobile  

Failure Type 

Wheel  Brake  Engine  Ventilation, 

Exhaust 

System  

Front 

Suspension, 

Drive Shafts  

Doors, 

Locking 

System 

R 19.5 17.16 18.6 11.05 5.1 1.84 

A 30.7 27.01 29.27 17.4 8.02 2.9 

K 78.75 69.29 75.09 44.63 20.58 7.46 
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of-fit of a Cox proportional model (Cox–Snell residuals, 

martingale residuals, etc) is not appropriate in the event of 

multiple failure occurrences due to the dependence among 

failure events. In contrast to the usual methods that have been 

frequently used to check the goodness-of-fit of PH models, the 

IM test proposed by White[18], which is preferred in the presence 

of multiple failures is used in this study.  
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