
 Track :  Pure science

 303

Proceeding of Jaffna University International  Research Conference (JUICE 2016)

Joint Modeling of Mortality Incidence and Survival.
A.A.Sunethra, M.R. Sooriyarachchi

Department of Statistics, University of Colombo 

Abstract - Analysis of medical data mostly consider survival 
and mortality count as response variables in identifying 
factors that are associated with the survival times and with 
the death count of patients. However, it is quite possible and 
the literature has shown evidence for these two responses to 
be correlated and share common factors. Therefore, joint 
modeling of these two responses simultaneously in one model 
can provide improved results than fitting two univariate 
models since the correlation between the two responses can be 
captured in a joint model. The literature did not consist of any 
such situation where joint modelling of survival time and the 
death count was considered. This manifested the objective of 
developing a method for jointly modeling survival and count 
responses for which a bivariate Poisson model was proposed. 
This method was facilitated by the equivalence of the log-
likelihoods of survival and Poisson models. The suggested 
method was fitted for a data set of Dengue patients where 
factors associated with survival times of dengue patients and 
death count of patients were identified by the joint model. 
For comparing the performance of the proposed joint model 
with two univariate models that can be fitted separately for 
the two responses, the Akaike Information Criterion (AIC) 
was used. It was confirmed that the performance of the joint 
model surpasses the fit of two univariate models since the AIC 
of the joint model was lower than the total of the AICs of the 
two univariate models.

Keywords-  bivariate poisson, joint modeling, mortality 
incidence, survival

I.	 Introduction

‘Incidence of Mortality’ and ‘Survival’ are two of 
the  most common measurements that are associated 
with the analysis of medical data particularly in 
Epidemiology. Here the incidence of mortality refers 
to the number of deaths of patients while survival 
refers to the lifetime of patients. Therefore, these 
two measurements have played the role of dependent 
variables in most of the statistical models fitted to 
medical data. For example, analysis focussed on 
the incidence of mortality would use number of 
deaths as the dependent variable and it is of interest 
to identify the factors that effect the death count of 
patients having a particular disease, whereas the 
analysis focussed on the life time of patients would 
use survival time as the dependent variable in the 
models and in both instances it is of interest to 
identify the factors that have an impact on the two 
responses. However, it is often the case that these 

two responses (survival and mortality incidence) 
are related to each other (i.e. Correlated) and can 
have common factors associated with the number of 
deaths and time to death. When two variables are 
dependent and share common variables, it is more 
efficient to fit a joint bivariate model to such data 
with count as one response and survival time as the 
other response. This is the motivation behind this 
research. The work is novel since no such analysis 
was found in the literature where joint modeling 
of mortality (death count) and time to death was 
considered. This leads to the formulation of the 
objective of developing a methodology for the joint 
modelling of morality incidence and survival.  It is 
noteworthy that the method suggested here is not 
restricted only for medical/health data since it can be 
applied to data from any other scenario which has a 
count response variable and a duration/time to event 
response variable that are correlated. 

II.	 Literature review

A comprehensive literature review was undertaken 
which manifested the pathway to formulate the 
methodology for jointly modelling of a survival 
and count response. In the past, the analysis of 
survival and event counts was done in such a way 
that the survival time was taken as the dependent 
variable of the model while the count variable was 
taken as a covariate of the model [1]. This has the 
inherent weakness of treating the count variable as 
a fixed effect, whereas actually the count (i. e. the 
number of deaths) is not a fixed effect parameter. 
As an improvement, [2] suggested to take the 
count as a covariate measured with some error. 
But, [3] indicated through a simulation study that 
joint models provide more precise estimates than 
standard survival models which are constrained 
on taking count as a covariate. The joint modeling 
of a survival and a count variable was found in 
[4] where frailty proportional hazard model was 
used for jointly modeling a survival variable and 
count variable where the count resembled number 
of hospitalizations and survival variable was the 
time to death. Reference [5] demonstrated the use 
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of Poisson process approach for jointly modeling 
a survival and a count variable where the survival 
referred to time to death and count resembled the 
number of Epileptic seizures experienced by some 
patients with Epilepsy. The difference in this study 
when compared to [4] is that it required the timings 
of the events which made the count variable, i.e. 
timing of hospitalizations while our study is based 
on the cumulative counts of such events (count of 
death). With the availability of the timings of the 
events, the joint modelling of survival and count can 
be achieved by joint modeling of two survival/time-
to-event processes where one time-to-event process 
relates to the death and the other relates to the timing 
of hospitalizations or seizures. 
The approach undertaken here considered the 
count variable as a Poisson random variable while 
an indirect approach was undertaken to model 
the survival process. There is a nice coincidence 
between Poisson random variables and survival 
random variables where the log-likelihood of a 
Poisson random variable is equivalent to the log-
likelihood of a survival random variable under the 
assumption of proportional hazards of survival data. 
This equivalence is explained and used for modeling 
survival data by [6] and [7] where they used the 
Poisson model for estimating survival models. Based 
on this approach, the joint modelling of survival and 
count can be achieved by joint modelling of two 
Poisson variables. Therefore, the literature for joint 
modeling of two Poissons is considered.
Among the several distributions for joint distribution 
of two Poisson, the most widely used is the bivariate 
Poisson for which the definition is not unique [8]. 
The trivariate reduction method [9] is used in this 
study, which has been used by [10], [11] and [8] for 
analyzing correlated count data.

III. 	 Methods

The key considerations on joint/multivariate 
modeling are the features of the variables that make 
up the multivariate/joint response and on obtaining 
the joint distribution of those responses. When the 
responses are from different families of distributions 
leads to difficulties in deriving a joint distribution of 
the joint responses. This is the case in the bivariate 
response of survival and count as well. The presence 
of censored observations in survival responses is a 

major problem when combining a survival response 
with any other type of responses. Thus, formulating 
a joint model for a survival response and a count 
response was a challenging task mainly due to the 
difficulty in obtaining a joint distribution of the two 
responses. Existing software for multivariate survival 
modelling could not be utilized for combining with 
a count variable though it was possible to jointly 
model two or more survival responses
This difficulty was overcome by using a two-stage 
approach of modelling a survival distribution 
through a Poisson distribution. This approach   was 
facilitated mainly due to the equivalence of the log-
likelihoods of a survival model and a Poisson model 
under the assumption of proportional hazard in 
survival data. That is, when the proportional hazard 
assumption holds for survival data, estimates for a 
survival model (parametric or semi-parametric) can 
be achieved by the fit of a Poisson model which is 
described in the following section [6]; [7].  
Equivalence of Survival and Poisson Log-likelihoods

	 Let iT  denote the survival time of the ith 
individual

	 Let iδ  be an indicator variable taking the value 1 
for actual survival times(uncensored) and the value 
0 for censored survival times.

	 he Log-likelihood of survival data can be derived 
as [4] :
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Where iµ  denotes the mean survival time, 0 ( )ih t

denotes the baseline hazard function and 0 ( )iH t  is 
the cumulative baseline hazard.

In the case of semi-parametric survival models 
(Cox-model) and with Exponentially distributed 
survival data, the  last term on the right hand side of 
(1) does not involve any unknown parameters and 
hence does not  influence the maximum likelihood 
estimation [7].
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Now consider the log likelihood of ‘n’ independent 

Poisson random variables  *~ ( )i iw Poisson µ  which 
reduces to [8]:

    					    (2)

It is noteworthy that these two likelihoods 
are identical with respect to maximization 

when iδ   (Censoring indicator) is regarded as
*~ ( )i iPoissonδ µ . Such a Poisson 

model ( *~ ( )i iPoissonδ µ ) can be 
used to estimate a survival model. 

Though this equivalence holds for parametric 
models [6] as well as semi-parametric models 
[7], the estimation procedure explained below is 
considered only for semi-parametric models [7] as 
the Cox proportional hazard model [12] is by far the 
most popular model for survival data.

For Cox proportional hazard model, 0  ( )h t  is 
an arbitrary function. 

0 ( )  ( ) exp( ) i ih t h t η=                                            (3)
As per [12], the parameters of this model can be 
estimated via the partial likelihood estimation which 
yields the following form of the partial likelihood:
                                                                             (4)

Where R(t) is the set of individuals at risk (the risk 
set) and F is the set of individuals whose survival 
times were observed (non-censored).
Now, consider the specification of likelihood for the 
following Poisson random variable.
Let tk k=1,2,….,L be the times where actual 
survival times have occurred. For each such actual 
survival time, create the following variables for the 
observations belonging to R(tk). 

Now consider :

( ) ( )( ) ( )~ exp )k ii k i ky Poisson µ α η= +

And suppose that these ( ( )i ky ) are independent. 
Therefore, likelihood for survival time tk can be 
written as [13]:

  (5)

According to the properties of the Poisson 

distribution,           also follows a Poisson distri-

bution with mean.                        Assuming that there 
are no tied observations, the following holds:

Therefore, 
Thus, the likelihood function at the survival   reduces   
to the following form:

     (6)
Then, the likelihood of such ‘L’ Poisson random 
variables can be written as:
     			

(7)
which is equivalent to the partial likelihood function 
of the Cox- model. Therefore, parameter estimation 
for the Cox model can be achieved by fitting the 
Poisson model [4]; [12].
As per the details given above, the estimation of 
the survival model parameters can be done through  
the fit of a Poisson model. Therefore, through this 
approach the  joint modelling of survival and count 
can be achieved by the joint modelling of two 
Poisson random variables. This now reduces the 
problem to obtaining the joint bivariate distribution 
of two responses from the same family. 
The following section describes the joint modelling 
of two Poisson random variables.
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Joint Modelling of Two Poissons

As per [13], “Joint Modelling of two or more counts 
data has received a great deal of attention in recent 
years”.  Bivariate count models are used when two 
count variables are correlated. 

Among the several models for joint distribution of 
two Poissons, the Bivariate Poisson has achieved 
more popularity [14]. While the definition of bivariate 
Poisson model is not unique, the trivarite reduction 
method of constructing the joint distribution is used 
in this study[8].

Let 1 2, , , nX X X… be random variables which follow 
independent Poisson distributions.

Consider the following random variables:

3

2 3

1X X X
Y X X=

+
+

=

Then, X and Y jointly follow a bivariate Poisson 

distribution ( )1 2 3, ,BP λ λ λ , of the form (8).

Where 1 2 3, ,λ λ λ denotes the mean of the three 

independent Poisson 1 2 3, ,X X X respectively. 

( , ) ( , )Bf x y P X x Y y= = =
      

       =

(8)

	 The marginal distributions of the two count 
variables (X and Y) are Poisson and this model can 
only accommodate positive correlation between the 
two count variables.

	 The bivariate Poisson regression model is used 
for incorporating the effect of covariates on the 
bivariate responses. 

( )1 2 3( , ) ~ , ,i i i i iX Y BP λ λ λ ; T
ki i klog wλ α=   k=1,2,3

where 1,2, ,  i n= … denotes the 

observations, iw  denotes the vector of explanatory 

variables of length ‘p’ and kα is the corresponding vector 

of regression parameters . It is important to note that 3λ  

denotes the covariance between the two variables X

and Y . Thus, fit of the Poisson model for 3λ  gives the 
explanatory variables that constitutes the covariance 
between the two Poison responses of  X and Y  [14]. 
Simplifying the above detailed explanation on the 
methodological development, it can be noted that 
the method suggested here is mainly based on two 
aspects i.e modelling the survival variable as a 
count variable and jointly modeling the two count 
variables.

The suggested method is illustrated for some data on 
Dengue patients reported in Sri Lanka in the years 
2006-2008.

IV.	 Example

The final data set was obtained by combining data on 
Dengue patients obtained from the Epidemiological 
Unit, which had records of Dengue patients reported 
in 2006-2008 and climate data that was obtained 
from the Meteorological Department of Sri Lanka. 
Since the analysis here is mainly focussed on 
illustrating the suggested methodology, the variables 
that had previously been identified to be significant 
in the literature were used in this study where the 
table 1 gives a list of the variables used in the study, 
respective categories and coding used in the analysis. 

Table 1: Data Description

Variable Notation Categories Code
Survival Time SURVIVAL < 7 days 1

1-9	 Days 2
> 9 days 3

Outcome OUTCOME Died 1
Discharged 0

Place Treated 
Initially

PATTREAT Government  
Hospital

0

Private                      
Hospital

1

Fever FEVER Yes 1
No 0

White blood 
Cell Count

WBCL < 4700 0-(low/ 
Moderate)

> 4700 1 (high)
Platelet Count PLTL < 72000 0 (low/ 

moderate)
> 7200 1 (high)

Packed Cell 
Volume

PCVH < 45 0 (low/ 
moderate)

> 45 1 (high)

( )
( )

1 2 0

imin x,yx y
ë ë ë 01 2

i 0 1 2

x y ëë ëe i!
i ix! y!ë ë

− − −
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Classification CLASSIFI Dengue 
Fever

1

Dengue 
Homoerotic 
Fever 

2

Rainfall Rain < 270.9 0 (low/ 
moderate)

> 270.9 1 (high)
Temperature Temp < 260.5 0 (low/ 

moderate)
> 260.5 1 (high)

Humidity Humid < 83.5 0 (low/ 
moderate)

> 83.5 1 (high) 
Death count COUNT

It is noteworthy that data was categorized as above 
mainly since the data were readily available in 
categorized form, but the method suggested is 
not restricted only for categorical responses or 
covariates.

The bivariate Poisson model was regressed to have 
count as one Poisson response variable and outcome 
variable as the other Poisson variable with the 
distinction of the Poisson model for outcome should 
be fitted with an offset of log(risk set) which is the 
logarithm of the number of patients at risk at each 
survival time. The inclusion of the offset could be 
achieved by fitting the Bivariate Poisson model 
using the SAS Proc NLMIXED procedure [8].
Initially all the explanatory variables were 
introduced to the model for both the responses, and 
the most insignificant variables were removed step 
by step which resulted following set of variables 
in the final model selected (Table 2). It can be seen 
that only few variables were significantly associated 
with the survival time though all the variables were 
significantly associated with the count of death. The 
covariance between the two variables (survival and 
death count) was associated with the place treated 
initially.

Table 2: Results of the Final Model
Response Variable Coefficient P-value
Survival intercept -4.24 <. .0001

Pattreat -1.186 <. .001
Pcvh 0.4431 .0055
classifi 1.27 < .0001
Temp 1.12 < .0001
humid 0.53 .0138

Count intercept - 0.04 .1319
Pattreat .0.31 < .0001
Fever 0.224 < .0001
Wbcl - 0.128 < .0001
Platl 0.27 < .0001
Pcvh 0.46 < .0001
Classify 0.79 < .0001
Rainfall -0.05 < .0001
Temp 1.05 < .0001
Humid 0.39 < .0001

Covariance
(Survival, 
ount)

Intercept -3.46 < .0001
Pattreat -0.61 .0037

As per the parameter estimates obtained above, the 
marginal models for survival time (proportional 
hazard model) and  death count (Poisson model) can 
be written as below

0   h(t) = h (t) exp(  -4.24 -1.186*pattreat

                     +0.44*pcvh+1.27*classifi+1.12* temp

                    +0.53*humid)           		     (9)

( )log death count 0.04 .31*pattreat .224*fever
.13*wbcl .27*platl .46*pcvh .79*classifi

= − + +

− + + +

.05*rainfall 1.05*temp .39* humid  − + +   	     (10)

( ) ( )Cov survival, count =    exp -3.46 - 0.61*pattreat   	
					                                                             (11)
A single covariate, namely, ‘place treated’ will be 
interpreted here. The rest of the covariates in the 
model can be similarly interpreted. The risk of death 
among the patients who were initially treated at 
private hospitals is 3.27 times (exp(1.186)) higher 
than the patients who were treated at government 
hospitals, while the expected death count is higher 
among the patients who were treated initially at 
private hospitals by an amount of 1.36 than those 
treated at government hospitals. The covariance 
between survival and the count is 0.017 for those 
treated in private hospitals and is 0.031 for those 
treated in government hospitals. 
This example was mainly drawn for the purpose of 
showcasing the methodology suggested for joint 
modeling of survival and count variables which was 
expected to provide improved performance than two 
univariate models fitted for such data. Therefore, 
the fit of the joint model was compared with the 
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fit of two univariate models for which the Akaike 
Information Criteria (AIC) was used. It is important 
to note that the AIC of the joint model was 168353 
while the two univariate models had an AIC of 
165800 for death count model while it was 2718 for 
the survival model which resulted a total of 168518 
(165800+2718). Since the AIC of joint model is 
less than the total of the AICs of the two univariate 
models, it can be suggested that the joint model is 
more efficient than the two univariate models.

V.	 Discussion

The main objective of the study was to formulate 
a method for jointly modelling a survival and a 
count response variable which was motivated by 
the dependence between the survival times and the 
number of deaths of patients with particular diseases. 
A novel method which was developed using the 
equivalence of the log-likelihoods of survival and 
count data under the assumption of proportional 
hazards in survival data were suggested and applied.  
This required fitting a specialized form of a bivariate 
Poisson regression model. It was observed that the 
joint model is better than the two univariate models 
that can be fitted separately for the two responses. 
Extensions to the study can be suggested mainly in 
two aspects of assuming parametric proportional 
hazard models for survival data and using another 
joint distributional form for the joint distribution of 
two Poisson variables, whereas this research only 
considered the Cox proportional hazard model for 
survival data and Bivariate Poisson model for the 
joint distribution of two Poisson variables.
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