Impact of vehicular traffic on animal mortality in Horton Plains and Yala National Parks of Sri Lanka

D.M.S. Suranjan Karunarathna¹ and Sudheera M.W. Ranwala²

Background

The negative impacts of road network on biodiversity are of increasing international interest and concern (Spellerberg, 1998). Construction of road network cause habitat loss, habitat fragmentation and degradation and affect wildlife and its habitats direct and indirect manner. Much of the debate on the effects of roads on wildlife has also focused on the barrier effect of roads for movement of mammals and amphibians (Forman and Alexandra, 1998). Roads of all kinds have several broad ecological effects for plants and animals. These ecological effects include alteration of the physical and chemical environment and changes in animal behavior especially those inhabiting forested areas adjoining roads. Mortality of wild animals due to vehicular traffic on roads and highways is one of the direct impacts of anthropogenic activities with increased visitation (Chiarello, 1999).

Research problem

Road networks are often responsible for fragmentation of habitats and home range of animals which ultimately lead to reduction of the population size of animals due to various behavioural changes (Trombulak and Frissel, 2000). In Sri Lanka, the length of only the 'A' class and 'B' class roadways accounts for approximately 13,000 km. A similar length is expected to be covered by other minor roads scattered within the rural sector. Thus animals from the size of ant to elephant have met with road accidents, and these events have been paid less attention by the general public and relevant authorities due to poor awareness and negligence.

Objectives

This study aims at identifying the types of animal species that have been killed both in Horton Plains and Yala National parks, and attempts to reveal the reasons. We focus on establishing a relationship between road kills and the number of visitors and their vehicle speed limits. Finally we suggest the barriers and/ or alternatives that could minimize road killings of wild animal species.

Research methodology

Occurrences of road killings of animals were collected from 2009 to 2013 at both Yala (YNP) and roads leading to Horton Plains (HNP) National Parks in Sri Lanka. Nineteen random field sampling

¹Faculty of Graduate Studies, University of Colombo (E-mail: dmsameera@gmail.com)

²Department of Plant Sciences, University of Colombo, Colombo (E-mail: ranwala@pts.cmb.ac.lk)

trips on 27 visitation days) were used to collect data. This included 8 random field sampling trips at HNP on 12 days and 11 random field sampling trips on 15 days at YNP. The observations were recorded while walking and riding on a motor bike and confirmed by expert zoologists and field biologists. The numbers of vehicles visited to National parks were obtained by Department of Wild Life Conservation. All road killed specimens were examined and identified to species level without collecting specimens. However, they were removed from the road to avoid multiple counts of the same kill. Villagers, visitors and vehicle drivers were interviewed also using a questionair (e.g about over speeding). The conservation status of victims was recorded according to MOE-SL (2012).

Key findings

A total of 42 species (16 amphibians, 14 reptiles, 7 mammals and 5 birds) of vertebrate species were identified due to road killings in both national parks. Out them, 17 species (10 amphibians, 5 reptiles and 2 mammals) was endemic, while 19 species (8 amphibians, 6 reptiles, 3 mammals and 2 birds) was listed as threatened due to habitat loss in Sri Lanka (Table – 1). Among the vertebrate fauna killed due to road kills, amphibians were the most vulnerable group. During the period of study 112,883 vehicles had entered to HNP and 232,533 vehicles to YNP. The percentage of vehicles (HPN) had increased 11% from 2009 to 2010, 21% from 2010 to 2011, 22% from 2011 to 2012, 3% from 2012 to 2013; 72% from 2009 to 2013, exhibiting a sharp rise of visitation. Similarly the percentage of vehicles at YNP had increased 124% from 2009 to 2010, 21% from 2010 to 2011, 10% from 2011 to 2012, 2% from 2012 to 2013; 211% from 2009 to 2013. It was noted through interviews that over speeding are one major cause responsible for road kills.

Table – 1: Road killings were recorded from two national parks in 2009-2013 (bold = endemic species to Sri Lanka; IUCN status: LC = Least Concern; NT = Near Threatened; VU = Vulnerable; EN = Endangered; CR = Critically Endangered).

Yala national park			Horton plains national park		
Taxa	Species	Status	Taxa	Species	Status
Amphibians	Duttaphrynus atukoralei	NT	Amphibians	Duttaphrynus melanostictus	LC
	Duttaphrynus melanostictus	LC		Microhyla zeylanica	CR
	Microhyla ornata	LC		Ramanella palmata	CR
	Uperodon systoma	LC		Fejervarya greenii	EN
	Hoplobatrachus crassus	LC		Hylarana temporalis	NT
	Hylarana gracilis	LC		Pseudophilautus alto	EN
	Polypedates maculatus	LC		Pseudophilautus femoralis	CR
Reptiles	Melanochelys trijuga	LC		Pseudophilautus schmarda	CR
	Geochelone elegans	NT		Pseudophilautus silus	EN
	Calotes versicolor	LC		Taruga eques	EN
	Hemidactylus leschenaultii	LC	Reptiles	Calotes nigrilabris	EN
	Eutropis carinata	LC		Ceratophora stoddartii	EN
	Varanus bengalensis	LC		Cophotis ceylanica	EN
	Gongylophis conica	VU		Lankascincus taprobanensis	EN
	Amphiesma stolatum	LC		Aspidura trachyprocta	EN

	Oligodon taeniolata	LC	Birds	Saxicola caprata	EN
Birds	Caprimulgus atripennis	LC		Turdus merula	EN
	Saxicoloides fulicatus	LC	Mammals	Srilankamys ohiensis	EN
	Pycnonotus cafer	LC		Suncus montanus	EN
Mammals	Felis chaus	NT			
	Panthera pardus	EN			
	Sus scrofa	LC			
	Funambulus palmarum	LC			
	Lepus nigricollis	LC			

Conclusion

This study reveals that the impact of vehicular traffic on amphibians and reptiles is more severe. Data suggest that could be there a relationship between rainfall and road killed amphibians which could be proven later. Under the Fauna and Flora Protection Ordinance, the DWLC should monitor the speed limit on this public roads leading to HNP and within the YNP. Creating speed bumps or even prohibit the use of the road in the night could be a more practical ways to minimize disastrous impact on animal life. Also it can minimize through public awareness, and put some notices board on road sides.

References

Chiarello, A.G. (1999). Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. *Biological Conservation*, 89: 71-82.

Forman, T.T.R. & Alexandra, L.E. (1998). Roads and their major ecological effects. *Annual Review of Ecological System*, 29(2): 207-231.

MOE-SL (2012). The National Red List 2012 of Sri Lanka: Conservation status of the Fauna and Flora. Ministry of Environment, Colombo, Sri Lanka.

Spellerberg, I.F. (1998). Ecological effects of roads and traffic, a literature review. *Global Ecological and Biogeography Letter*, 7(2): 317-333.

Trombulak, S.C. &. Frissell, C.A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14(1): 19-29.