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Abstract 

The term quality in general, is a feeling. Thus, it is hard to describe consistently as a 

feeling is not consistent. Software quality is essentially a kind of quality particularly 

associating with software. Thus, the term software quality is also hard to describe. 

Hence, researchers use software quality models. Each software quality model consists 

of several factors which affect the software quality and they are called software quality 

factors. Software reliability is one of such software quality factors in nearly all the 

software quality models. Hence, software in order to be a high quality one, all the 

quality factors including software reliability has to be guaranteed. However, it is 

evident that software reliability is not guaranteed in almost all the commercial software 

development. This has been due to the lack of accuracy of the reliability estimation and 

the time taken to estimate the reliability in existing software reliability estimation 

models or software reliability growth models.  

Among the commonly used software reliability growth models, Non Homogeneous 

Poisson Model (NHPP model) shows more accuracy than the other models. However, 

in order to estimate the reliability, it requires more input data (i.e. a minimum of twenty 

five failure data). Thus, it takes considerable time. In this thesis, a novel software 

reliability growth model called Cubic Spline Network model (CSN model) has been 

introduced for improved accuracy with respect to the existing models. 

The proposed model requires relatively smaller number of past failure data as input and 

thus, this research will prove that it is more practical to use in the commercial software 

developments. Cubic splines network model has sensitivity of tuning for smaller or 

higher reliability estimation which has also not been introduced in the literature. 
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1. Introduction 

The increasing dependency on computer aided systems consequence more and 

more software systems in operation. However, some of them can be disruptive 

if the software fails to meet the required level of performance. People are with 

the attitude of striking off software due to lack of performance. This attitude is 

no longer practical if the software usage is mature or the software functions 

are safety critical. When the consequences of the software problems are 

significant enough, the software quality engineers has to come forward to give 

solutions.  

1.1 Software Quality 

Generally, the quality is neither visible, nor tangible and is immeasurable. The 

quality is rather a feeling such that, while using, if the product causes 

happiness or comfort-ability in any particular aspect, the quality of the product 

in that particular aspect is higher and vice versa. For example, if the users 

experience trouble-free manipulation of the software, then the quality aspect 

usability of that particular software is privileged.  

Software quality has no constant definition (Hoyer, et al., 2001). It is 

situational and it depends on the application. The software quality has a 

broadened scope. In order to understand the term software quality, it is 

important to pay attention to the literature to find how the quality has been 

defined by the people who have studied deeply in this subject.  

Crosby summarizes his perspective on quality (Crosby, 1979) as conformance 

to requirements. Walter Edwards Deming (Deming, et al., 1986) states that, 

quality must be defined in terms of customer satisfaction. Armand Villain 

Feigenbaum explains his perspective on quality through the following text 

(Feigenbaum, 1983) “Quality is a customer determination, not an engineer’s 
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determination, not a marketing determination, nor a general management 

determination. Kaoru Ishikawa explains “What is quality control? in Japanese 

Way” (Ishika, 1985) “We engage in quality control in order to manufacture 

products with the quality which can satisfy the requirements of consumers. 

Juran Trilogy‟s Definition of the word qualit (Juran, 1988) as “fitness for use” 

for the task of managing quality. Shert Wart defines that there are two 

common aspects of quality: One of them has to do with the consideration of 

the quality of a thing as an objective reality independent of the existence of 

man. The other has to do with what we think, feel or sense as a result of the 

objective reality.  

IEEE defines the software quality as the degree to which software possesses a 

desired combination of attributes (IEEE, 1990).  

ISO9126 defines the software quality as: “the totality of features and 

characteristics of a software product that bear on its ability to satisfy stated 

or implied needs” (ISO, 2001). 

All the above definitions confirm the fact that the quality has a varied 

meaning and generally it is engaged with the satisfaction of the requirements 

of the user. Hence, It is important to discuss how the term quality which is 

situational and has a broader scope with a varied meaning can be described. 

Software quality is described in the means of models which are called 

software quality models and these have their own quality attributes (McCall 

et. al., 1977). Following presents some software quality models for a better 

understanding.  

ISO 9126 defines software quality with six software quality attributes as 

functionality, reliability, usability, effectiveness, maintainability and 

portability (ISO, 2001). 



3 
 

Another famous and useful categorization of factors that affect the software 

quality was proposed by McCall, Richards, and Walters (MaCall, et al., 1998). 

According to this categorization, quality is described in three categories as 

product operation, product revision and product transition. There are eleven 

(11) quality factors which would fall into these three quality categories. 

Product operation quality attributes are correctness, reliability, efficiency, 

integrity and usability. Product revision quality attributes are maintainability, 

testability and flexibility. Product transition quality attributes are portability, 

re-usability and testability.  

IEEE 1061 standard defines software quality in five main attributes and they 

are similar to the ISO main software quality attributes and software reliability 

is one of the five software quality attributes (IEEE, 1990). 

Boahems describes (Boehm, et al., 1976) the quality model in three levels as 

high level, intermediate level and primitive level. High level characteristics 

represent the basic high level requirements and it includes as-is-utility (how 

well, i.e., easily, reliably, efficiently can I use it as-is), maintainability and 

portability. Intermediate level represents the software quality expected from 

the software, i.e., portability, reliability, efficiency, usability, testability, 

understandability and flexibility. Primitive level represents the foundation for 

defining the quality matrices.  

FURPS originally proposed by Robert Graby as FURPS (Functionality, 

Usability, Reliability, Performance and Supportability) and later enhanced by 

IBM Rational Software as FURPS+. These models categorize the software 

quality attributes as Functional (F) (Functionality) and as None Functional 

(URPS) (Usability, Reliability, Performance, and Supportability). The quality 

attributes are Functionality, Usability, Reliability, Performance, and 

Supportability (Gray, 1992).  
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Dromey software quality model represented by R. Geoff Dromey considers 

the quality evaluation defers from the product (Dromey, 1995). A dynamic 

quality model which depends on the focused software is needed to be 

successfully applied for different systems. This model attempt to match 

product properties with the software quality attributes. There are three basic 

elements as such product properties, quality attributes and linking product 

properties with quality attributes in this model. Product properties are 

correctness, internal, contextual and descriptive. Functionality and reliability 

are the attributes which would contribute to the correctness product property 

and the attributes of the internal product property are maintainability, 

efficiency and reliability. Maintainability, re-usability, portability and 

reliability are the attributes of contextual product property and the attributes 

which would contribute to descriptive product property are maintainability, re-

usability, portability and usability. The summary of these quality model 

attributes can be tabulated as shown in Table 1.1.  
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Quality Attribute  ISO 9126 McCall IEEE 

1061 

Boahems FURPS/FURPS
+ 

Dromey 

Functionality X  X  X  

Reliability  X X X X X X 

Usability  X X  X X X 

Effectiveness  X  X    

Maintainability  X X X X  X 

Portability  X  X X   

Correctness  X     

Efficiency   X  X  X 

Integrity   X     

Flexibility  X  X  X 

Testability  X  X   

Portability  X    X 

Re Usability  X    X 

Interoperability  X     

As-is Utility    X   

Understandability    X   

Performance     X  

Supportability     X  
Table 1.1: The quality attributes of famous software quality models 

According to the Table 1.1, reliability and usability are the two quality 

attributes which are common to most of the listed software quality models. 

This depicts that the reliability and the usability essentially have a drastic 

impact on software quality. Hence if a company is to develop high quality 

software, it is important to employ some efforts on software reliability and 

usability. However, this thesis focuses only on software reliability.  

1.2 Application of Software Reliability by Software Industry 

It is evident that the degree of practicing software reliability in commercial 

software development is still a question. Following facts were taken from the 

keynote address of the chair of Workshop on Applied Software Reliability 
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(WASR) 2006 of International Conference on Dependable Systems and 

Networks (Agbari, et al., 2006): 

“Research on software reliability has been active for several decades now and 

has produced massive amount of literature to explore new ideas, and system 

prototypes to experiment with the proposed ideas. Notwithstanding this 

proficiency, only in a few instances has research work found its way into 

industrial applications. This apparent uncoordination is exacerbated by the 

increasing need for quality and dependability guarantees in the more and 

more computerized modern world.” 

This clearly elaborates that, there is an urgent need of more practical solutions 

for software quality guarantee for instance software reliability estimation. 

“Measurement in software is still in its infancy. No good quantitative methods 

have been developed to represent Software Reliability without excessive 

limitations. Various approaches can be used to improve the reliability of 

software, however, it is hard to balance development time and budget with 

software reliability” (Martin, et al., 2008)  

“Unfortunately the methods to handle software reliability by far did not get 

that development which hardware reliability has undergone in last 20 

decades. “ (Hoppe, 1996) 

The above texts elaborate the fact that a lack of usage of reliability in the 

industry. However, after interviewing some of engineers of several 

international and local software companies, it was found that there is very 

little usage of software reliability estimation in the industry.  

This thesis discusses the reasons for lack of usage of software reliability 

estimate in the industry. Based on the reasons, the features of a useful model 

have been identified and new SRGM using Cubic Spline Network has been 
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designed. There are significant improvements in the new SRGM with respect 

to the existing models.  

1.3 Objectives 

The accuracy level of the existing software reliability estimation models is not 

up to the standard. New software reliability estimation model called Cubic 

Splines Network Software Reliability Growth Model is needed to be designed 

so as to improve the accuracy of the existing software reliability estimation 

models. Finally the model is needed to be tested for accuracy to prove that the 

model enhances the accuracy. 

1.3.1 Sub Objectives 

To mitigate input data size for software reliability estimation in order to 

improve the usage of reliability estimation by software industry. 

To introduce an automated tool for estimating the reliability using Cubic 

Splines Network model (CSN). 

1.4 Scope 

In order to test the accuracy of CSN model, real failure data of a software 

project is required. However, it is a very time consuming process to carryout 

software testing for a real project and could even take years. This is not 

feasible within the available time and thus secondary data which have already 

been collected and published were used to test the accuracy (Lyu, 1996).  

1.5 Methodology 

The accuracies of the existing SRGMs are first analyzed. Then the facts which 

affect the accuracy are identified. The ways to avoid the effects of the facts 
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which impair the accuracy are studied. The most suitable way of avoiding the 

effects is to be understood. Then according to the findings, new SRGM is to 

be designed. The new model is to be tested using the existing datasets. Finally 

the new model is statistically proved for the accuracy. 

1.6 Motivation 

Today, people are highly dependent on computer aided systems. However, 

along with the computer aided systems, the major and important role is played 

by the software. Numerous types of software can be found ranging from free 

of charge to billions of dollars.  

The size and complexity of computer-aided systems software have grown 

dramatically, and the trend will continue in the future too. Examples of highly 

complex computer aided systems software are in the aviation industry, in 

scientific researches, in telecommunication industry and for military activities. 

For example, the NASA Space Shuttle on board software is approximately 

500,000 lines of code and the ground control and processing software is 

approximately 3.5 million lines of code. The software used in the 

telecommunication industry to control the phone carries hundreds of millions 

of lines of source code. Windows operating system used in many home and 

office computers is of 28 million lines of code. 

In comparison with advancements of hardware components, software achieves 

less progress caring a larger burden of the total system. The potential of 

integrating the independently developed software into such hardware system 

has enabled software designers to develop high complex systems. However, in 

comparison to the hardware technology, the software technology has not 

succeeded in keeping measures such as quality. Software reports major source 

of outages in many systems.  
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The consequences of failures in software have been impacted in several major 

systems.  

“In the NASA Voyager project, the Uranus encounter was in jeopardy because 

of late software deliveries and reduced capability in the Deep Space Network. 

Several Space Shuttle missions have been delayed due to hardware/software 

interaction problems. Software glitches in an automated baggage- handling 

system forced Denver International Airport to sit empty more than a year after 

airplanes were to fill its gates and runways. The Hong Kong Airport  

experienced a similar problem” (Martine, et al., 1976). 

Unfortunately, software can also kill people. The following is an example for 

such situation. 

 “The massive Therac-25 radiation therapy machine had enjoyed a perfect 

safety record until software errors in its sophisticated control systems 

malfunctioned and claimed several patients' lives in 1985 and 1986. On 

October 26, 1992, the Computer Aided Dispatch system of the London 

Ambulance Service broke down right after its installation, paralyzing the 

capability of the world's largest ambulance service to handle 5000 daily 

requests in carrying patients in emergency situations. In the recent aviation 

industry, although the real causes for several airliner crashes in the past few 

years remained mysteries, experts pointed out that software control could be 

the chief suspect in some of these incidences due to its inappropriate response 

to the pilots' desperate inquires during an abnormal flight conditions” (Lee, 

1992).  

It is clear that the failures of the software systems carry disasters impacts even 

the human lives. Software reliability is the science of studying about the 

software failures. Software reliability estimation quantifies the software 

reliability using software failure data collected during the testing. This thesis 
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focuses on accurate software reliability estimation which can easily be used in 

software industry. 

1.7 The Rest of the Thesis 

The thesis contains six main chapters. The introduction chapter gives an 

approach to the work objectives, scope and the motivation. Chapter 2 presents 

the theories regarding the software reliability, its benefits, and key 

terminologies. A critical review about software reliability estimation, history, 

existing software reliability growth models and the problems with the existing 

software reliability estimation models has been done in chapter 3. In chapter 

4, the research outcome, the cubic splines network model is described. The 

evaluation of research outcome, comparative findings of the cubic splines 

model, the special features of cubic splines model are described in the chapter 

5. The conclusions and future work are described in the chapter 6.  
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2. Software Reliability 

Software reliability is equated with the failures of the software system (Fries 

et. al., 1996; Lyu, 1996; AIAA/ANSI, 1993). Engineering discipline of 

satudying about the software reliability is Software Reliability Engineering 

(SRE). Important terminologies under the discipline are such as fault, error, 

failure, software reliability estimation, software reliability prediction, software 

reliability models, and software reliability activities. This chapter describes 

the term software reliability engineering, definitions of the software 

reliability, benefits of the software reliability application in each phase of the 

software development and three main activities in software reliability. 

2.1 Software Reliability Engineering 

Software Reliability Engineering (SRE) is established disciplines that can help 

organizations to improve the reliability of their products and processes. The 

American Institute of Aeronautics and Astronautics (AIAA) defines SRE as 

"the application of statistical techniques to data collected during system 

development and operation to specify, predict, estimate, and assess the 

reliability of software-based systems" (AIAA/ANSI, 1993). 

Software reliability is defined as the probability of failure-free software 

operation for a specified period of time in a specified environment 

(Schneidewind, 1993) (AIAA/ANSI, 1993). SRE is therefore defined as the 

quantitative study of the operational behavior of software-based systems with 

respect to user requirements concerning reliability.  

There are examples of applications of SRE in the large software companies. 

Ref. (Agbari, et al., 2006) states that, “As a proven technique, SRE has been 

adopted either as standard or as best current practice by more than 50 

organizations in their software projects and repor, including AT&T, Lucent, 
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IBM, NASA, Microsoft, and many others in Europe, Asia, and North 

America”. However, this is a very small number compared to the software 

development companies in the world. 

Software reliability engineering is centered on a key attribute of software 

reliability. As discussed in the chapter 1, among the attributes of software 

quality such as functionality, usability, portability and maintainability etc., 

software reliability is generally accepted as the major factor in software 

quality since it quantifies software failures, which can make a powerful 

system inoperative. It is important to discuss the direct benefits that an 

organization or a customer can acquire by employing software reliability. The 

benefits are the reasons why an organization should promote the usage of 

software reliability. 

2.2 Software Reliability Benefits  

An organization attains several benefits through the usage of software 

reliability engineering. Using software reliability engineering disciplines, 

practitioners who develop the software system and the customer who acquire 

the product, can have a determination about the continuity of the software 

invocation and hence the software quality aspects. When the software system 

development is done through the agreement between vendor and customer, the 

reliability objective of the software should be either a pre agreed one of 

software quality metrics or it should be as a part of standard practice of the 

organization. From the customers view point, it is important to have a 

guarantee that the agreed reliability objective is achieved in the released 

software. 

By employing the software reliability disciplines during the requirements 

formulation, the validity of the design can be improved. Some of reliability 

issues during the requirement formulation focus on reducing the erroneous 
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requirements in consideration, accounting of the risk of failure occurrences of 

each requirement, and the change management issues of future changes of the 

requirements.  

Design phase of the software development process is the most important and 

high accuracy needed phase. Critical operations of the software must be 

considered and the reliability actions must be included in the design to 

improve the availability of such operations. Software safety criterion can be 

assisted and the release time of the software can be determined using the 

software reliability during the testing. The maintenance size and the effort 

could be determined through the software reliability engineering disciplines. 

According to the criticality of the operation, the maintenance efforts and 

resources can be allocated and this will improve the productivity. 

The software reliability is comparable with the hardware reliability. The 

history of hardware reliability runs to the long past than software reliability. In 

fact, the software reliability has influenced by hardware reliability.  

2.3 Software Reliability against Hardware Reliability 

The total system consists of software and hardware components. However, 

software and hardware reliability is recognized differently. Changing of 

hardware takes time and need to undergo steps like component gathering, 

customization, assembly, inspection and testing etc. Software has no physical 

existence and has no life without hardware components. Any line of software 

code can be subjected to a failure. 

More important factor with software reliability concerns is that software does 

not wear out or burn out. Furthermore any software fault can be subjected to a 

failure without any prior notice. However, hardware provides powerful 

notices of degradation.  
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Same software can be distributed with many copies without an additional cost 

where as manufacturing of the same hardware product takes the same time 

and requires the same cost. Similarly, repair of software requires changing 

software coding where as repair of hardware is generally done through the 

replacement of the component by a new one. 

Software reliability is expressed in execution time but hardware reliability is 

expressed in clock time. 

There are three important terminologies that we must concentrate on software 

reliability concerns namely fault, error and failure. 

 Fault 

The result that causes from the mistakes in the software is called as a fault 

(faulty instruction(s) or data).  

 Error 

When invocating a faulty instruction or a data by an appropriate input pattern, 

the fault produces an error.  

 Failure 

If the erroneous data affect the delivered service (in value and/or in the timing 

of their delivery), failure occurs. 
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2.4 Software Reliability Activities 

Software reliability is comprised of three activities: 

1. Error prevention  

2. Fault detection and removal  

3. Measurements to maximize reliability (Rosenberg, et al., 1998) 

The error prevention techniques are more important and each of them will fit 

well in any development process. The error prevention techniques used in the 

industry are designed by contract, bug tracking systems, monitoring, coding 

standards, definitive programming, culture of development, and code reviews. 

When employing more techniques in a project, that project is closer to achieve 

a comprehensive and coherent error prevention program. 

Software testing during the lifecycle is done for fault detection and for 

removal. During the coding, module testing is carried out. Making use of 

architectural design of the software, the integration testing is carried out. 

Integration of the modules is examined during the integration testing 

subsequent to the module testing. By encompassing the software 

requirements, the system testing is carried out. This will verify the faults in 

the complete system invocation. Finally the acceptance testing is done to 

ensure the requirements collected from the customer. Several strategies and 

techniques are used in test selection, test design and stop testing to high level 

fault detection and removal.  

Software reliability estimation and prediction are used as measurements in 

maximizing the reliability. Usage of operational profile during the testing will 

enhance the efficiency in testing. Following section describes the term 

operational profile. 
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2.5 Operational Profile 

Operational profile quantitatively characterizes how the software will be used 

during its operational phase. Operational profile includes developing customer 

type list, developing user type list, listing system models, developing 

functional profiles and converting functional profile to an operational profile. 

Customer type shows which type of customers use this software (e.g. large 

retail stores) and user type shows which kind of users use this software (e.g. 

computer program operator, clerk). System modes include which kinds of 

system modes are invoked by each user (e.g. retail sales, database cleanup) 

and each system mode includes several functions. A functional profile shows 

which kind of functions are used (number of functions, variable types, scope 

of the function etc.), converting functional profile to an operational profile 

includes calculating probabilities of operations. This can be used for testing 

procedure, i.e., allocation of test resources, input data for test.  

Major changes can occur with respect to several of the factors when software 

becomes operational. In the operational environment, the failure rate is a 

function of the fault content of the program, of the variability of input and 

computer states, and of software maintenance policies. Software in the 

operational environment may not exhibit the reduction in failure rate with 

execution time that is an implicit assumption in most prediction models. Thus, 

the prediction of operational reliability from data obtained during test may not 

hold true during operation. To mitigate this problem, use an operational 

profile, for driving tests, that is representative of the operational environment.  

The following section describes the important measures in software reliability 

concerns. 
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2.6 Software Reliability Metrics 

Measurement is commonplace in other engineering fields, but not in software 

engineering. Quantifying the software reliability is still a problem. Measuring 

software reliability remains a difficult problem because of the lack of 

understanding of the nature of software. There is no clear definition to what 

aspects are related to software reliability and most of them are related. Hence 

a suitable way to measure software reliability cannot be found. 

It is important to have an understanding about the measurements that is related 

to reliability to reflect the characteristics, if reliability cannot be measured 

directly. The current practices of software reliability measurements can be 

divided into four categories (Rosenberg, et al., 1998):  

 Product metrics  

Software size is thought to be reflected the complexity, development effort 

and reliability. Lines Of Code (LOC), or LOC in thousands (KLOC), is an 

intuitive initial approach to measuring software size. But there is no standard 

way of counting. Typically, source code is used (SLOC, KSLOC) and 

comments and other non-executable statements are not counted. This method 

cannot faithfully compare software not written in the same language. The 

advent of new technologies of code reuses and code generation technique also 

cast doubt on this simple method.  

Complexity is directly related to software reliability, therefore representing 

complexity is important. Complexity-oriented metric is a method of 

determining the complexity of a program‟s control structure, by simplifying 

the code into a graphical representation. Representative metric is McCabe's 

Complexity Metric.  
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Test coverage metrics are a way of estimating fault and reliability by 

performing tests on software products, based on the assumption that software 

reliability is a function of the portion of software that has been successfully 

verified or tested. Detailed discussion about various software testing methods 

can be found in topic the Software Testing (Glenford, 1979).  

 Project management metrics  

Researchers have realized that good management can result in better products. 

Research has demonstrated that a relationship exists between the development 

process and the ability to complete projects on time and within the desired 

quality objectives. Costs increase when developers use inadequate processes. 

Higher reliability can be achieved by using better development process, risk 

management process, configuration management process, etc.  

 Process metrics  

Based on the assumption that the quality of the product is a direct function of 

the process, process metrics can be used to estimate, monitor and improve the 

reliability and quality of software. ISO-9000 certification, or "quality 

management standards", is the generic reference for a family of standards 

developed by the International Standards Organization (ISO).  

 Fault and failure metrics  

The goal of collecting fault and failure metrics is to be able to determine when 

the software is approaching failure-free execution. Minimally, both the 

number of faults found during testing (i.e., before delivery) and the failures 

(or other problems) reported by users after delivery are collected, summarized 

and analyzed to achieve this goal. Test strategy is highly relative to the 
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effectiveness of fault metrics, because if the testing scenario does not cover 

the full functionality of the software, the software may pass all tests and yet be 

prone to failure once delivered. Usually, failure metrics are based upon 

customer information regarding failures found after release of the software. 

The failure data collected is therefore used to calculate failure density, Mean 

Time Between Failures (MTBF) or other parameters to measure or predict 

software reliability.  

Some important facts regarding software reliability has been described in the 

following section. 

2.7 Related Other Topics 

Software Reliability relates to many areas where software quality is 

concerned.  

2.7.1 Traditional/Hardware Reliability  

The initial software reliability study is based on traditional and hardware 

reliability. Many of the concepts and analytical methods that are used in 

traditional reliability can be used to assess and improve software reliability as 

well.  

2.7.2 Software Fault Tolerance  

Software fault tolerance is a necessary part of a system with high reliability. It 

is a way of handling unknown and unpredictable software (and hardware) 

failures (faults), by providing a set of functionally equivalent software 

modules developed by diverse and independent production teams. The 

assumption is the design diversity of software, which itself is difficult to 

achieve.  
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2.7.3 Software Testing  

Software testing serves as a way to measure and improve software reliability. 

It plays an important role in the design, implementation, validation and release 

phases. It is not a mature field. Advances in this field will have great impact 

on software industry. 

2.7.4 Social & Legal Concerns  

As software permeates to every corner of our daily life, software related 

problems and the quality of software products can cause serious problems, 

such as the Therac-25 accident (Lee, 1992). The defects in software are 

significantly different than those in hardware and other components of the 

system: they are usually design defects, and a lot of them are related to 

problems in specification. The unfeasibility of completely testing a software 

module complicates the problem because bug-free software cannot be 

guaranteed for a moderately complex piece of software. Bug-free software 

product cannot be achieved even with the hardest attempts during the 

development. Losses caused by software defects cause more and more social 

and legal concerns. Guaranteeing not known bugs is certainly not a good-

enough approach to the problem.  

Estimation of software reliability is one of most important topic in software 

reliability. It has taken many researchers attention and it is still a question. 

Following chapter describes the attempts taken by the researchers so far to 

estimate the software reliability.  
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3. Software Reliability Estimation 

Software reliability models are used to estimate the software reliability. 

Further they are mathematical expressions those specify the general form of 

software failure process. This chapter critically reviews the types of software 

reliability models, existing SRGMs, models classifications, their assumptions 

and the issues of the existing models.  

According to the phase in which software reliability models are used to get the 

reliability, there are two types of models as described below (Wood,1996 ; 

Lyu, 1996 ; ANSI/AIAAA, 1993). 

1. Software reliability prediction models 

2. Software Reliability Estimation Models or SRGM  

3.1 Software Reliability Prediction Models 

These models predict the software reliability based on the reliability metrics 

measured or calculated during early stages of software development life cycle 

(prior to the integrated testing) (AIAA/ANSI, 1993).  

The reliability is forecasted by comparing the software with a similar project 

in which the failure probability is known. The software that used to compare 

the reliability of the developing software is known as the proof software (Lyu, 

1996). 

The reliability of the proof program is known at any time during the software 

development life cycle. As such there is an advantage for the developing 

software since its reliability can be calculated at any time comparing with the 

proof software (Lyu, 1996; AIAA/ANSI, 1993).  
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The similarities between the proof software and the developing software are 

compared in terms of architectural similarities, operational profile similarity, 

services delivery similarity, and the similarity of the reliability achievement 

compared to the proof program (Lyu, 1996).  

However the validity of the prediction depends on the similarities between the 

proof software and the developing software.  Generally the random behavior 

of the software failures, sleeping faults in the software, the change of the 

operational profile are affected to the software reliability behaviors.  Changes 

in the operational profile take place due to the causes like hardware ware out 

or malicious program affection to the system software which affect the 

hardware resource usage and mismatch in software design especially in co-

functional level. Due to the changes in the reliability behaviors there are no 

two software which show purely similarities in reliability concerns (Gray, 

1992; Dolores, et al., 2001). 

Since the difficulty of finding exactly similar software, there is an alternative 

method for software reliability prediction. That is, the software reliability is 

measured by calculating the software reliability matrices which are possible to 

compute or available to calculate. The reliability metrics are such as SLOC, 

fault density, initial number of faults, fault exposure ratio (the probability of 

executing single fault during single execution), the time for prediction is to be 

valid, failure probability per fault and unit and initial failure rate (Gray,1992; 

Lyu,1996; AIAA/ANSI,1993). References (Agbari,2006; Fries et. al.,1996; 

Wood,1996; William et. al.,1983; Lyu,1996; AIAA/ANSI,1993) state that 

none of these models (Martine,1976) show the accuracy or wide applicability 

to date. Hence inventing a new software reliability prediction model is not 

useful and this study focuses on software reliability estimation which is rather 

accurate and widely applicable. 
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3.2 Software Reliability Estimation Models or SRGMs 

SRGM estimates the reliability based on observed failure data which are 

collected during the integrated testing and onwards. A numerous SRGMs can 

be found in literature and these models take observed failure time as input 

(Wood, 1996; Dolores, 2001; Lyu, 1996; AIAA/ANSI, 1993). The observed 

failure time data is twofold as interval data and failure time data. The interval 

data defines as the number of failures observed over a desired and constant 

period. The failure time data defines the time taken to occur a failure (next 

failure). According to the definition of the software reliability discussed in the 

Chapter 2, it is a time of failure free software operation. Hence the estimation 

of time to next failure is more useful than estimating number of failures for 

the period. As such this thesis focuses to utilize failure time data. 

The reliability is quantified with respect to the time, which can be categorized 

into three as execution time, calendar time and clock time. It is possible to 

define reliability with respect to other basis such as Program Runs. The actual 

CPU usage time by the software, from the start of the program to the end is 

the execution time. The time people normally experience which includes the 

time during which a computer may not be running is considered as calendar 

time. However, the elapsed time from the start to end of the software running 

is called as clock time which includes the time which CPU doesn't use for 

program execution (Wood, 1996; AIAA/ANSI, 1993). However, finding the 

execution time is very difficult. The actual CPU usage time is not easy to 

measure as operating software and other auxiliary software are also executed 

in parallel to particular software execution. On the other hand, the calendar 

time does not give a reasonable sense since the all durations which the 

computer may not run during the testing period are not equal. Hence the 

measurements are not accurate. Most of the SRGMs consider the clock time 

and it is rather practical (Wood, 1996; Lyu, 1996; AIAA/ANSI, 1993). 
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3.3 History of SRGMs 

Software reliability modeling was geared by Jalinski, Moranda, Shooman and 

Cousinhood doing pioneer work in early 70s. Their goals were to predict 

future failure behavior and approaches used time between failures or observed 

number of failures per given time period as data (Lyu, 1996; AIAA/ANSI, 

1993). 

3.4 The SRGM  

The mathematical and statistical functions used in software reliability growth 

modeling, employ several computational steps. The equations for the models 

themselves have parameters that are estimated using techniques like least 

squares fit or maximum likelihood estimation. Then the models, usually 

equations in some exponential form, must be executed. Verifying that the 

selected model is valid for the particular data set may require iteration and 

study of the model functions. From these results predictions about the number 

of remaining faults or the time to next failure can be made (Wood,1996; 

AIAA/ANSI,1993). There are huge number of SRGMs can be found in the 

literature (Wood, 1996; Dolores, 2001; Hudepohl et. al., 1996; Lyu, 1996; 

Schneidewind, 1993; AIAA/ANSI, 1993). In order to understand the existing 

SRGMs, classification of them is needed. Following section describes the 

existing SRGMs based on the specific classification.  

3.5 SRGM Classifications  

SRGM have been classified in various ways in different literature (Wood, 

1996; Lyu, 1996; AIAA/ANSI, 1993). Model classification has been done 

based on the model form. In all most all the literature discuses the model 

classification assuming the models are statistical models (Wood, 1996; Lyu, 
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1996; AIAA/ANSI, 1993). In this thesis, classification scheme of 

recommended practice of software reliability engineering are discussed since 

it is more popular and is recognized as the standard practice (AIAA/ANSI, 

1993).  

There are three classes of SRGMs according to the above classification. They 

are Exponential NHPP models, None Exponential NHPP models, and 

Bayesian models.  

Generally, Poisson Process probability distribution function takes the form 

 ( )       . The mean time function is  ( )   . Homogeneous Poisson 

Process models assume a constant mean time function while Non-

Homogeneous Poisson Process models assume a mean time function to be 

non-liner (i.e., ( )   ( )). Following sections describe the examples of 

software reliability estimation models, model forms and mean time functions 

in each class of models. 

3.5.1 Exponential NHPP Models 

Representative models in this class are Shooman's model, Musa's Basic 

Model, Jelinski and Moranda's model, Generalized Exponential model and 

Scheneidewind‟s models. Table 3.1 gives the reliability functions or mean 

time to failure functions for each of these Exponential NHPP models. 

Following are the definitions of used parameters in the models  

E0 -  is the initial number of faults in the program that will lead to failures. It 

is also viewed as the number of failures that would be experienced if testing 

continued indefinitely 

Ec - is the number of faults in the program, which have been found and 

corrected, once x units of time have been expended 
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K - is a constant of proportionality: failures per time unit per remaining fault 

α  Failure rate at the beginning of interval S 

β Negative of derivative of failure rate divided by failure rate (i.e., relative 

failure rate) 

N= E0 

IT The number of instructions 

                    1 

Model f(t) or mvf(m(t)) 

Shooman‟s model   

 

Musa‟s Basic Model 
 

Jelinski and Moranda‟s model  
Scheneidewind‟s models 

 
Table 3.1: Exponential NHPP Model examples 

3.5.2 Non Exponential NHPP Models 

Representative models in this class are Duane's model, Brook and MoHey's 

Binomial and Poison models, Yamada's S-Shaped model and Musa and 

Okumoto's Logarithmic Poisson models. Table 3.2 gives the reliability 

functions or mean time to failure functions for each of these Non Exponential 

NHPP models. 
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Model f(t) or m(t) 

Duane's model 
 

Brook and MoHey's 

Binomial and Poison models  

Yamada's S-Shaped model  

Musa and Okumoto- 

Logarithmic Poisson model 

 

Table 3.2: Non-Exponential NHPP Model examples 

3.5.3 Bayesian Models 

Representative models are those developed by Little Wood (AIAA/ANSI, 

1993). Table 3.3 gives the reliability functions or mean time to failure 

functions for each of these Bayesian models. 

Model f(t) or m(t) 

Little Wood 

  

and 

 

Table 3.3: Bayesian Model examples 

The models discussed so far are among the famous models. The real world 

applications of the recommended models can be tabulated as shown in Table 

3.4 (AIAA/ANSI, 1993). 
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Model Real world applications 

Schneidewind 1. In Fortran by Naval Surface warfare center, Dahlgren 
Virgin as a part of SMERFS 

2. IBM, Houston, Texas, Reliability prediction and 
assessment of On-board NASA space shuttle software 

3. Naval surface warfare center, Dahlgren, Virginia, 
Research in reliability prediction and analysis of the 
TRIDENT I and II fire control software 

4. NASA JPT, Pasadena, California, Experiments with 
multi model software reliability approach 

5. Hughes Aircraft company, Fullerton, California, 
Integrated, multimode, approach to reliability prediction 

Generalized 

exponential 
model 

No implementation as a standalone application. But in tools 

such as SMERFS, SRMP(London) RELTOOLS at AT &T 
labs 

Musa 

Okumoto 
Logarithmic 
Poisson 

Execution time 
model 

1. In SMERFS 

2. In AT&T labs set of programs 

Littlewood/ 
Verrall model 

1. In SMERFS 
2. In SRMP 

Table 3.4: Real world applications of the recommended SRGMs 

However, the accuracy of the SRGMs is still a question (Wood, 1996; Dolores 

et. al., 2001; Lyu, 1996; AIAA/ANSI, 1993). The accuracy of the models in 

the same class is generally the same, as the general reliability function of them 

is same. Hence, it is enough to argue about the accuracy if at least one model 

in each class is considered. Following figure depicts the estimated reliability 

and the actual reliability. The calculations have been done using a tool which 

is discussed in Chapter 5. 

According to the Figure 3.1, it is clear that the estimations of the SRGMs are 

average values except the None Homogeneous Poisson Process model. Hence 
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the accuracies of these models are not acceptable. Although NHPP model 

shows accuracy, there are limitations associating with the model.  
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9 15830 2797 16373 19638 16682 11685 15626 2828 

10 21932 5533 10503 14682 10210 7249 9770 5513 

11 2485 33396 39643 46641 38598 36191 35525 33364 

12 11000 21471 26421 34549 24273 24268 22461 21510 

13 2880 37327 41576 51538 38213 40530 35053 37512 

14 61182 5445 3241 24 6840 374185 2537 5135 

15 4800 39038 41050 53580 36435 42688 32686 39677 

16 38005 3324 3701 11637 1284 5237 2054 3755 

17 16200 26524 26132 39907 19948 30392 18058 27690 

18 6000 45922 44195 59810 35959 50390 31674 47538 

19 1000 58724 55616 72149 45391 63553 39901 60726 

20 10000 45880 41472 58265 29508 50932 26251 48197 

21 220 67720 61742 79357 47249 73248 41399 70450 

22 35580 18590 13147 26788 3077 23177 4590 20941 

23 81000 262 2674 233 21350 41 4511 16 

25 47857 16862 9212 20540 10302 22025 5386 19520 

26 154800 44655 76698 39413 75482 31778 23237 37781 

27 170460 56758 96444 56094 83614 41244 24991 49011 

28 108540 391 5787 801 1878 57 1060 63 

29 73800 10994 3334 8008 7646 16410 2210 12908 

30 1860 111072 93218 101584 102676 121194 55820 114128 

 Table 3.5: The actual and the estimated   
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Figure 3.1: The actual and the estimated reliabilities of the famous models 

Specially, NHPP model requires more data (25 failures) in order to make a 

valid estimation.  The Figure 3.1 has been drawn based on the results at the 

41st failure. The results at a different failures are different than these. Hence 

the accuracy varies with the size of the dataset. Further, the low the dataset 

size, the low the accuracy is.  
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The Figure 3.2 shows the software reliability estimation of NPHH model for 

CS I, at 25th, 30th, 35th, and 41st failures. According to the Figure 3.2, it is clear 

that the accuracy of the estimation varies with the size of the dataset. The 

accuracy of SRGM estimations is affected due to several reasons. First and 

foremost is the mismatching assumption. Following section describes the 

assumptions used in the models.  

             Figure 3.2: NHPP model reliability estimation at different failures 

3.6 Assumptions Used in Software Reliability Growth Models 

Numerous assumptions are associated with the SRGMs. The erroneous 

assumptions and the reality of them have been tabulated below (Wood, 1996).  
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No Assumption Reality 

01 Defects are 
repaired 
immediately when 
they are discovered 

Defects are not repaired immediately, but this can be 
partially accommodated by not counting duplicates. Test 
time may be artificially accumulated if a non-repaired 
defect prevents other defects from being found. 

02 Defect repair is 
perfect 

Defect repair introduces new defects. The new defects are 
less likely to be discovered by test since the retest for the 
repaired code is not usually as comprehensive as the 
original testing. 

03 No new code is 
introduced during 
QA test 

New code is frequently introduced throughout the entire 
test period, both defect repair and new features. This is 
accounted in parameter estimation since actual defect 
discoveries are used, but may change the shape of the 
curve, i.e., make it less concave. There are techniques to  
account for new code introduction. 

04 Defects are only 
reported by the 
product testing 
group 

Defects are reported by lots of groups because of parallel 
testing activity. If we add the test time for those groups, we 
have the problem of equivalency between an hour of QA 
test time and an hour of test time from a group that is 
testing a different product. This can be accommodated by 
restricting defects to those discovered by QA, but that 
eliminates important data. This problem means that defects 
do not correlate perfectly with test time.  

05 Each unit of time 
(calendar, 
execution, number 
of test cases) is 
equivalent 

This is certainly not true for calendar time or cases as 
discussed earlier. For execution time, “corner” tests 
sometimes are more likely to find defects, so those tests 
create more stress on a per hour basis. When there is a 
section of code that has not been as thoroughly tested as 
other code, e.g., a product that is under schedule pressure, 
tests of that code will usually find more defects. Many tests 
are return to ensure defect repair has been done properly, 
and these returns should be less likely to find new defects. 
However, as long as test sequences are reasonably 
consistent from release to release, this can be accounted for 
if necessary from lessons learned on previous releases. 

06 Test represent 
operational profile 

Customers run so many different configurations and 
applications that it is difficult to define an appropriate 
operational profile. In some cases, the sheer size and 
transaction volume of the production system makes the 
operational environment impractical to replicate. The tests 
contained in operational environment impractical to 
replicate. The tests contained in the QA test library test 
basic functionality and operation, error recovery, and 
specific areas with which we have had problems in the past. 
Additional tests are continually being added, but the code 
also learns the old tests, i.e., the defects that the old tests 
would have uncovered have been repaired. 
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07 Failures  are 
independent 

Our experience is that this is reasonable except when there 
is a section of code that has not been as thoroughly tested 
as other code, e.g., a product behind schedule that was not 
thoroughly unit tested. Tests run against this section of 
code may find a disproportionate share of defects.  

Table 3.6: The erroneous assumptions appeared in the SRGMs  

 Table 3.6 summarizes how these assumptions are used in SRGMs. According 

to the table, all the models use the 1-6 assumptions where as Jelinski-Moranda 

de- eutrophication model uses the assumptions 1-7. The accuracy of those 

models is not doubt to be low. However, the assumptions like „6‟ are 

unavoidable because in-house software testing is essential. 

Table 3.7: Assumptions of SRGMs 

3.7 Existing Neural Network Based SRGMs  

Usage of artificial neural networks for software reliability estimation is an 

emerging technique and it is not yet widely used in software reliability 

estimating. However, neural network based SRGMs show more accuracy in 

predicting. Some of the attempts of applying ANN in software reliability 

growth modeling are described below. 

The first attempt of applying some kind of ANN architecture to estimate the 

software reliability was done by (Karunaniti et. al., 1991 ; Karunanithi et.al., 

Model Assumptions 

Jelinski-Moranda model 1,2,3,4,5,6,7 

Nonhomogeneous Poisson process model 1,2,3,4,5,6 

Scheidewind‟s model 1,2,3,4,5,6 

Musa‟s basic execution time model 1,2,3,4,5,6 

Hyper-exponential model 1,2,3,4,5,6 

Weibull model 1,2,3,4,5,6 

S-shaped reliability growth model 1,2,3,4,5,6 

Duane‟s model 1,2,3,4,5,6 

Geometric model 1,2,3,4,5,6 

Musa-Okumoto logarithmic poisson model 1,2,3,4,5,6 

Littlewood-Verrall reliability growth model 1,2,3,4,5,6 
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1992a ; Karunanithi et. al., 1992b ; Karunanithi et. al., 1992 ; Karunanithi et. 

al., 1993 ; Karunanithi et. al., 1996). Subsequently, many research papers in 

the literature, discuss the usage of ANN for various aspects in software 

reliability modeling such as software reliability prediction, assessment, 

predicting fault prone modules, combinational software reliability growth 

modeling etc. There are attempts of usage of ANN for reliability growth 

modeling. 

There are two classes of ANNs used for software reliability modeling (Yu-

Shen Su, 2007).  First class uses the cumulative execution time as input and 

produces accumulated number of failures as output while the second class 

uses the multiple failure time as input and produces the time to next failure as 

output. The ANN discusses in this thesis comes under the second class. The 

ANN models comes under the first class are comparable with software 

estimation models those use interval data will be discussed in Chapter 5. It is 

evident to say that there exist issues with the architecture of existing ANN 

models which comes under the second class (Yu-Shen Su, 2007). Those 

issues affect to the accuracy of the estimating software reliability and hence  

a more accurate ANN models is needed. 

3.8 Issues Associated with the Current SRGMs 

As already discussed in the previous section, the accuracy and time taken to 

give a valid estimation are the main issues. This section describes the factors 

which affect to the accuracy.  

-Uncertainty of the software behavior; 

- Lack of flexibility of the SRGM to adapt for changes occurs in the 
software;  

-Complexity of the parameter estimation of the SRGM; 
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-The premise of most prediction models is that the failure rate is a 

direct function of the number of faults in the program and the failure 

rate will be reduced (reliability will be increased) as faults are detected 

and eliminated during test or operations;  

-Change in failure criteria;  

-Significant changes in the code under test;  

-Significant changes in the computing environment;  

-More failure data are needed to SRGM to estimate the reliability;  

These factors are discussed in the following sections. 

3.8.1 Uncertainty in the Software Behavior 

Software behavior is uncertain, (Lyu,1996; AIAA/ANSI,1993). Consequently, 

it is not accurate to assume that the failure data would not follow a particular 

distribution. Assuming such a distribution, the SRGM implicitly expects a 

pattern for failure data and with respect to such distribution, parameters like 

mean value of time to failure, total number of remaining failures are also 

calculated. A valid mean time to represent the failure dataset can be 

considered if the values of the dataset are most likely distributed around the 

mean time. Uncertainty of dataset visualizes the fact that there is no value in 

which the dataset is most likely distributed around. To achieve the uncertainty 

of the failure occurrence and the uncertain software behavior, the assumptions 

like dataset to follow a particular distribution, calculation of mean has to be 

eliminated in the SRGM. Similarly, the parameters associated with the SRGM 

have to be re-estimated for each new estimation. That is when a new 

estimation has to be made, the parameters of the SRGM equation should be 

estimated again using the current failure data.  
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3.8.2 Lack of Flexibility of the SRGM  

Changes in the software are twofold as code changes and operational profile 

changes (Schneidewind, 1993). During the software testing phase and during 

maintenance phase bugs are encountered and fixed. When fixing bugs, the 

software codes are normally changed. As a result of large scale code changes, 

the behavior of the software may also change. Hence, the previously 

calculated reliability is no longer relevant to the current software. Therefore, 

SRGM must be capable of accommodating the software code changes. This 

can be done considering only recent failure data (i.e., without considering all 

past data as all the past data do not represent the current software behavior) 

when calculating the reliability (Schneidewind, 1993).  

When changing the software operational environment, such as software is 

installed in the real hardware (i.e.,  real operational environment) or existing 

hardware changes, generally the software behavior is changed. To estimate the 

changed reliability accurately by SRGM, it should be capable of estimating 

reliability with a minimum number of failure data. This feature is used only in 

Scheniedewinds models (Schneidewind, 1993). 

3.8.3 Complexity of Parameter Estimation of the SRGM 

In most of SRGM‟s, parameter estimation has complex calculations. Most 

literatures address numerical methods such as least square method, and 

maximum likelihood method for parameter estimation. When the calculations 

are complex, those models are difficult to use and hence they are most likely to 

be rejected in the commercial environments. This is one of the reasons why the 

software reliability is not practiced in the commercial environments. Simple 

calculations for parameter estimation are required when designing an SRGM. 

Similarly when the complex mathematics is used, it is difficult to understand for 
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people who have low mathematical background. The reality is, it is difficult to 

assume highly mathematical people in the commercial software development. 

3.9 Features of a Useful Software Reliability Growth Model 

 According to the listed features, it is clear that any useful model should 

not follow any statistical distribution. Hence the usage of parametric 

statistical methods will not contribute to enhance the accuracy of 

reliability estimation. 

 Similarly, the reliability is a random process. It is important to give a 

considerable contribution to achieve the randomness in the estimation 

process. 

 Recent past failure data are only implied the exact figure of the software 

reliability.  

Basically, the research focuses on employing the randomness, when estimating 

the reliability. As such the aim was to design an SRGM without employing the 

statistical distributions. Considering these features, the cubic spline network 

model was designed. 

The following chapter describes new Cubic Spline Network SRGM. 
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4. Cubic Spline Network Software Reliability 

Growth Model   

New model discusses in this thesis is Cubic Spline Network Software 

Reliability Growth model (CSN Model).  CSN model is based on artificial 

neural network. This chapter describes the CSN model architecture, 

calculations associated with the model, numerical example to explain the 

calculations, the role of the boundary condition which is a feature of CSN 

model and the tool developed to automate the calculations associate with the 

model. Theory of Artificial neural network is described in the following 

section.  

4.1 Artificial Neural Networks  

Neural network models in artificial intelligence are usually referred to as 

Artificial Neural Networks (ANNs); these are essentially simple mathematical 

models defining a function         . 

Neural networks are made up of many artificial neurons. An artificial neuron is 

simply an electronically modeled biological neuron. How many neurons are 

used depends on the task at hand. It could be as few as three or as many as 

several thousand. There are many different ways of connecting artificial 

neurons together to create a neural network and most common is called a feed 

forward network.  

ANNs are used especially for computational pattern recognition since it has self 

learning ability. This ability has been used to overcome the random behavior of 

the failures. Furthermore, during the training of ANN, the situational feature of 

the failure behaviors can be employed. Number of inputs can be limited without 

affecting the accuracy of the estimation. Especially the tunable feature which 
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will be discussed in this chapter  is due to the ANN. In this thesis, cubic splines 

are used to generate the activation functions. 

4.2 Spline Interpolation  

In the mathematical field of numerical analysis, spline interpolation is a form of 

interpolation where an interpolate is a special type of piecewise polynomial 

called a spline. Spline interpolation is preferred over polynomial interpolation 

because the interpolation error can be made small. In cubic spline interpolation, 

the polynomial type concern is cubic polynomial. It takes the form of a third 

order polynomial. In mathematics, any natural phenomena can be describes in 

third order polynomials. As such the cubic spline interpolation is used as the 

activation function. Why the spline interpolation is suitable to use in activation 

function is described below. 

By using the cubic spline interpolation as the activation function of this ANN, 

arbitrary pattern of the input dataset can be employed as cubic spline 

interpolation does not assume any pre defined distribution for the dataset. 

Similarly, this is not a statistical distribution and as a result, the issues with the 

statistical SRGMs are not affected to this. The accuracy does not vary with the 

dataset size in spline interpolation and hence the input dataset size can be 

reduced. 

4.3 Software Reliability Growth Model with Cubic Splines 

This is an ANN based model to capture the input–output (I/O) relationships of 

software systems to corresponding failures and to improve the accuracy of 

reliability estimation.  
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With the input vector of  15 ...,  n4nn x,x,x  (where n   in considering the 

boundary condition), the corresponding mapping of cubic spline network can 

be   written as  15 ...ˆ
 n4nnn x,x,xg=x . This model for software reliability 

estimation is designed as a three-layer structure with an input layer, cubic 

spline layer, and output layer. It is the minimum number of layers according 

to the design. Each layer has fixed number of nodes. Input layer has five 

nodes corresponding to each input (five is the minimum expected inputs to 

make estimation). Cubic spline layer has three nodes each corresponding to 

the boundary conditions (only three boundary conditions are considered as per 

the derivates considered. It is described in section 4.5.1). The input data vector 

is connected to the input nodes of the networks: 

 

 

Figure 4.1: CSN for software reliability estimation 

X= [xn− 5 , xn− 4 , . .. , xn−1] , for predicting the time to nth failure.   

 

We can derive the activation functions using cubic splines. 
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Given a function f which passing through the  xn− 5
, xn− 4

, .. . , xn−1  nodes, can 

be represented in splines 
iS defined on , where n-5 i n-1.  
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A cubic spline interpolate S, for  f is a function that satisfies the following six 

conditions, 

i. The spline forms a continuous function  

      i.e. )(xS=)(xS i+ii+i+ 111  for each i= n− 5,n− 4, . .. , n− 2  

 

ii. The spline forms a smooth function  

      i.e. )(xS=)(xS i+

'

ii+

'

i+ 111
 for each i. 

 

iii. The second derivative is continuous  

      i.e. )(xS=)(xS i+

''

ii+

''

i+ 111
for each i. 

 

iv. S  is a cubic polynomial, denoted iS  on subinterval 

1i+i X,X
 
for each i. 

 

v. The spline passes through each node )f(x=)S(x ii   

            for each i. 

 

vi. One of following the boundary conditions is satisfied 

           
015 =)(xS=)(xS n

''

n

''

  

 

 ii xx ,1
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a.         Here   ( (   )  (   ))    Set boundary 

derivatives for specified values. 

  

b. Here    ( (   )  (   ))   Set boundary 

derivatives for specified values  

 

c. Here   ( (   )  (   )) 

The existing dataset is considered as intervals (i.e., ith interval is      

    ). However in this reliability estimation model, the cubic splines are 

used for future estimation and hence the boundary conditions are important. 

This network captures three network nodes in the cubic spline layer; each is 

corresponding to the each boundary condition above. At the output layer, the 

resultant value from the cubic spline layer is multiplied by respective omega 

values and then they are summed in order to get the final estimation value. By 

varying the omega values the results can be enhanced. 

The formulas for calculations can be derived as follows. 

 

             

32 )x(Xd+)x(Xc+)x(Xb+a=(X)S iiiiiiii   

For each i and ai, bi, ci and di are real constants. 

 

Let              for all     

 

The equations are simplified in finding the coefficients as follows. 

             ii

'' c=)(xS 2                                                       )1(  

 

             ii a=)f(x                                                              )2(  
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             iiii+ hd+c=c 31                                                4  

 

                52c3//1 1  )c+)((h)a)(ah(

=b

1+iiii+ii

i  

The activation function of the kth cubic spline node for estimating the nth 

failure is   

+)x(xb+a=)(xS nnk2,nk2,nnkn 22,  
3

2

2

22, )x(xd+)x(xc nnk2,nnnkn    

for . 

 

When k= 1 , the boundary condition 015 =)(xS=)(xS n

''

n

''


  is applied. 

 

When k= 2 , the boundary condition α=)(xS=)(xS n

''

n

''

15 
  is applied. 

 

When k= 3 , the boundary condition β=)(xS=)(xS n

''

n

''

15 
  is applied. 

 

The weight ω
k that connects the kth weighted node and the output node are 

indicated by the weighting vector ]ω,ω,[ω=ω 321 .  

 

The final output of the cubic spline networks summing layer is: 

 

                          
 

3

1

12,

=k

k+nkn ω)(XS=y  

The reliability estimation of the nth failure is y. 

3,2,1k

 
) )( / 3 ( ) )( / 3 ( 

) ( 2 

1 1 1 
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    → (3)    
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c h c h h c h 
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4.3.1 The Role of Boundary Conditions 

In this SRGM, the boundary conditions are used as the c coefficients. They 

are the coefficients of second order polynomial segment of S. The most 

important knowledge we find about the boundary conditions is that they are 

equivalent to the second derivatives of the curve (S). 

In general, the first derivative of the curve is its tangent. The second 

derivative is the rate of change of the tangent (i.e., tangent of the tangent). 

Within given two consecutive points, there can only be one exact line and 

there can be infinite number of other type curves.   

                                    Figure 4.2: The number of graphs which can be drawn between 2 points 

A and B are any given points on xy-plane. The curves are differed according 

to the second derivatives at A and B.  

The tangent of the line is proportional to the deference of y coordinates.  In 

this SRGM the tangent of the curve is assumed to be proportional to the 

relative difference of the consecutive time to failure values. Hence the second 

derivative is assumed to be proportional to the change of relative difference of 

the consecutive tangent values. 
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Following boundary conditions are used in this SRGM. 

a.          ( (   )  (   ))   

 

            b.           ( (   )  (   ))   

            

  c.           ( (   )  (   )) 

The boundary conditions are derived from the assumptions of the tangent 

proportional to the relative difference of the consecutive time to failure values 

and the second derivative is proportional to the change of relative difference 

of the consecutive tangent values.  

The derivation of boundary condition  : 

  (( (   )  (   ))  ( (   )  (   )) ( (   )  (   ))

 ( (   )  (   ))  ( (   )  (   )))   

 

                  ( (   )  (   ))                    

  

Similarly α is calculated considering three recent derivatives and β is 

calculated considering one recent derivative. 

4.3.2 Calculations of the SRGM 

A numerical example is considered here to understand the calculations used in 

this model. Five recent failure data are taken as input and for calculating the 

boundary conditions six recent data are taken. Following dataset is used to 

show the calculations. 
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FNO( ti ,i=1.2. ..,6) 
Time To Failure 
(f(ti), i=1,2,..,6) 

1 20336 

2 11776 

3 40933 

4 34794 

5 17136 

6 148446 

    Table 4.1 CS I – Dataset (1 to 6 of 41data) 

Using the equations (1) to (5) and the three boundary conditions following 

parameter values can be calculated.  

1ih For all 5,...,2,1i  

Suppose 3 metrics A, B and C as follows, 
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A*B=C 

 

When 51 ,cc  are defined form the boundary conditions, we can solve the above 

for 432 ,, ccc   
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Let‟s take          as constants: 

     ( (  )     (  )   (  )) 

   =-70592 

     ( (  )     (  )   (  )) 

 

   =-23038 

 

     ( (  )     (  )   (  )) 

  

  = 297936 

Now we can calculate C values as follows : 

   ( (  )   (  ))   

      

 

      (                )    

 

   (        )   

   (        )   

The Table 4.2 shows the calculated values for C. 
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From the equation (5) we get the following relationship: 

 52c3//1 1  )c+)((h)a)(ah(=b 1+iiii+iii

 

The following are the calculated vales for bi 

Table 4.3: The calculated b coefficient values for the data in Table 4.1 

 

According to the equation (4)  

                            iii+i hd+c=c 31 .                         
 

The 
id
 

values are as follows 

Table 4.4: The calculated d coefficient values for the data in Table 4.1 

 

According to the equation 

 

          32 )x(Xd+)x(Xc+)x(Xb+a=(X)S iiiiiiii   

c1 25622

c2 -19263.29

c3 -19160.86

c4 72868.71

c5 25622

b1 18496.76

b2 13090.14

b3 -29173.67

b4 74190.19

b5 -165527.33

d1 -14961.76

d2 34.14

d3 30676.52

d4 -15748.9

d5 -8540.67
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The following are the calculated values for the boundary condition. By 

varying the boundary conditions the c,b,d metrics can be calculated. The 

estimated reliability for each boundary condition is as follows. 

Table 4.5: The estimated output from the cubic spline layer 

 

Final estimation can be done using the following equation. 

                                    

                              
 

3

1

12,

=k

k+nkn ω)(XS=y  

In fact, the omega kω values play a significant role in this SRGM. Omega 

values can be used to tune the estimation. If the omega value is high then this 

SRGM can be used to estimate the higher reliability more accurately. 

Similarly when the omega value is smaller, smaller reliability will be 

estimated more accurately.  This flexibility is gained by using Artificial 

Neural Networks. NHPP model doesn't have this flexibility.  

Here the omega values are considered as all equal values and it is equals to 

0.4/6 .  

The final output is  

Table 4.6: The final estimated output from the network 

4.4 Tool to Estimate Software Reliability 

A software tool has been developed to estimate the reliability using the cubic 

spline network model. It is a PHP application which uses MySql as the data 

Estimate1 331000

Estimate2 351431.33

Estimate3 542376

Final Estimation 81653.82
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storage. The reason to choose PHP is it runs in Linux platform which is less 

vulnerable to the malicious attacks. This tool was developed as a web based 

tool since it is easy to hire the tool without needing to install in a local 

computer. Mysql is mostly compatible to the PHP and again it is open source. 

There is an ANN simulation software. However, none of such tools was used 

for this development since this tool is developed to have more flexibility in 

commercializing.   

The tool has the capability of import failure data from a text file saved in the 

home folder or one at a time. The time measurement unit has to be the same 

measurement units and the practicality of each failure is also in the same level.  

The calculations are automated. It is flexible with the ability of changing the 

logic without needing many changes to the database layer or to the front layer. 

The calculations can be done for simultaneous failure values in the same 

dataset or at a given failure value of the dataset. The simultaneous calculations 

can be exported Excel file format and the new Excel file is created in the 

home folder. 

Accuracy and Flexibility are the important features of the tool.  

4.4.1 Accuracy 

The foremost important feature identified when developing this tool was the 

accuracy. First, manual calculations was done in an excel file for the dataset. 

While coding the activation function in PHP, manual output of the Excel file 

was referred in each step. The white box testing was carried out by generating 

the additional outputs to assure the accuracy in calculations. 
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4.4.2 Flexibility 

The tool was designed in 3-Tire architecture. The business logic was coded in 

an independent file whereas the output is displayed in a different file. In this 

way, the ease of change is achieved. Furthermore, there is an input flexibility. 

If a user has dataset in a text file, the tool provides a way to upload the data 

directly from the text file. However, some users will need to enter the data one 

by one through the interface. The tool has the capability to handle that too. 

The output can be taken into excel format so that users has the flexibility to 

use them for analytical purposes as required. 
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5. Evaluation 

This chapter aims to discuss the evaluation of the CSN model estimation. In 

order to perform this task, datasets are required. First sections of this chapter 

describe the selection of datasets. Then the CSN model estimations have been 

done for the selected datasets. In order to compare the accuracy of CSN model, 

it is required to compare this model with the most accurate famous model. As 

such, the   famous SRGMs have been evaluated to find the most accurate model 

and then it has been compared with CSN model for the accuracy.  

5.1 The Selection of the Data 

To validate the models, a quality datasets are needed. (The quality of the dataset 

will be discussed in section 5.2). According to the time frame and the 

availability of resources, it was unable to develop a software system and test for 

long time to collect the data. Similarly, it was unable to collect failure data from 

the organizations or from individuals who are engaging in software testing as 

they are reluctant to share them.  

There are several reasons why individuals as well as organizations hesitate to 

share data. Individuals worry about revealing illegal (perhaps not illegal) 

activities that may be reverse-engineered from the collected data. As failure 

data can potentially reveal product dependability statistics or loopholes that can 

be misused. Organizations fear that competitors may assess and/or misuse data 

and analyse results.  

Often, industrial researchers are willing to share data with academic researchers 

and there are long delays exists due to the legal concerns. As well as there are 

often so limitations that be impossible to publish any meaningful research 

results based on the shared data (Lyu, 1996). There are publicly available 
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failure reports. However, the quality (i.e., the accuracy) cannot be assured as 

many failure data collection exercises have been based on manual (i.e., not 

automated) collections using pen and paper.  

5.2 Quality of the Failure Data 

A high quality dataset represents all failure data (i.e., all the occurred failures 

have been recorded in the dataset) during the testing period as well as the 

dataset represents failure data only (i.e., the recorded problems are all failures). 

The failure data collection process has been found to have a number of 

problems. The importance of these problems is not to be underestimated as 

there are often critical negative impacts on the quality of the collected data set. 

The problems associated with the data collection process are as follows. 

During the data collection, people have to make the decisions like how to 

classify a particular failure or how to deal with unusual circumstances. In order 

to do so, they must have to have the understanding about the requirements. 

However, usually people engaging with the data collections are testers who do 

not have full familiarity with the requirements. Furthermore, it is not practical 

to give full familiarity about the requirements to them. 

All failure detection efforts are not the same. Some failures are easily detectable 

while others are difficulty. (i.e., application crashes are easy to detect whereas 

the un-expected output time is not easy to detect until some of the following 

events occurs). This is also affected to the quality of the collected data set. 

5.3 Data Sets Used 

The datasets considered are taken from (Lyu, 1996). The Software Reliability 

Datasets used in this thesis were compiled by Prof. John Musa of Bell 

Telephone Laboratories. The dataset consists of software failure data of 16 
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projects. Careful controls had been employed during data collection to ensure 

that the data would be of high quality. It represents projects from a variety of 

applications including real time command and control, word processing, 

commercial, and military applications. Further, these datasets have been used 

by many researchers in many literatures to validate the software SRGMs 

(Okamura, et al., 2004; Cai, et al., 2001). 

There are two case studies used to test the accuracy of the models. The reasons 

to select the particular data sets are there. They show a high variations which 

drastically affects the accuracy and there are considerable low number of data 

(i.e., 41 and 54 data) contain in the dataset. Hence it is easy to present them in 

the graphs and in calculations.      

5.3.1 Case Study I - Time between failure data  

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
Table 5.1: The failure data taken from (Lyu, 1996) of CS I 

 

Failure Number Time to Failure Failure Number Time to Failure 
1 20336 22 35580 

2 11776 23 81000 

3 40933 24 643095 

4 34794 25 47857 

5 17136 26 154800 

6 148446 27 170460 

7 7995 28 108540 

8 1636 29 73800 

9 15830 30 1860 

10 21932 31 336600 

11 2485 32 268140 

12 11000 33 74880 

13 2880 34 286200 

14 61182 35 25320 

15 4800 36 7080 

16 38005 37 59820 

17 16200 38 87900 

18 6000 39 76200 

19 1000 40 89280 

20 10000 41 1209600 

21 220     
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5.3.2 Case Study II – Time between failure data  

FailureN

umber 

Time to 

Failure 

Failure 

Number 

Time to 

Failure 

Failure 

Number 

Time to 

Failure 

1 191 19 625 37 661 

2 222 20 912 38 50 

3 280 21 638 39 729 

4 290 22 293 40 900 

5 290 23 1212 41 180 

6 385 24 612 42 4225 

7 570 25 675 43 15600 

8 610 26 1215 44 0 

9 365 27 2715 45 0 

10 390 28 3551 46 300 

11 275 29 800 47 9021 

12 360 30 3910 48 2519 

13 800 31 6900 49 6890 

14 1210 32 3300 50 3348 

15 407 33 1510 51 2750 

16 50 34 195 52 6675 

17 660 35 1956 53 6945 

18 1507 36 135 54 7899 

Table 5.2: The failure data taken from (Lyu, 1996) of CS II 

5.4 Cubic Splines Network (CSN) Software Reliability Estimation 

Model 

For the above datasets, the reliability estimations using CSN model are 

discussed in this section.  
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5.4.1 CSN Model Estimation for Case Study I 

Following Table 5.3 shows the actually and estimated reliability values for 

each Failure Number. 

                                                                                                                                                                                                                                                                  
Table 5.3: CSN model Estimated Reliability for CS I  

FNo Actual Time 
Estimated 

Time 
FNo Actual Time 

Estimated 

Time 

9 15830 24696 25 47857 394748 

10 21932 28946 26 154800 79836 

11 2485 2696 27 170460 67951 

12 11000 9042 28 108540 7202 

13 2880 4972 29 73800 10374 

14 61182 569 30 1860 11319 

15 4800 41287 31 336600 1027239 

16 38005 8765 32 268140 20089620 

17 16200 23063 33 74880 21488 

18 6000 317 34 286200 15821 

19 1000 1506 35 25320 122321 

20 10000 3369 36 7080 33926 

21 220 5692 37 59820 111515 

22 35580 3701 38 87900 105684 

23 81000 23608 39 76200 13531 

24 643095 28156 40 89280 1744 
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5.4.2 Comparison of the Results with the Actual Data 

Validity of the estimation was checked using estimated and actual time to 

failure values for the dataset. The dataset was considered from the 9th failure 

onwards (for x =9, 10…39). 

 

Figure 5.1: Estimated and actual reliability for the CS II 

5.4.3 Comparison of the Results with the Other Models 

In order to find the accuracy of CS model, it is essential to compare the output 

with the other models. Since the calculations from scratch of the other models 

are not available, it was difficult to find the output values of them. There are 

software reliability modeling tools available on the Internet. One of these is 

SMERFS; a public domain tool developed by Dr. William Farr of the Naval 

Surface Warfare Laboratory and employs several others of the models.  This 

tool was selected since it is utilized for the real world applications especially 

like NASA's Software Assurance Technology Center at the Goddard Space 
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Flight Center. Following Table 5.4 shows the software reliability models used 

in SMERFS^3(Version 3). 

Time Between Failure Models  

   Geometric Model 

   Jelinski / Moranda Model 

   Littlewood and Verrall Linear Model 

   Littlewood and Verrall Quadratic Model 

   Musa‟s Basic Model 

   Musa‟s Logarithmic Model 

   Non-homogeneous Poisson Model 

Table 5.4: Software Reliability Models facilitated in SMERFS^3 

5.4.3.1 Finding the Most Accurate Model in SMERFS^3 

Figure 5.3 and 5.4 are taken through SMERFS by entering the datasets of 

Table 5.1 and 5.2 respectively.  The doted points in each graph show the 

actual values whereas the other curves show the estimations of each model.  
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Figure 5.2: The output from  SMERFS by each model for CS I 

 

These curves show that, NHPP model curve is more sensitive towards the 

actual values and the curves of the other models show an average value. This 

can be further clarified by the following Figure 5.3. 
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Figure 5.3: The output from  SMERFS by each model for CS II 

According to the interpretation which can be made by analyzing the two 

figures is that NHPP model is more accurate than the other models. However 

this can be tested further statistically to prove that NHPP model is more 

accurate. 

5.4.3.2 Comparison of the CSN Results with NHPP Model 

The statistical test used is goodness of fit test (Kleinbaum, et al., 1997). The 

error which can be calculated through “Actual Time – Calculated Time” is 

standardized and then are plotted against the failure numbers. If the curve lies 

between -3 to +3 and the curve doesn‟t show any pattern, then the dataset is 

statistically said to fit with the Calculated Time values. Following figures 

show the graphs for the standardized errors. 



61 
 

 

Figure 5.4: The standardized errors for dataset with 86 records in (Lyu, 1996) 

 

Figure 5.5: The standardized errors for CS II 

According to the graphs it can be seen that CSN curve lies between -3 and +3 

while NHPP curve is distributed beyond 3. Hence it can be statistically  

concluded that CSN model is more suitable for those datasets than NHPP 
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model. Further this has been tested mathematically and the calculations are 

available in Appendix B. The conclusions drawn through the said calculation 

is also CSN model is more suitable.  

5.4.3.3 Comparison of the Results with Other SRGMs 

The (Table 5.1) dataset with 41 failures are entered to this model and output 

of each model are collected and tabulated as follows. 
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Table 5.5: Output values for CSN model and other models in SMERFS for CS I 

 

 

 

 

 

FNO Actual GeometricJelinski/MorandaLittle LinearMusa's BasicMusa's Log None-homogenoius poisonLittlewood Q

6 148446 28602.92 38931.44 37338.67 38536.71 30594.34 47662.55 29481.49

7 7995 30307.59 39926.68 40169.2 42188.26 32440.77 40128.51 30810.64

8 1636 32113.86 40974.13 42999.73 42394.47 34398.65 39739.67 32344.26

9 15830 34027.77 42078.03 45830.26 42436.79 36474.69 41204.47 24082.37

10 21932 36055.76 43243.05 48660.79 42848.46 38676.02 42248.94 36024.96

11 2485 38204.6 44474.43 51491.32 43425.42 41010.2 40342.13 38172.04

12 11000 40481.51 45777.99 54321.86 43491.28 43485.26 41548.51 40523.6

13 2880 42894.13 47160.27 57152.39 43784.02 46109.69 40608.52 43079.64

14 61182 45450.52 48628.62 59982.92 43860.99 488892.52 49928.01 45840.17

15 4800 48159.28 50191.35 62813.45 45528.46 51843.29 41733.79 48805.18

16 38005 51029.47 51857.86 65643.98 45661.93 54972.16 47927.12 51974.67

17 16200 54070.71 53638.83 68474.51 46732.62 58289.85 44569.54 55348.65

18 6000 57293.21 55546.49 71305.04 47196.61 61807.78 42833.07 58927.11

19 1000 60707.77 57598.83 74135.57 47369.63 65538.02 41876.78 62710.05

20 10000 64325.82 59800.03 76966.1 47398.53 69493.38 43977.53 66697.48

21 220 68159.5 62180.82 79796.63 47688.47 73687.47 41838.02 70889.39

22 35580 72221.66 64759.04 82627.16 47694.87 78134.67 50857.93 75285.78

23 81000 76525.92 67560.32 85457.69 48741.1 82850.28 64008.16 79886.66

24 643095 81086.7 70614.9 88288.22 51209.29 87850.48 235008.8 84692.02

25 47857 85919.29 73958.77 91118.75 75801.4 93152.46 66829.03 89701.86

26 154800 91039.9 77635.06 93949.28 78046.34 98774.42 105327.9 94916.19

27 170460 96465.68 81695.96 96779.81 85773.37 104735.68 116501.69 100335

28 108540 102214.83 86205.13 99610.34 95170 111056.72 98331.92 105958.29

29 73800 108306.61 91241.15 102440.87 101682.84 117759.25 87723.99 111786.07

30 1860 114761.46 96902.07 105271.4 106363.88 124866.28 59481.61 117818.33

31 336600 121600.99 103311.91 108101.93 106484.6 132402.25 209240.29 124055.08

32 268140 128848.15 110629.79 110932.46 130748.83 140393.03 191928.22 130496.3

33 74880 136527.23 119063.41 113762.99 153977.29 148866.06 105274.03 137142.02

34 286200 144663.96 128888.97 116593.52 161171.86 157850.47 220042.78 143992.21

35 25320 153285.62 140482.08 119424.06 191907.26 167377.1 87182.72 151046.89

36 7080 162421.11 154366.83 122254.59 194893.61 177478.69 77613.3 158306.05

37 59820 172101.07 171297.25 125085.12 195736.94 188189.94 108840.11 165769.7

38 87900 182357.92 192398.9 127915.65 203009.59 199547.63 128071.09 173437.82

39 76200 193226.06 219429.87 130746.18 214189.18 211590.78 123960.42 181310.44
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The following Figure 5.6 shows output values of other SRGMs and CSN 

model outputs.  

 

 

Figure 5.6: Comparison of estimation ability 
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5.5 Tunable Feature of CSN Model 

Following Table 5.6 shows the CSN model estimation for the same dataset 

with varied omega value: 

Table 5.6: The calculations of CSN model at different omega values for CS I 

 

 

 

 

FNO TTF Omega=0.4/6 Omega=0.5/6 Omega=0.7/6

11 2485 7167.72 8959.64 12543.5

12 11000 9839.89 12299.87 17219.81

13 2880 4903.8 6129.75 8581.65

14 61182 2944.25 3680.31 5152.44

15 4800 35488.54 44360.68 62104.95

16 38005 18566.41 23208.01 32491.22

17 16200 21177.64 26472.06 37060.88

18 6000 5888.87 7361.08 10305.52

19 1000 2063.47 2579.33 3611.07

20 10000 4716.19 5895.23 8253.33

21 220 4863.11 6078.89 8510.44

22 35580 4480.49 5600.61 7840.86

23 81000 20956.36 26195.44 36673.62

24 643095 36495.56 45619.44 63867.22

25 47857 361678.76 452098.44 632937.82

26 154800 187286.1 234107.63 327750.68

27 170460 74009.8 92512.25 129517.15

28 108540 21902.8 27378.5 38329.9

29 73800 4499.42 5624.28 7873.99

30 1860 15601.2 19501.5 27302.1

31 336600 32327.92 40409.9 56573.86

32 268140 193884 242355 339297

33 74880 42050.13 52562.67 73587.73

34 286200 47096.27 58870.33 82418.47

35 25320 131104 163880 229432

36 7080 92062.4 115078 161109.2

37 59820 16464.53 20580.67 28812.93

38 87900 13927.47 17409.33 24373.07

39 76200 30068.53 37585.67 52619.93

40 89280 8812 11015 15421

41 1209600 25230.93 31538.67 44154.13
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These data can be shown in the following Figure 5.7.   

 

Figure 5.7: The output from CSN model at different omega values for CS I 

 

The red colored curve shows the sensitivity towards the small values while the 

green colored graph shows the sensitivity towards the big values.  
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6. Conclusions and Future Work 

In this thesis, accurate software reliability estimation has been addressed. 

Though software reliability is an important software quality factor, it is not 

widely used in the software industry. This is due to the lack of accuracy in 

software reliability estimation models and time taken to give a valid 

estimation for existing software reliability estimation models. Usage of 

statistical distribution for software reliability models, usage of invalid 

assumptions and usage of failure data which had collected early in the testing 

are mainly affected the accuracy of existing reliability estimation models. 

CSN model does not employ the statistical distributions. Similarly, the model 

does not assume invalid assumptions like no new code is introduced during 

the testing and failures are independent. The model takes only recent failure 

data and thus the accuracy improvement initiatives have been employed in 

designing the model. Further, as CSN model takes only six recent failure data, 

the time taken to estimate the reliability has been reduced. Hence this model 

increases the opportunity to apply it in software industry.     

According to the results in the thesis, NHPP model is more accurate than the 

other famous models. CSN model has been statistically compared with the 

NHPP model for accuracy and it proves that CSN model is more accurate than 

NHPP model. 

CSN model requires only six recent consecutive failure data to make 

estimation whereas NHPP model requires at least twenty five recent failure 

data to give a single estimation. Hence CSN model is more desirable towards 

the achievement of business objectives than NHPP model. Further, CSN 

model is tunable.  

However estimation accuracy of CSN model is higher when there are less 

sudden variations. CSN model shows the less accuracy with the presence of 
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sudden variations in the failure data. This can be considered as a limitation of 

the CSN model.  

CSN model can be used to assure reliability at the release time of the software 

because there are no sudden changes expected in the reliability when releasing 

the software.  

Since software tool to automate calculations of CSN model has been 

developed, this model can be used in the industry without any overhead of the 

interior functions of the model.  

Future work includes the improvement of omega calculation for a given 

dataset.  

 

 

 

 

 

 

 

 

 

 



69 
 

References 

Agbari Adnan Basile Claudio & Zbigniew Kalbarczyk (2006). Proceedings of 

the International Conference on Dependable Systems & Networks, 

Washington DC, IEEE Computer Societry. 

AIAA/ANSI (1993).  Recommended Practice for Software Reliability, The 

American Institute of Aeronautics and Astronautics, Washington DC, 

Aeruspace Center, R-013, 1992,  - ISBN 1-56347-024-1. 

 
Boehm B.M., Brown J. R. & Lipow M. (1976). Quantitative evaluation of 

software quality, In Proceedings of the International Conference on Software 

Engineering, San Fransisco, Vol 13-15 pp 592-605, IEEE Computer Society 

Press.  

 
Cai K.Y, Cai L, Wang W.D & Yu Z.Y (2001). On the Neural Network 

Approach in Software Reliability Modeling, The Journal of Systems & 

Software - Vol 47. 

Crosby P. B. (1979). Quality is Free The Art of Making Quality Certain NY, 

McGraw -Hill.  

Deming & Edwards W (1986). Out of Crisis, MIT Press. 

Dromey R. G. (1995). A Model for Software Product Quality, IEEE 

Transactions on Software Engineering - Vol 2. 

Feigenbaum A. V. (1983). Total Quality Control, McGraw - Hill. 

Fries A. & Sen A. (1996). A Survey of Descrete Reliability Growth Models, 

IEEE Transactions Reliability - Vol 45. 

Glenford J. (1979). The Art of Software Testing, NY, John Wiley & Sons. 



70 
 

Gray R.B (1992). Practical Software Matrics for Project Management and 

Process Improvement, Prentice Hall. 

Hoppe Wolfgang (1996). An Indusry Applicable Approach to Predict 

Software Reliability, Bremen, STN ATLAS Elektronik Gmbh.  

Hudepohl J. P, Aud S. J, Khoshgoftaar T. M. & Allen E. B. (1996). 

EMERALD: Software Matrics and Models on the Desktop, IEEE Software - 

Vol 13(5) pp 56-60. 

IEEE Std 610.12 (1990). IEEE Standard Glossary of Software Engineering 

Terminology, NY.  

Ishika K (1985). What is Quality Control? The Japanese Way, Prentice Hall, 

NY.  

ISO/IEC Std 9126-1 (2001). Software Engineering – Product Quality, Part 1: 

Quality Models, International Organisation for Standards. 

Juran J.M (1988). Juran's Quality Control Handbook, McGraw - Hill. 

Karunaniti N, Malaiya Y. K. & Whitly D. (1991). Prediction of software 

reliability using neural networks, Proceedings of the 2nd IEEE International 

Symposium on Software Reliability Engineering, Los Alamitos CA - pp 124–

130. 

 
Karunanithi N, Malaiya Y. K. (1992). The scaling problem in neural networks 

for software reliability prediction, Proceedings of the Third International IEEE 

Symposium of Software Reliability Engineering, Los Alamitos CA, pp 76–82. 

 

Karunanithi N, Whitley D, Malaiya Y. K. (1992a). Using neural networks in 

reliability prediction, IEEE Software - Vol 9 pp 53–59. 

 



71 
 

Karunanithi N, Whitley D, Malaiya Y. K. (1992b). Prediction of software 

reliability using connectionist models, IEEE Transactions on Software 

Engineering - Vol 18 pp 563–574. 

 
Karunanithi N. (1993). A Neural Network Approach for Software Reliability 

Growth Modeling In the Presence of Code Churn, ISSRE. 

 

Karunanithi N, Malaiya Y. K. (1996). Neural networks for software reliability 

engineering - NY. 

 
Kleinbaum David G. (1997). Applied Regression Analysis and Multivariable 

Methods, Thompson Higher Education, USA, ISBN- 0-495-38496-8.  

Lee L (1992). The Day the Phones Stopped How People Get Hurt When 

Computers Go Wrong, Donald I Fine Inc.  

Lyu M.R (1996). Handbook of Software Reliability Engineering, IEEE 

Computer Society Press. 

Martin Jedlicka, Moravcik Oliver & Schreiber Peter (2008). Survey to 

Software Reliability, 19th Central European Conference on Information and 

Intelligent Systems,  Varazdin. 

Martine L. & Shooman (1976). Structural Models for Software Reliability 

Prediction, 2nd International Conference on Software Engineering. 

McCall J.A, Richards P.K & G.F Walters (1998). Software Quality 

Assurance.  

McCall J.A, Richards P.K & Walters G.F (1977). Factors in Software Quality, 

Nat'1 Tech Information Services, - Vol 1-2. 



72 
 

Okamura H, Murayama A. & Dohi T. (2004). EM Algorithm for Descrete 

Software Reliability Models: A Unified Parameter Estimation Mothod, IEEE 

Int.Symp.  

Rosenberg Linda,  Hammer Ted & Shaw Jack (1998). Software Matrics and 

Reliability,  ISSRE. 

Schneidewind N. F. (1993). Software Reliability Model with Optimal 

Selection of Failure Data, IEEE Transactions on Software Engineering - 

Vol 19(11) pp 1095-1104. 

Sua Yu-Shen & Chin-Yu Huang (2006). Neural-network-based Approaches 

for Software Reliability Estimation using Dynamic Weighted Combinational 

Models, Journal of Systems and Software.  

William H. & Far (1983). A Survey of Software Reliability Modeling and 

Estimating,  Naval Surface Weapons Center, NSWC, TR 82-171 pp 4-88.  

Wood Alan (1996). Software Reliability Growth Models , Tandem Technical 

Report- Vol 19.1-part number 130056.  

 

 
 

 
 
 

 



I 
 

Appendix A – Graphical Representations of CSN 

Model Estimations 

Appendix A presents the output of CSN model. Notice that CSN model 

estimations are possible from 7th failure onwards. But in these data, the range 

has been considered from 11th failure. The graphs are of datasets from I to X. 

The omega value used for these calculations is 0.7. 

Calculations for dataset I 
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Calculations for dataset II 

 

Calculations for dataset III 
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Calculations for dataset IV 

 

Calculations for dataset V 
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Calculations for dataset VI 

 

Calculations for dataset VII 
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Calculations for dataset VIII 

 

Calculations for dataset IX 
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Calculations for dataset X 
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Appendix B – Comparative study of CSN model and 

NHPP model 

Results of the comparative study of CSN model and NHPP model have been 

listed here for the datasets. (The comparative studies on dataset I and II are in 

the thesis) 

Comparative study for dataset III 

 

FNO Error CS Erro NHPP FNO Error CS

11 97.58 434.13 -336.54 49 91.12 9.54 81.57

12 99.21 45.73 53.48 50 96.18 55.33 40.86

13 20.82 39.5 -18.69 51 71.03 40.14 30.89

14 92.64 39.89 52.75 52 216.23 372.71 -156.48

15 58.71 1.47 57.25 53 92.94 16.42 76.52

16 99.08 58.96 40.12 54 56.49 37.46 19.03

17 249.34 386.5 -137.15 55 98.44 43.21 55.23

18 21.4 142.03 -120.63 56 62.09 28.75 33.34

19 93.03 17.87 75.16 57 91.57 28.32 63.24

20 89.47 4.35 85.12 58 94.61 24.89 69.72

21 71.84 59.94 11.9 59 73.17 7.6 65.57

22 98.79 59.78 39.01 60 90.42 90.81 -0.39

23 40.82 64.04 -23.22 61 70.09 114.09 -44

24 19.67 108.76 -89.08 62 96.72 84.2 12.52

25 96.82 78.09 18.73 63 96.86 13.3 83.56

26 98.81 38.72 60.09 64 389.44 986.93 -597.49

27 70.19 157.39 -87.2 65 88.9 30.16 58.74

28 87.64 100.48 -12.85 66 305.36 366.02 -60.66

29 90.2 44.54 45.66 67 74.45 11.29 63.16

30 86.15 26.19 59.96 68 11.14 128.77 -117.63

31 67.13 162.7 -95.57 69 82.38 3.61 78.77

32 97.28 31.13 66.15 70 91.21 35.93 55.27

33 57.61 1.04 56.58 71 27.5 11.18 16.32

34 93.59 244.32 -150.73 72 68.64 38.96 29.68

35 94.45 39.12 55.33 73 99.71 36.83 62.88

36 72.65 37.45 35.2 74 4.25 12.94 -8.69

37 32.38 158.72 -126.35 75 83.78 21.39 62.38

38 76.11 1.51 74.61 76 74.57 13.08 61.49

39 71.54 36.74 34.79 77 93.57 1.74 91.83

40 99.89 51.73 48.16 78 95.29 18.69 76.6

41 13899.53 14666.8 -767.27 79 20.25 102.56 -82.31

42 237.73 416.72 -178.99 80 76.16 8.55 67.61

43 97.31 6 91.31 81 89.96 18.35 71.62

44 90.65 46.22 44.43 82 26.67 59.14 -32.48

45 27.15 88.45 -61.3 83 62.37 422.8 -360.43

46 43.07 58.91 -15.84 84 82.59 52.36 30.23

47 93.33 6.7 86.64 85 76.56 73.33 3.23

48 54.88 101.56 -46.68

Total -1074.34

Count of -ve values 26

Count of +ve values 49

Differen

ce

Erro 

NHPP

Differen

ce
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Comparative study for dataset IV 

 

The omega value for this calculation is 0.43 

 

FNO Difference FNO Difference FNO Difference

11 19.98 17.57 2.41 43 5.36 692.11 -686.75 75 5.95 40.47 -34.52

12 33.53 91.29 -57.77 44 9.32 12.96 -3.64 76 347.29 38.88 308.41

13 11.92 19.75 -7.83 45 44.85 386.73 -341.88 77 170.2 118.73 51.47

14 40.26 24.22 16.04 46 18.24 54.65 -36.4 78 182.36 496.58 -314.22

15 0.33 2041 -2040.67 47 182.93 44.36 138.58 79 37.56 470.15 -432.59

16 20.46 333.93 -313.48 48 29.38 1730.25 -1700.87 80 22.1 79.52 -57.42

17 2.29 975.83 -973.54 49 74.34 1369.6 -1295.26 81 24.87 386.54 -361.67

18 5.03 709.5 -704.47 50 14.24 52.84 -38.61 82 30.33 32.15 -1.81

19 0.47 42.35 -41.88 51 187.78 48.14 139.64 83 339.6 158.4 181.2

20 79.34 249.47 -170.13 52 55.89 47.62 8.26 84 164.03 42.15 121.89

21 34.61 250.37 -215.76 53 76.63 7569 -7492.37 85 1016.69 9.27 1007.42

22 4.72 32.38 -27.65 54 113.08 54.41 58.67 86 395.93 12022 -11626.07

23 59.59 346.13 -286.55 55 246.56 46 200.56 87 115.04 29.31 85.73

24 31.53 319.75 -288.22 56 25.68 36.71 -11.03 88 403.69 1211.1 -807.41

25 0.39 46.37 -45.98 57 34.39 2.56 31.83 89 283.4 584.5 -301.1

26 88.44 44 44.44 58 31.69 557.08 -525.39 90 36.39 44.71 -8.32

27 23.96 576.4 -552.44 59 47.91 103.66 -55.75 91 40.95 410.36 -369.41

28 15.39 3236.5 -3221.11 60 3.57 22.52 -18.95 92 33.91 185.29 -151.37

29 10.07 215.18 -205.11 61 26.92 34.78 -7.86 93 3.53 13.42 -9.89

30 10.73 39.04 -28.31 62 118.23 16.33 101.89 94 282.06 161.22 120.85

31 21.66 265.58 -243.92 63 28.02 53.32 -25.3 95 130.24 94.95 35.29

32 8.18 29.71 -21.53 64 354.31 38.89 315.42 96 33.58 22.19 11.39

33 29.54 250.65 -221.11 65 176.48 4319.5 -4143.02 97 515.74 29 486.74

34 10.38 2157.33 -2146.96 66 35.72 272.23 -236.51 98 183.73 13.59 170.13

35 6.76 11.13 -4.37 67 19.76 49.23 -29.47 99 92.19 231.13 -138.94

36 54.41 1270 -1215.59 68 364.65 50.04 314.61 100 112.5 4658.33 -4545.83

37 31.22 19.3 11.91 69 232.56 1518.83 -1286.27 101 29.98 14.89 15.09

38 39.29 59.18 -19.89 70 253.42 2310.5 -2057.08 102 499.84 309.81 190.02

39 159.17 2228.67 -2069.5 71 27.61 111.78 -84.18 103 278.44 236.84 41.61

40 101.93 688.78 -586.84 72 0.27 36.64 -36.37 104 11.96 105.85 -93.89

41 1.02 496.92 -495.9 73 228.96 211.69 17.27

42 9.38 305 -295.62 74 143.65 592.73 -449.08

Total -43000.13

Count of -ve values 50

Count of +ve values 25

Error% 

CS

Erro% 

NHPP

Error% 

CS

Erro% 

NHPP

Error% 

CS

Erro% 

NHPP



IX 
 

 

Comparative study for dataset V 

 

 

 

 

 

 

 

FNO FNO

11 99.76 7.55 92.21 41 99.94 127.11 -27.17

12 77.14 1302.36 -1225.22 42 99.6 0.88 98.71

13 88.32 1209.93 -1121.61 43 99.36 36.21 63.15

14 99.78 383 -283.22 44 97.43 37.59 59.84

15 80.7 19500 -19419.3 45 58.46 7064.67 -7006.21

16 99.77 34.35 65.42 46 92.78 812.42 -719.64

17 99.48 45.25 54.22 47 99.91 4.32 95.58

18 91.02 274.06 -183.04 48 98 52.25 45.76

19 89.15 734.04 -644.89 49 99.92 320.87 -220.95

20 99.35 358.95 -259.6 50 99.5 78.89 20.61

21 99.99 18.66 81.33 51 99.59 12.46 87.14

22 99.45 41.05 58.4 52 20.59 7201.67 -7181.08

23 77.9 966.68 -888.79 53 67.59 2349 -2281.41

24 97.86 48.19 49.66 54 98.75 1743.08 -1644.33

25 94.95 469.92 -374.96 55 98.37 1137 -1038.63

26 97.9 283.94 -186.05 56 99.14 2352.11 -2252.97

27 99.97 74.02 25.95 57 99.68 215.44 -115.76

28 88.14 38.58 49.56 58 93.05 1383.93 -1290.89

29 9.14 2511.63 -2502.48 59 99.88 15.29 84.59

30 39.41 20715 -20675.59 60 98.74 23.05 75.69

31 90.82 1136.29 -1045.48 61 98.43 30.82 67.61

32 99.8 1213.63 -1113.82 62 99.66 120.55 -20.88

33 99.08 152.71 -53.63 63 99.82 11.66 88.16

34 94.36 1011.32 -916.96 64 99.05 11.01 88.04

35 98.41 633.55 -535.15 65 99.5 9.83 89.67

36 0 0 0 66 51.59 22649 -22597.41

37 93.01 4089.4 -3996.39 67 99.73 48.24 51.48

38 99.99 26.48 73.51 68 50.96 701.4 -650.44

39 46.92 2018 -1971.08 69 98.31 23.05 75.26

40 73.99 1827.73 -1753.74 70 98.51 19.7 78.8

Error% 

CS

Error% 

NHPP

Differenc

e

Error% 

CS

Error% 

NHPP

Differenc

e



X 
 

 

The omega value for this calculation is 0.01 

 

 

 

 

 

 

FNO FNO

71 99.5 0.08 99.42 100 18.4 1864.84 -1846.44

72 99.78 24.89 74.89 101 97.49 1770.5 -1673.01

73 96.77 115.61 -18.84 102 97.4 416.34 -318.95

74 93.3 444.57 -351.27 103 96.04 1471.58 -1375.54

75 98.81 195.04 -96.23 104 99.91 20.64 79.27

76 99.99 37.98 62.02 105 99.67 34.33 65.34

77 98.8 40.39 58.41 106 960.72 4159.7 -3198.98

78 78.96 648.2 -569.24 107 232.11 2062.35 -1830.24

79 99.92 59.54 40.38 108 99.48 88.64 10.84

80 42.56 58.8 -16.23 109 98.42 133.88 -35.46

81 87.32 10.28 77.04 110 99.99 8.71 91.27

82 92.19 302.51 -210.32 111 91.51 171.55 -80.03

83 97.54 9 88.55 112 96.1 119.26 -23.17

84 97.65 28.96 68.69 113 95.93 747.88 -651.94

85 98.98 13.48 85.5 114 99.93 21.18 78.75

86 99.83 47.65 52.19 115 97.88 14.43 83.45

87 49.14 243.71 -194.57 116 83.04 802.88 -719.84

88 55.21 387.81 -332.61 117 70.94 473.86 -402.92

89 99.77 29.11 70.66 118 99.81 4.68 95.13

90 99.78 63.91 35.86 119 98.23 4.51 93.72

91 99.96 40.19 59.77 120 99.94 13.12 86.82

92 99.37 24.6 74.77 121 80.21 125.18 -44.97

93 98.59 8.56 90.04 122 98.61 2.54 96.07

94 97.37 585.47 -488.11 123 99.03 4.78 94.24

95 98.17 37.42 60.75 124 94.73 74.52 20.2

96 88.69 928.44 -839.75 125 48.35 988.48 -940.13

97 70.67 2296.33 -2225.66 126 99.54 8.76 90.78

98 99.95 27.83 72.12 127 98.9 7.55 91.34

99 52.54 559.18 -506.64 128 99.4 6.69 92.71

Total -121128.53

Count of -ve values 60

Count of +ve values 57

Error% 

CS

Error% 

NHPP

Differenc

e
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XI 
 

Comparative study for dataset VI 

 

 

 

 

 

 

Error CS

11 77.8 52.19 25.61 43 78.08 33.36 44.72

12 44.56 314.5 -269.94 44 34.75 6.6 28.15

13 73.65 171.25 -97.6 45 93.55 33.96 59.59

14 8.81 761.54 -752.74 46 92.73 37.19 55.54

15 81.69 95.76 -14.07 47 360.11 3775.67 -3415.56

16 39.44 139.84 -100.4 48 2.44 338.04 -335.6

17 98.53 63.12 35.41 49 97.02 52.68 44.34

18 203.26 80.43 122.83 50 67.41 63.09 4.32

19 491.19 711.38 -220.19 51 255.14 82.36 172.78

20 75.34 90.77 -15.43 52 1615.68 1067.1 548.59

21 91.73 27.9 63.82 53 69.42 24.27 45.15

22 167.27 291.35 -124.08 54 47.84 101.77 -53.93

23 62.08 4.45 57.63 55 93.17 10.35 82.82

24 71.59 220.38 -148.79 56 32.22 48.52 -16.29

25 87.36 40.62 46.74 57 93.12 26.28 66.84

26 22.92 28.22 -5.3 58 125.82 714.84 -589.02

27 400.09 2053.6 -1653.51 59 78.33 9.9 68.43

28 95.03 70.99 24.04 60 73.86 42.89 30.97

29 7.92 52.79 -44.87 61 0 0 0

30 89.47 1383.53 -1294.07 62 7.53 32.79 -25.26

31 448.79 525.19 -76.41 63 65.27 1.54 63.73

32 849.93 5438 -4588.07 64 76.48 4.89 71.58

33 0 0 0 65 91.96 52.64 39.32

34 296.83 2675.88 -2379.05 66 5.35 25.11 -19.76

35 94.52 10.46 84.05 67 814.44 2538 -1723.56

36 100.95 254.91 -153.96 68 1102.7 1559.81 -457.12

37 79.32 40.09 39.23 69 89.54 22.01 67.53

38 41.63 298.45 -256.82 70 27.83 1.36 26.47

39 92.81 36.53 56.28 71 56.3 531.7 -475.4

40 17.52 9.98 7.54 72 13.13 135.58 -122.45

41 84.8 148.4 -63.61 73 95.24 36.57 58.67

42 83.07 1.95 81.11 74 44.34 23.99 20.36
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NHPP
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XII 
 

 

The omega value for this calculation is 0.39 

 

 

 

 

Error CS

75 64 21.81 42.19 105 98.11 33.16 64.94

76 87.31 16.4 70.91 106 43.49 12.03 31.46

77 36.42 30.59 5.83 107 70.17 0.03 70.14

78 85.73 105.16 -19.43 108 79.04 16.56 62.47

79 96.28 32.82 63.47 109 96.4 5.94 90.45

80 59.89 37.78 22.11 110 4.44 131.45 -127.01

81 31.06 1.01 30.05 111 64.1 17.76 46.34

82 70.61 32.28 38.33 112 84.86 16.87 67.98

83 99.24 47.07 52.17 113 83.13 59.55 23.59

84 16.34 34.84 -18.5 114 1.06 76.35 -75.3

85 99.11 44.83 54.28 115 93.75 62.15 31.6

86 22.57 25 -2.42 116 59.99 328.47 -268.48

87 83.7 28.31 55.38 117 88.75 9.29 79.46

88 65.2 14.58 50.63 118 49.61 12.74 36.86

89 22.08 908.21 -886.13 119 80.96 8.22 72.74

90 68.29 21.27 47.02 120 1328.34 2069.41 -741.07

91 43.11 12.66 30.45 121 424.24 584.28 -160.04

92 96.06 42.27 53.79 122 98.51 64.08 34.43

93 62.23 43.45 18.78 123 96.6 21.99 74.62

94 37.32 29.68 7.64 124 2964.39 468.01 2496.38

95 85.35 10.3 75.05 125 17528.72 4947 12581.72

96 743.75 2974.75 -2231 126 95.51 18.85 76.67

97 58.12 87.48 -29.36 127 4.38 108.98 -104.59

98 98.54 30.61 67.93 128 81.48 37.99 43.49

99 0.2 6.73 -6.53 129 96.73 16.07 80.66

100 92.07 22.69 69.39 130 0.07 5.9 -5.82

101 1671.14 1236.1 435.04 131 94.46 33.07 61.39

102 268.54 221.83 46.71 132 18.9 68.08 -49.19

103 71.99 310.41 -238.42 133 95.74 8.33 87.41

104 0 0 0 134 146.33 35.24 111.09

Total -4548.93

Count of -ve values 46

Count of +ve values 75
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XIII 
 

 

Comparative study for dataset VII 

Fno 
Error 
CSN 

Error 
NHPP Difference Fno 

Error 
CSN 

Error 
NHPP Difference 

11 77.68 538.54 -460.86 60 97.50 76.61 20.89 

12 363.45 12368.26 -12004.81 61 76948.16 109507.31 -32559.15 
13 99.20 12368.51 -12269.31 62 2182.28 3758.41 -1576.13 

14 96.73 51.63 45.09 63 91.80 85.81 5.99 
15 4758.44 49811.87 -45053.42 64 99.63 41.26 58.37 

16 5651.50 99722.22 -94070.72 65 96.48 76.23 20.25 
17 92.35 6556.83 -6464.49 66 29150.40 36898.23 -7747.83 
18 31.61 24857.83 -24826.22 67 807.42 1540.95 -733.53 

19 88.91 15259.74 -15170.83 68 864.65 73894.21 -73029.56 
20 98.78 224.02 -125.24 69 95.41 34.69 60.72 

21 163.99 5609.09 -5445.10 70 28386.13 111155.54 -82769.41 
22 96.12 69.08 27.04 71 63.61 98.17 -34.56 

23 95.87 50.73 45.13 72 17.56 940.55 -922.99 
24 6706.43 24956.36 -18249.93 73 2113.19 44446.20 -42333.01 

25 1.76 452.28 -450.52 74 764.33 111251.13 -110486.79 
26 99.54 71.57 27.96 75 99.57 65.90 33.68 

27 16.28 53.12 -36.84 76 55.20 18.20 37.00 
28 2247.25 9986.35 -7739.10 77 66.94 149.69 -82.75 

29 89.45 53.62 35.83 78 1626.95 31982.14 -30355.18 
30 99.02 78.60 20.42 79 97.39 56.72 40.66 

31 4239.01 5398.34 -1159.33 80 74.87 32.89 41.99 
32 92.06 79.83 12.23 81 98.79 23.29 75.50 
33 32.15 21.97 10.18 82 108.91 2777.86 -2668.95 

34 452.22 1391.86 -939.64 83 111.87 1251.46 -1139.58 
35 98.61 82.54 16.07 84 413.62 45211.06 -44797.44 

36 9751.95 9329.03 422.92 85 41.52 3194.23 -3152.71 
37 450.65 751.07 -300.41 86 99.78 59.41 40.36 

38 11.11 3543.00 -3531.88 87 23067.09 45429.44 -22362.35 
39 391.65 4842.62 -4450.97 88 55.10 67.98 -12.87 

40 99.98 18.24 81.75 89 72.85 195.56 -122.71 
41 96.57 70.72 25.85 90 87.46 238.42 -150.95 

42 32.76 35.03 -2.27 91 99.60 63.73 35.87 
43 93.10 64.40 28.69 92 10.72 104.28 -93.57 

44 87.74 65.27 22.47 93 54.59 78.54 -23.95 
45 95.39 70.83 24.57 94 513.59 15224.77 -14711.18 
46 396.41 1348.98 -952.57 95 94.37 29.51 64.86 

47 89.33 67.75 21.58 96 52.32 100.62 -48.31 
48 13977.93 26556.58 -12578.65 97 91.96 5.15 86.82 

49 9056.94 23595.69 -14538.75 98 1902386.71 13847612.00 
-

11945225.29 

50 33.10 5668.87 -5635.77 99 94.25 40.45 53.80 

51 711.12 11751.67 -11040.56 100 1234.89 4047.71 -2812.82 
52 99.94 0.00 99.94 101 1103.89 5849.97 -4746.09 
53 81.06 46.45 34.60 102 99.49 83.03 16.46 

54 89.44 469.54 -380.10 103 98.62 60.83 37.78 
55 81.57 466.86 -385.29 104 9863.82 17837.35 -7973.53 

56 100.00 65.49 34.50 105 352.36 1216.31 -863.95 
57 80.67 56.12 24.56 106 245.30 77589.37 -77344.07 

58 96.48 57.27 39.20 107 98.35 52.61 45.75 
59 93.32 57.98 35.34 108 61.30 0.68 60.62 

 



XIV 
 

 

Fno 
Error 
CSN 

Error 
NHPP Difference Fno 

Error 
CSN 

Error 
NHPP Difference 

109 2326.81 23356.86 -21030.04 154 24585.33 248080.38 -223495.05 
110 96.33 47.19 49.14 155 98.31 74.64 23.68 
111 918.24 2683.77 -1765.53 156 96.80 39.94 56.85 

112 94.10 58.56 35.53 157 86.71 38.91 47.80 
113 14666.21 26204.29 -11538.08 158 13868.78 83359.66 -69490.88 

114 5567.15 15689.17 -10122.02 159 18632.41 83359.94 -64727.54 
115 99.99 56.55 43.45 160 1740.36 62501.01 -60760.65 

116 16585.33 33891.26 -17305.93 161 822.19 27735.84 -26913.66 
117 91.63 55.93 35.70 162 99.23 31.78 67.45 

118 7219.97 13978.38 -6758.41 163 81.76 19.20 62.56 
119 1080.22 3381.37 -2301.14 164 98.60 58.11 40.49 

120 10.40 29799.55 -29789.15 165 300.44 499.88 -199.44 
121 5183.42 79604.31 -74420.90 166 79.86 31.95 47.92 

122 95.51 23823.48 -23727.97 167 1067.62 3671.22 -2603.60 
123 93.62 184.25 -90.62 168 37.92 161.11 -123.18 

124 90.22 91.67 -1.45 169 778.17 18134.79 -17356.62 
125 4315.56 79712.79 -75397.23 170 2639.19 28251.76 -25612.58 
126 97.49 29.50 67.99 171 99.96 48.82 51.15 

127 32.13 158.56 -126.43 172 74.10 28.23 45.87 
128 1640.65 17073.43 -15432.78 173 98.93 89.58 9.34 

129 26.84 1936.62 -1909.77 174 94.21 9.83 84.38 
130 96.63 107.31 -10.69 175 709.99 5660.22 -4950.22 

131 93.09 15.64 77.45 176 2488.07 17129.27 -14641.20 
132 94.00 20.47 73.53 177 369.28 14262.35 -13893.07 

133 405.96 3093.83 -2687.87 178 58.60 1263.49 -1204.89 
134 940.86 7459.76 -6518.90 179 53.60 7095.49 -7041.89 

135 89.39 777.98 -688.60 180 98.83 249.18 -150.35 
136 99.01 107.36 -8.35 181 67.09 106.75 -39.67 

137 87.70 113.39 -25.69 182 96.54 114.48 -17.94 
138 99.56 60.62 38.94 183 98.57 30.68 67.89 
139 28.50 19.31 9.20 184 18.14 198.76 -180.62 

140 47.61 110.87 -63.26 185 71.79 117.02 -45.23 
141 97.73 127.02 -29.29 186 96.48 28.14 68.35 

142 93.34 141.76 -48.42 187 1747.78 24020.84 -22273.06 
143 92.85 452.85 -360.00 188 350.71 4928.76 -4578.04 

144 87.05 187.21 -100.16 189 94.06 10121.93 -10027.87 
145 3443.72 122184.02 -118740.29 190 31.39 4929.28 -4897.90 

146 98.04 29.56 68.48 191 96.21 2718.72 -2622.51 
147 51.14 84.34 -33.20 192 99.78 0.81 98.97 

148 98.32 58.31 40.01 193 242.88 1548.83 -1305.95 
149 39.08 10.33 28.76 194 74.73 160.12 -85.39 

150 63.47 61.62 1.85 195 86.15 161.04 -74.89 
151 133.38 30904.09 -30770.71 196 96.77 173.46 -76.69 

152 83.98 48.75 35.22 197 99.01 30.53 68.48 

153 135.13 2219.80 -2084.67 
    Total     -13839003.26 

  Count of +ve values   70.00 
  Count of -ve values 117.00 
  



XV 
 

The omega value for this calculation is 0.66 

FNO Error CS

171 4.34 22.63 -18.28

172 15.95 86.46 -70.51

173 51 11.93 39.07

174 3.48 9.9 -6.42

175 97.38 678.78 -581.4

176 73.12 24.88 48.25

177 7.88 23.07 -15.19

178 59.37 20.57 38.8

179 1.41 34.36 -32.95

180 1827.2 2212 -384.8

181 32 30 2

182 830.76 1084.33 -253.58

183 74.03 19.01 55.02

184 118.42 24.78 93.64

185 1078.57 2248.67 -1170.1

186 376.33 639.7 -263.37

187 93.68 9.67 84.01

188 657.65 281.38 376.27

189 51.9 8.87 43.03

190 57.88 29.65 28.23

191 555.29 129.48 425.81

192 246.13 100.42 145.71

193 95.54 9.17 86.37

194 20.97 32.56 -11.59

195 93.34 1.62 91.72

196 164.19 194.57 -30.38

197 80.12 22.95 57.16

198 41.81 30.44 11.37

199 54.26 33.12 21.14

200 9.71 25.66 -15.95

201 53.19 74.88 -21.69

202 24.86 3.92 20.94

203 2.96 76.7 -73.74

204 21.6 77.33 -55.73

205 96.15 20.22 75.93

206 22.51 120.51 -98

Total -3042.94

Count of -ve values 84

Count of +ve values 112
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XVI 
 

 

Comparative study for dataset VIII 

 

FNO Error CS Error CS

11 5.68 63.12 -57.44 51 39.8 48.81 -9.01

12 1649 3931 -2282 52 89.09 121.76 -32.67

13 312.97 909.75 -596.78 53 10.08 1019.75 -1009.67

14 97.86 37.07 60.8 54 47.4 104.04 -56.64

15 43.5 0.98 42.52 55 88.26 404.78 -316.52

16 180.76 352.44 -171.68 56 43.65 253.31 -209.66

17 68.33 14.12 54.21 57 96.17 61.21 34.97

18 5.29 4.32 0.97 58 1005.7 232.07 773.63

19 57.25 30.72 26.53 59 252.84 116.05 136.8

20 91.09 1260.67 -1169.58 60 70.06 21.98 48.08

21 74.3 43.69 30.61 61 35.77 287.33 -251.56

22 7151.51 3990 3161.51 62 91.17 54.42 36.75

23 54.69 40.73 13.96 63 28.59 39.11 -10.52

24 86.73 75.31 11.42 64 68.92 6.27 62.66

25 3516.42 731.4 2785.02 65 91.56 12.79 78.77

26 16.3 62.8 -46.49 66 1047.93 2199 -1151.07

27 16.77 54.24 -37.47 67 13.14 44.74 -31.6

28 92.55 75.74 16.8 68 72.88 34.17 38.71

29 11.25 71.45 -60.2 69 32.46 34.28 -1.82

30 17.31 13.53 3.78 70 44.19 18.22 25.98

31 308.66 211.43 97.23 71 36.27 125.59 -89.32

32 314.33 381.56 -67.22 72 50.79 224.33 -173.54

33 744.8 2045.5 -1300.7 73 72.21 159.68 -87.47

34 66.98 334.6 -267.62 74 95.89 26.33 69.56

35 66.06 4187 -4120.94 75 84.73 248.29 -163.55

36 77.95 33.18 44.78 76 20.69 339.36 -318.68

37 80.83 67.26 13.56 77 97.79 30.05 67.74

38 16.06 58.74 -42.69 78 85.19 61.04 24.15

39 774.97 995 -220.03 79 1056.41 211.44 844.98

40 1647.35 995.25 652.1 80 240.65 74.37 166.29

41 69.37 32.66 36.71 81 52.7 45.05 7.65

42 335.03 779.8 -444.77 82 93.16 10.65 82.51

43 340.69 828.6 -487.91 83 372.16 444.89 -72.73

44 83.03 99.95 -16.93 84 142.26 214.69 -72.43

45 54.3 30.42 23.88 85 45.79 257.57 -211.79

46 33.54 34.31 -0.77 86 95.84 116.58 -20.75

47 89.09 54.15 34.94 87 16.21 315.25 -299.04

48 333.02 101.3 231.71 88 96.66 50.96 45.7

49 40.83 43.67 -2.84 89 69.16 26.75 42.41

50 65.15 2.29 62.86 90 99.03 39.55 59.47
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FNO Error CS Error CS

91 131.85 86.79 45.05 131 91.38 11.1 80.27

92 131.85 150.86 -19 132 152.29 145.54 6.75

93 88.53 189.83 -101.3 133 2.95 117.43 -114.48

94 362.47 2347.5 -1985.03 134 82.34 117.93 -35.6

95 87.77 36.55 51.22 135 69.44 260.82 -191.38

96 186.12 53 133.12 136 99.2 49.94 49.26

97 38.26 27.63 10.63 137 288.94 5.65 283.29

98 43.87 209.71 -165.84 138 160.4 79.08 81.32

99 1649.94 4823 -3173.06 139 49.45 371.69 -322.24

100 92.56 45.22 47.34 140 155.95 372.15 -216.2

101 63.18 64.59 -1.41 141 96.58 234.16 -137.58

102 84.75 45.74 39.01 142 95.99 21.06 74.92

103 20.27 0.23 20.04 143 231.83 103.41 128.42

104 83.53 51.9 31.63 144 53.38 3.36 50.03

105 1467.66 492.33 975.32 145 57.79 79.4 -21.61

106 371.75 120.92 250.83 146 90.81 31.78 59.03

107 98.92 6.94 91.98 147 56.68 47.27 9.41

108 89.38 53.9 35.48 148 12.8 41.88 -29.08

109 1443.82 324.38 1119.44 149 6.23 9.8 -3.57

110 3136.36 1224.25 1912.11 150 47.57 40.6 6.97

111 90.47 13.45 77.02 151 52.89 131.35 -78.47

112 24.82 12.93 11.89 152 74.68 9.36 65.32

113 85.69 52.15 33.54 153 93.02 93.15 -0.13

114 2.14 43.87 -41.73 154 54.42 7.28 47.14

115 13.89 83.56 -69.67 155 28.05 11.14 16.91

116 30.98 20.65 10.33 156 89.45 34.5 54.95

117 585.46 523.33 62.12 157 67.55 3.4 64.15

118 56.22 35.69 20.53 158 17.48 102.61 -85.13

119 116.28 19.39 96.89 159 65.84 12.24 53.59

120 23.39 40.94 -17.54 160 528.35 828.14 -299.8

121 46.94 145.4 -98.46 161 136.06 223.27 -87.22

122 33.36 145.92 -112.56 162 93.62 18.86 74.76

123 94.18 22.09 72.09 163 76.31 32.38 43.93

124 1640.14 1021.8 618.34 164 6305.77 2042.33 4263.44

125 95.14 105.74 -10.6 165 243.22 103.74 139.48

126 52.51 37.02 15.49 166 50.69 42.65 8.04

127 309.51 844 -534.49 167 84.95 15.55 69.39

128 87.81 41.29 46.52 168 79.7 44.24 35.46

129 574.18 135.48 438.7 169 57.32 23.29 34.04

130 232.72 152.36 80.36 170 83.52 29.95 53.57
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The omega value for this calculation is 0.66 

FNO Error CS

171 4.34 22.63 -18.28

172 15.95 86.46 -70.51

173 51 11.93 39.07

174 3.48 9.9 -6.42

175 97.38 678.78 -581.4

176 73.12 24.88 48.25

177 7.88 23.07 -15.19

178 59.37 20.57 38.8

179 1.41 34.36 -32.95

180 1827.2 2212 -384.8

181 32 30 2

182 830.76 1084.33 -253.58

183 74.03 19.01 55.02

184 118.42 24.78 93.64

185 1078.57 2248.67 -1170.1

186 376.33 639.7 -263.37

187 93.68 9.67 84.01

188 657.65 281.38 376.27

189 51.9 8.87 43.03

190 57.88 29.65 28.23

191 555.29 129.48 425.81

192 246.13 100.42 145.71

193 95.54 9.17 86.37

194 20.97 32.56 -11.59

195 93.34 1.62 91.72

196 164.19 194.57 -30.38

197 80.12 22.95 57.16

198 41.81 30.44 11.37

199 54.26 33.12 21.14

200 9.71 25.66 -15.95

201 53.19 74.88 -21.69

202 24.86 3.92 20.94

203 2.96 76.7 -73.74

204 21.6 77.33 -55.73

205 96.15 20.22 75.93

206 22.51 120.51 -98

Total -3042.94

Count of -ve values 84

Count of +ve values 112
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Comparative study for dataset IX 

  

FNO Error CS Difference Error CS Difference

11 77.68 538.54 -460.86 56 100 65.49 34.5

12 363.45 12368.26 -12004.81 57 80.67 56.12 24.56

13 99.2 12368.51 -12269.31 58 96.48 57.27 39.2

14 96.73 51.63 45.09 59 93.32 57.98 35.34

15 4758.44 49811.87 -45053.42 60 97.5 76.61 20.89

16 5651.5 99722.22 -94070.72 61 76948.16 109507.31 -32559.15

17 92.35 6556.83 -6464.49 62 2182.28 3758.41 -1576.13

18 31.61 24857.83 -24826.22 63 91.8 85.81 5.99

19 88.91 15259.74 -15170.83 64 99.63 41.26 58.37

20 98.78 224.02 -125.24 65 96.48 76.23 20.25

21 163.99 5609.09 -5445.1 66 29150.4 36898.23 -7747.83

22 96.12 69.08 27.04 67 807.42 1540.95 -733.53

23 95.87 50.73 45.13 68 864.65 73894.21 -73029.56

24 6706.43 24956.36 -18249.93 69 95.41 34.69 60.72

25 1.76 452.28 -450.52 70 28386.13 111155.54 -82769.41

26 99.54 71.57 27.96 71 63.61 98.17 -34.56

27 16.28 53.12 -36.84 72 17.56 940.55 -922.99

28 2247.25 9986.35 -7739.1 73 2113.19 44446.2 -42333.01

29 89.45 53.62 35.83 74 764.33 111251.13 -110486.79

30 99.02 78.6 20.42 75 99.57 65.9 33.68

31 4239.01 5398.34 -1159.33 76 55.2 18.2 37

32 92.06 79.83 12.23 77 66.94 149.69 -82.75

33 32.15 21.97 10.18 78 1626.95 31982.14 -30355.18

34 452.22 1391.86 -939.64 79 97.39 56.72 40.66

35 98.61 82.54 16.07 80 74.87 32.89 41.99

36 9751.95 9329.03 422.92 81 98.79 23.29 75.5

37 450.65 751.07 -300.41 82 108.91 2777.86 -2668.95

38 11.11 3543 -3531.88 83 111.87 1251.46 -1139.58

39 391.65 4842.62 -4450.97 84 413.62 45211.06 -44797.44

40 99.98 18.24 81.75 85 41.52 3194.23 -3152.71

41 96.57 70.72 25.85 86 99.78 59.41 40.36

42 32.76 35.03 -2.27 87 23067.09 45429.44 -22362.35

43 93.1 64.4 28.69 88 55.1 67.98 -12.87

44 87.74 65.27 22.47 89 72.85 195.56 -122.71

45 95.39 70.83 24.57 90 87.46 238.42 -150.95

46 396.41 1348.98 -952.57 91 99.6 63.73 35.87

47 89.33 67.75 21.58 92 10.72 104.28 -93.57

48 13977.93 26556.58 -12578.65 93 54.59 78.54 -23.95

49 9056.94 23595.69 -14538.75 94 513.59 15224.77 -14711.18

50 33.1 5668.87 -5635.77 95 94.37 29.51 64.86

51 711.12 11751.67 -11040.56 96 52.32 100.62 -48.31

52 99.94 0 99.94 97 91.96 5.15 86.82

53 81.06 46.45 34.6 98 1902386.71 13847612 -11945225.29

54 89.44 469.54 -380.1 99 94.25 40.45 53.8

55 81.57 466.86 -385.29 100 1234.89 4047.71 -2812.82
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FNO Error CS Difference Error CS Difference

101 1103.89 5849.97 -4746.09 146 98.04 29.56 68.48

102 99.49 83.03 16.46 147 51.14 84.34 -33.2

103 98.62 60.83 37.78 148 98.32 58.31 40.01

104 9863.82 17837.35 -7973.53 149 39.08 10.33 28.76

105 352.36 1216.31 -863.95 150 63.47 61.62 1.85

106 245.3 77589.37 -77344.07 151 133.38 30904.09 -30770.71

107 98.35 52.61 45.75 152 83.98 48.75 35.22

108 61.3 0.68 60.62 153 135.13 2219.8 -2084.67

109 2326.81 23356.86 -21030.04 154 24585.33 248080.38 -223495.05

110 96.33 47.19 49.14 155 98.31 74.64 23.68

111 918.24 2683.77 -1765.53 156 96.8 39.94 56.85

112 94.1 58.56 35.53 157 86.71 38.91 47.8

113 14666.21 26204.29 -11538.08 158 13868.78 83359.66 -69490.88

114 5567.15 15689.17 -10122.02 159 18632.41 83359.94 -64727.54

115 99.99 56.55 43.45 160 1740.36 62501.01 -60760.65

116 16585.33 33891.26 -17305.93 161 822.19 27735.84 -26913.66

117 91.63 55.93 35.7 162 99.23 31.78 67.45

118 7219.97 13978.38 -6758.41 163 81.76 19.2 62.56

119 1080.22 3381.37 -2301.14 164 98.6 58.11 40.49

120 10.4 29799.55 -29789.15 165 300.44 499.88 -199.44

121 5183.42 79604.31 -74420.9 166 79.86 31.95 47.92

122 95.51 23823.48 -23727.97 167 1067.62 3671.22 -2603.6

123 93.62 184.25 -90.62 168 37.92 161.11 -123.18

124 90.22 91.67 -1.45 169 778.17 18134.79 -17356.62

125 4315.56 79712.79 -75397.23 170 2639.19 28251.76 -25612.58

126 97.49 29.5 67.99 171 99.96 48.82 51.15

127 32.13 158.56 -126.43 172 74.1 28.23 45.87

128 1640.65 17073.43 -15432.78 173 98.93 89.58 9.34

129 26.84 1936.62 -1909.77 174 94.21 9.83 84.38

130 96.63 107.31 -10.69 175 709.99 5660.22 -4950.22

131 93.09 15.64 77.45 176 2488.07 17129.27 -14641.2

132 94 20.47 73.53 177 369.28 14262.35 -13893.07

133 405.96 3093.83 -2687.87 178 58.6 1263.49 -1204.89

134 940.86 7459.76 -6518.9 179 53.6 7095.49 -7041.89

135 89.39 777.98 -688.6 180 98.83 249.18 -150.35

136 99.01 107.36 -8.35 181 67.09 106.75 -39.67

137 87.7 113.39 -25.69 182 96.54 114.48 -17.94

138 99.56 60.62 38.94 183 98.57 30.68 67.89

139 28.5 19.31 9.2 184 18.14 198.76 -180.62

140 47.61 110.87 -63.26 185 71.79 117.02 -45.23

141 97.73 127.02 -29.29 186 96.48 28.14 68.35

142 93.34 141.76 -48.42 187 1747.78 24020.84 -22273.06

143 92.85 452.85 -360 188 350.71 4928.76 -4578.04

144 87.05 187.21 -100.16 189 94.06 10121.93 -10027.87

145 3443.72 122184.02 -118740.29 190 31.39 4929.28 -4897.9
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The omega value used for the calculations is 0.1 

FNO Error CS Difference Error CS Difference

191 96.21 2718.72 -2622.51 235 5887.44 17545.62 -11658.18

192 99.78 0.81 98.97 236 5078.26 18646.43 -13568.17

193 242.88 1548.83 -1305.95 237 99.09 26.56 72.54

194 74.73 160.12 -85.39 238 91.47 39.27 52.2

195 86.15 161.04 -74.89 239 90.08 38.3 51.78

196 96.77 173.46 -76.69 240 69.34 53.44 15.91

197 99.01 30.53 68.48 241 32.62 195.39 -162.77

198 29.58 142.41 -112.83 242 96.8 9.92 86.88

199 93.95 27.59 66.36 243 303.82 1964.63 -1660.81

200 92.91 46.7 46.21 244 84.12 20.81 63.31

201 86.18 37.23 48.94 245 60.27 1013.2 -952.93

202 69.88 230.16 -160.28 246 96.4 28.67 67.74

203 87.2 17.82 69.38 247 87.19 32.33 54.86

204 62.89 102.91 -40.02 248 328.74 1560.71 -1231.96

205 299.01 3138.6 -2839.58 249 134.64 723.6 -588.97

206 99.82 2552.96 -2453.14 250 92.73 187.36 -94.64

207 87.06 262.64 -175.58 251 98.62 93.35 5.27

208 1216.7 38897.99 -37681.29 252 68.65 660.59 -591.94

209 99.06 43.34 55.73 253 85.14 190.46 -105.32

210 83316.94 137169.22 -53852.27 254 87.84 216.76 -128.92

211 680.21 2219.79 -1539.58 255 99.69 34.58 65.11

212 98.5 171.56 -73.06 256 76.71 19.52 57.18

213 92.27 547.3 -455.03 257 99.03 26.69 72.33

214 99.62 30.23 69.39 258 1453.28 5663.1 -4209.82

215 82.02 17.98 64.04 259 736.08 2556.21 -1820.13

216 2637.15 34529.35 -31892.19 260 89.04 347.41 -258.37

217 97.26 50.39 46.87 261 99.56 41.86 57.7

218 80.49 44.48 36.01 262 76.18 119.7 -43.52

219 235.36 2034.93 -1799.57 263 71.4 0.45 70.96

220 94.24 50.92 43.32 264 97.38 43.32 54.06

221 82.31 46.33 35.97 265 1243.43 1258.96 -15.54

222 45.48 229.38 -183.9 266 80.33 25.88 54.45

223 80.78 19.84 60.94 267 239.24 698.71 -459.47

224 98.28 55.85 42.43 268 81 1.74 79.26

225 49.05 30.21 18.85 269 71.31 54.92 16.39

226 50.62 204.38 -153.76 270 65.5 254.75 -189.25

227 0.83 343.46 -342.63 271 98.75 11.19 87.56

228 977.32 8618.81 -7641.49 272 96.39 40.51 55.88

229 1846.5 29456.78 -27610.28 273 41.32 7.71 33.62

230 93.63 15.23 78.41 274 46293.48 112540.44 -66246.96

231 90.79 8.64 82.14 275 4121.9 24968.25 -20846.35

232 85.01 25.82 59.18 276 94.49 10.66 83.83

233 98.76 16.16 82.59 277 90.24 873.39 -783.14

234 97.29 29.88 67.41

Total -14131293.91

Count of -ve values 156

Count of +ve values 111

Error 

NHPP

FN

O

Error 

NHPP



XXII 
 

Appendix C - Other Research Findings 

The research focused on designing an accurate software reliability estimation 

model. While achieving the objective, first outcome was a model which uses a 

curve for the dataset. This was named as curve fitting model and then was 

enhanced to use intelligence in selecting the optimal dataset for estimation. 

However, this is not directly related to the finding of the research which have 

been described in the chapters of this thesis. Hence, it has been added to the 

appendix. 

Two research papers were sent to the conferences from curve fitting model 

and optimal selection of data. The research paper which describes optimal 

selection of data was published. The curve fitting model procedure is 

described in the following sections.  

Curve fitting method for reliability estimation 

Objectives of the model: 

The objectives of our curve fitting model for software reliability estimation 

are to estimate following attributes of the software. 

(1) To estimate the time to next failure at a preferred confidence level without 

assuming a distribution. 

(2) To estimate the probability of observed failure at a given time period 

(3) To estimate the optimal number of failures to be considered at each failure 

point. 
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Assumptions of the model: 

(i)  “new” failure data (which have not been counted previously) are only 

collected 

(ii) Time is measured by the calendar time  

In practice, correction of encountered failure takes time. Due to none attention 

for the correction, the same failure can be occurred repeatedly. This impacts 

the accuracy since the same failure is being countered twice.   CPU time 

provides the most resolution, but in many applications only calendar time is 

available. Hence we have considered taking the calendar time.  

 

Philosophy of this model is failure detection has a random fashion whereas all 

parametric statistical models assume that failure detection follows a 

distribution. Further the recent failure data are more useful than previously 

observed data. This is because of the software code that is changed during the 

testing.  

Curve fitting procedure: 

(1) Use of operational profile: The testing is to be done using operational 

profile.  

(2) Collect the data: The data (time to next failure) are to be collected. 

(3) Software reliability estimation based on the curve: The time to next failure 

data are plotted against the failure number (Figure 1). The curve is to be 

drawn as the best curve, i.e., smooth curve. The accuracy of the curve 

influence to the estimation. Hence the maximum possible scale is to be used. 
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The associated end point error of each measurement (which is half of the 

minimum error) is to be drawn as shown in the Figure 1. The sketching is to 

be done in such a way that maximum possible failure data points are to be 

crossed.  

 

Optimal selection of failure data: 

It is clear that most recent data are only useful when estimating the reliability. 

The method used select the optimal dataset is “optimal selection of failure 

data based on the standard deviation” (the research publication regarding the 

optimal selection of failure data can be found in the number one research 

paper in Appendix D) . Suppose that the optimal dataset is at “r” th failure 

data onwards. The selected range data curve is drawn to a maximum possible 

scale to enhance the accuracy of the estimation. 

Suppose the desired confidence level is α.  

Our hypothesis is  

H0:  Software will not fail at least for “ti” hours  

H1:  Software will fail before “ti” hours 

Calculate the area of the curve in the range of fi and fi-r. Let it to be S. 

Calculate the area below ti, as marked by the blue color area in the Figure 1. 

Suppose that area is S1. 

The probability of reliability objective is not achieved is S1/S.  

Let C=(S1/S)*100% 
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If C <=(100- α) we can conclude that our null hypothesis is true at α 

confidence level. Hence we need to find ti in such a way that C =S1/S = (100 

– α) to be true at α confidence level. The respective ti time is the estimation of 

the reliability.  

   

 

 

 

 

 

 

    

 

Figure C1: Time to taken to occur failures  

Conclusions of the Curve Fitting Model 

This model doesn‟t assume any statistical distribution in estimating software 

reliability. The parameter estimation here is also not difficult. Further this 

model doesn‟t require a through statistical knowledge. Hence this curve fitting 

model is easy to use by any practitioner.  However, the accuracy of the model 

is not acceptable and need to enhance further.  

 

 

 

 

ti 

Failure 

number 
fi-r fi 

Time to next 

failure 
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Appendix D - List of Publications 

List of Publications through the research is as follows. First and second papers 

were also presented in the particular conferences. 

Research Papers 

1. P.L.M Kelanibandara, G.N.Wikramanayake, and J.S. Goonethillake, 

“Optimal Selection of Failure Data for Reliability Estimation Based on 

Standard Deviation Method” , International Conference of Industrial 

and Information Systems, August 2007, Peradeniya, Sri Lanka. 

2. P.L.M Kelanibandara, G.N.Wikramanayake, and J.S. Goonethillake, 

“Software Reliability Estimation Based on Cubic Splines Network” , 

International Conference of Computer Science and Engineering,WCE 

2009 , July 2009, London, U.K. 

3. P.L.M Kelanibandara, G.N.Wikramanayake, and J.S. Goonethillake, 

“Software Reliability Estimation Model Based on Curve Fitting Model” 

, International Journal of Information and Communication Technology 

emerging Regions, To be submitted, UCSC, Sri Lanka. 

 

 

 

 

 

 
 


