GENERATING SMALL AREA STATISTICS FOR HOUSEHOLD INCOME IN SOUTHERN PROVINCE OF SRI LANKA

By

Anoma S. Jayasekera¹ and W. N. Wickremasinghe²

¹Sample Surveys Division Department of Census and Statistics Maitland Crescent Colombo 7, Sri Lanka

² Department of Statistics University of Colombo P. O. Box 1490 Colombo, Sri Lanka

[This article was written in 2004 based on the Masters thesis submitted in 2003 by author (1)]

INTRODUCTION

Human development is a central objective of economic activity and forms the main purpose of social investment in any country. The Human Development Index (HDI) defined by the UNDP¹ is based on three dimensions: namely, opportunity to lead a long and healthy life, ability to acquire knowledge and learning, and power to access adequate resources. Sri Lanka's HDI is by far the highest in South Asia² and exceeds that of some developed countries. This high level of achievement is due to provisions made for accessing health and education, and continued investment in the social sectors. Country's economic development on the other hand is lagging consistently behind, and appears to have bypassed the rural sector where nearly 80% of the population live.

Human poverty ¹ is a result of inability to meet the three social dimensions mentioned above. Sri Lanka's level of poverty is moderately high, with a high proportion (56%) having no electricity, a moderate proportion (28%) without access to safe drinking water, and a considerable proportion (24%) without adequate sanitation facilities.³ The country has gone through several poverty-alleviation programs in the past. However, the success of any such program would largely depend on the availability of up-to-date and reliable poverty related information at small geographic levels. According to latest information ⁴

88% of the poor resides in the rural areas compared to 8% in urban, and 4% in the estate. Another study ² concluded that, this 4% is among the poorest in Sri Lanka. These figures tell us that more work is involved in getting reliable information from the rural sector, if these programs are to be effective.

"Samurdhi" is the largest single welfare program, which accounts for nearly 1% of the GDP, aimed at poverty alleviation in Sri Lanka.² Southern Province is reported to have a high percentage of Samurdhi recipients and therefore, this study is focused on the Southern Province. The effectiveness of any such program would largely depend on the reliability of systems that provide information at the smallest geographic levels that need food assistance. Censuses conducted every ten years and surveys conducted more often than that, are the only sources of information on poverty variables. Even though censuses provide reliable information on the smallest of geographic areas such as Divisional Secretariat (DS) or Grama Niladari (GN) levels, the information at these levels is updated only once in a decade. Surveys do not bridge this gap either, as information is available only at larger administrative units such as provincial or at most district, due to budgetary constraints.

The present work is motivated by the fact that in Sri Lanka no attempt has been made in the past to come up with reliable and up-to-date estimates of poverty related variables at small geographic levels. Therefore, in this paper we demonstrate how small area statistics could be generated by a method called small area estimation ^{5, 6, 7, ...} which has been successfully used elsewhere. The method combines information from censuses and surveys through a statistical approach. We have focused on an important variable, household income.

METHODS AND MATERIALS

Small Area Estimation

There is no unique methodology recommended for obtaining small area statistics for a given situation, and relevant theories are being developed constantly ^{6,7}. Many terms such

as "local area"⁷, "small domain"⁷, "sub-domain"⁷, "small group"⁷, "indirect"⁷, and "synthetic"^{6,7} are also found in literature as alternatives to "small area". What ever the name used, the objective is to generate statistics for small domains for which up-to-date and precise information is not available through censuses or surveys.

Consider for example an island-wide Household Income and Expenditure Survey (HIES). Suppose a sample of n_i households from the ith district, i = 1, 2, ..., 17 (excluding North and East) is contained in a total sample of size $n = \sum n_i$. Let s_i be the number of DS divisions per ith district where DS is the level at which reliable estimates are needed. It may happen that n_{ij} (≥ 0) households from the jth DS unit in ith district are included in the sample. However, the number n_{ij} may be insufficient to represent the jth DS unit. As a result, any direct estimate for the jth DS unit based on this sample may have a large variance. In this paper, we use the composite estimator that is a combination of the two broad types of estimators, direct (or sample-based), and indirect (or model-based)^{6,7} as given below.

1. Direct estimator

A direct estimator uses values of the variable of interest only from the time period of interest and only from the units in the domain of interest.^{6,7} For example, in the HIES carried out in 2002, a direct estimate of household income for the jth DS unit in ith district is given by the mean (or the median) of the n_{ij} income values. Direct estimates are usually unbiased but suffer from large variances.

2. Indirect estimator

Indirect estimators use values of the variable of interest from a domain and/or time period other than the domain and time of interest. ^{6,7} A common type is the regression estimator. Regression estimates are obtained subject to several conditions. ^{5,7, 8} Suppose average household income for jth DS unit in ith district is needed for year 2005. As there is no up-to-date estimate available, the information available from the last School Census (2002) and the last sample survey (2002) could be combined to get a reasonably good estimate. In particular, a multiple regression model of the form

 $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ki} + \varepsilon_i$, would be fitted after checking all diagnostics, where Y_i is the average household income for ith district (i= 1, 2, ..., 17) computed from the survey and X 's are the related k independent variables computed from the census; ε_i is a random error. ^{6,7} Now the equation $\hat{Y}_i = b_0 + \sum_{\ell=1}^k b_\ell X_{\ell_i}$ with the estimated parameters can be used to obtain an up-to-date estimate of household income, by plugging in the X values from the census corresponding to jth DS unit. One basic assumption used here is that the relationship between Y and X 's at district level, holds true for DS levels as well. This may be a reasonable assumption, but in case it is violated the method has to be modified accordingly. These regression estimators are usually unbiased.

3. Composite estimator

A composite estimator combines direct and indirect estimates to obtain a more precise estimate.⁷ For two independent small area estimators T_1 and T_2 for estimating an unknown parameter θ , a composite estimator is a weighted average of the two, given by $T_c = \omega T_1 + (1-\omega)T_2$, with weights ω and $1-\omega$. The result that T_c too is unbiased when both T_1 and T_2 are unbiased, is straight forward. Further it can be easily shown that T_c is better than both T_1 and T_2 in the sense of mean square error. ^{6,7,8,9}This follows from the fact that variance, which is the same as mean square error in this case, of T_c , is minimized when $\omega = \frac{V_2}{V_1 + V_2}$, and that $V(T_c) = \frac{V_1V_2}{V_1 + V_2}$, where V_1 and V_2 are the

variances of T_1 and T_2 , respectively. In our work, we use a composite estimate based on the direct and regression estimates discussed above, to generate small area statistics, average household income in particular, at DS level.

RESULTS AND DISCUSSION

The nine variables from the School Census (2002) used in the regression model, are described in Table 1.

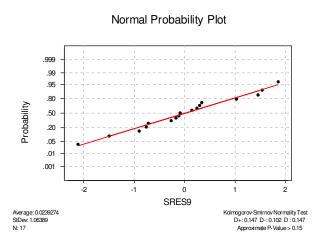
Description	Variable Name
1. Percentage of schools with electricity facility	Electric
2. Percentage of students who failed their classes	Failpct
3. Percentage of schools with telephone facility	Telepho
4. Percentage of schools with safe drinking water facility	Water
5. Percentage of schools of type 1AB and 1C	Bettersc
6. Percentage of primary students who went to pre-schools	Prepct
7. Percentage of schools having photocopy machine	Photo
8. Percentage of schools having computer facility	Comp
9. Percentage of schools having library facility	Plib

Table 1 : Selected School Census Variables as Explanatory Variables at District Level

This section summarizes the results of modeling the nine explanatory variables given in Table 1 with mean monthly household income from the Household Income and Expenditure Survey (2002) as dependent variable. Using all possible regression models¹⁰, best model was selected by examining criteria such as residual mean square, coefficient of determination and Mallows Cp Statistics¹⁰ and other residual plots.

The estimated model was found to be

Income = 9618 + 8854 electric + 4188 water - 9579 prepct + 34408 comp, with an R² of 92.5%. Further, all coefficients of the model were significant at 5% level.


Model Adequacy Checking

Normal probability plot of residuals (Figure 1) was used to check the assumption of normality for the regression model. It was observed that normality assumption is not violated. Further, it was found that the explanatory variables were moderately correlated. One major assumption in a multiple regression model is that, there is no linear dependency among the explanatory variables. When such dependency exists, we say that there is multicollinearity present. Most statistical packages automatically test for

multicollinearity using the Variance Inflation Factor (VIF). For our data, no significant presence of multicollinearity was found.

The two measures Leverage^{10,11} and DIFITS^{10,11} were calculated to check the goodness of fit of the estimated model. These values showed no evidence of any extreme cases according to the definitions. All diagnostics suggested that the final fitted model using the four explanatory variables, electric, water, prepct, and comp, was adequate.

Figure (1): Normal probability plot of residuals

Efficiency of the composite estimator

In our study, T_1 is the regression estimate of the mean income and T_2 is the direct estimate obtained by sample values. Tables 1(a), 1(b) and 1(c) of the Annex 1 show standard errors of both direct and composite estimates and the corresponding values of Coefficient of Variation (CV)¹².

As expected, the composite estimate had a mean square error that is smaller than that of the direct estimate. It is also evident that CV values of composite estimate is less than that of direct estimate's. Annex 2 shows both direct (T_1) and composite (T_c) estimates of household income for the small areas, DS-divisions, in the Southern province of Sri Lanka.

This technique may provide the best alternative for small area estimation in the absence of any sophisticated method. In Sri Lanka, the approach discussed above has not been attempted before. Therefore, this work is expected to be important and helpful for generating statistics for the population at domains smaller than what is provided by different surveys conducted in Sri Lanka. We hope that the methods discussed above can be easily extended to obtain estimates for the entire country for poverty related variables.

REFERENCES

- 1. United Nations Development Program (1998), "National Human Development Report 1998", Sri Lanka.
- 2. Ministry of Finance (2001), "Poverty Reduction Strategy", Unpublished Policy Document, Colombo, Sri Lanka.
- 3. United Nations World Food Program (2000), "Vulnerability Analysis and Mapping Analysis of the Revised Secondary Data set", Colombo, Sri Lanka.
- 4. Department of Census and Statistics (1995/96), Household Income & Expenditure Survey, Sri Lanka.
- Emiel B. Barrios (1998), Small Area Estimation of selected Socio-economic Indicators, MIMAP Research Paper No.36, Phillippines.
- 6. Emiel B. Barrios (1996), Generating Small Area Statistics from Household Surveys Conducted by National Statistics Office, MIMAP Research Paper No.29, Phillippines.
- Gabriel S., Cike E., and Hani, D. (2001), "Uninsured Estimates by County: A review of Options and Issues", Center for Bio Statistics, The Ohio State University, Ohio.
- U.S. Census Bureau, "Small Area Income and Poverty Estimates 1995 Details", Internet: <u>http://www.census.gov/hhes/www/saipe/techdoc/1998/98cntymod.html</u>

- 9. U.S. Census Bureau, "Small Area Income and Poverty Estimates 1993 Details", Internet: <u>http://www.census.gov/hhes/www/saipe/techdoc/1998/98cntymod.html</u>
- Shaible, W.L., (1996), Indirect Estimators in U.S. Federal Programs, Lecture Notes in Statistics 108, Springer-Verlag, New York.
- N.R. Draper and S. Weisberg (1981), Applied Regression Analysis, Second Edition, John Wiley & Sons. Inc.

Annex 1

Standard Errors and Respective CV Values of Direct and Composite Estimates

DS division	Standard Error		CV (%)	
Galle District	Direct Estimate (T ₁)	Composite Estimate (T _c)	Direct Estimate (T ₁)	Composite Estimate (T _c)
Akmeemana	1434.3	847.8	14.0	7.9
Amblangoda	1049.1	742.5	8.5	7.1
Baddegama	2374.7	961.1	19.6	8.4
Balapitiya	2916.6	988.8	18.9	5.5
Bentota	1745.0	900.3	13.7	10.6
Bope-poddala	1871.5	916.4	9.0	5.9
Elpitiya	976.2	715.3	8.9	5.9
Galle	4701.4	1025.7	19.4	11.9
Habaraduwa	978.3	716.1	8.2	5.8
Hikkaduwa	8746	672.3	9.7	6.8
Imaduwa	385.8	362.2	3.8	3.6
Karandeniya	1823.3	910.6	18.1	8.2
Nagoda	877.4	673.6	13.2	7.2
Neluwa	552.0	488.8	5.3	4.7
Niyagama	3282.0	1000.9	21.1	9.9
Thawalama	1909.5	920.8	23.1	12.2
Welvitiya-Divithura	480.9	437.3	3.9	3.7
Yakkalamulla	1677.3	890.6	14.7	5.6

 Table 1(a):
 Galle District

Table 1(b): Hambantota District

DS division	Standard Error		CV	7 (%)
Hambantota District	Direct Estimate (T ₁)	Composite Estimate (T _c)	Direct estimate(T ₁)	Composite estimate(T _c)
Ambalantota	1164.4	780.2	13.3	7.1
Angunu kola pallassa	1285.3	813.7	13.2	7.3
Beliatte	1769.3	903.6	19.6	8.7
Hambantota	1187.8	787.1	10.2	6.7
Katuwana	2157.7	944.9	27.2	15.4
Lunugamvehera	3054.8	993.9	27.9	11.8
Okewela	986.75	719.4	11.7	7.5
sooriyaweva	694.47	579.4	7.4	6.4
Tangalle	1345.9	828.4	14.2	6.4
Thissamaharama	984.57	718.6	13.0	5.8
Weeraketiya	1580.8	875.2	12.7	7.1

Table 1 (c): Matara District

DS Division	Standard Error		CV	7 (%)
Matara District	Direct Estimate (T1)	Composite Estimate (T _c)	Direct estimate(T ₁)	Composite estimate(T _c)
Akuressa	672.6	566.5	9.9	7.3
Athuraliya	4781.3	1026.5	32.8	9.2
Devinuwara	2039.5	934.3	16.5	9.5
Dickwellla	552.55	489.1	6.1	5.7
Hakmana	2692.3	979.1	35.0	9.2
Kamburupitiya	1640.1	884.9	12.6	8.7
Kirinda	1576.2	874.5	16.9	11.6
Kotapola	2147.3	944.0	18.2	8.7
Malimboda	1867.2	915.9	16.7	7.9
Matara	1605.4	879.4	11.2	7.1
Mulatiyana	1625.0	882.5	16.2	6.8
Pasgoda	1069.2	749.5	12.4	7.6
Pitabeddara	828.55	650.7	8.6	7.4
Thihagoda	1745.0	900.3	20.9	9.8
Weligama	1400.9	840.7	12.6	9.0
Welipitiya	855.59	663.5	12.4	8.8

Annex 2

Direct and composite estimates of household income

Table 2(a): Galle District

		(Rupees)
	Direct	Composite
DS division	Estimate (T ₁)	Estimate (T _c)
Galle District		
Akmeemana	10231	16572
Amblangoda	12310	16463
Baddegama	12148	12332
Balapitiya	15457	18529
Bentota	12733	13051
Bope-poddala	20641	21793
Elpitiya	11016	9000
Galle	24191	27573
Habaraduwa	11893	12735
Hikkaduwa	9022	14166
Imaduwa	10143	13193
Karandeniya	10070	10754
Nagoda	6659	11105
Neluwa	10392	12051
Niyagama	15578	8316
Thawalama	8282	8311
Welvitiya- Divithura	12104	7882
Yakkalamulla	11390	10135

Table 2 (b) : Hambantota District

Table 2 (b) : Hambantota District				
		(Rupees)		
	Direct	Composite		
DS division	Estimate (T ₁)	Estimate (T _c)		
Hambantota District				
Ambalantota	8764	9339		
Angunukolapallassa	9763	8087		
Beliatte	9027	7280		
Hambantota	11685	8601		
Katuwana	7929	10337		
Lunugamvehera	10940	7504		
Okewela	8445	11149		
Sooiyaweva	9341	5445		
Tangalle	9463	11017		
Thissamaharama	7546	15826		
Weeraketiya	12437	9582		

Table 2 (c) : Matara District

(Rupees)

DS division	Direct Estimate (T ₁)	Composite Estimate (T _c)
Matara District		Lotinute (10)
Akuressa	6821	11092
Athuraliya	14579	12952
Devinuwara	12359	13971
Dickwellla	9104	14418
Hakmana	7691	11391
Kamburupitiya	13027	12937
Kirinda	9316	8364
Kotapola	11826	7696
Malimboda	11156	17908
Matara	14373	20264
Mulatiyana	10037	8188
Pasgoda	8632	10622
Pitabeddara	9683	9764
Thihagoda	8364	11760
Weligama	11110	9611
Welipitiya	6887	10324