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Introduction 

Quantum computing, the quantum analogue of classical computing makes use of qubits - 
quantum analogue of classical bits, as the elementary quantum registers of storing, 
manipulating and measuring data (Nakahara and Ohmi, 2008). Mathematically, a qubit is 
a unit vector of the form ��|�0� + ��|�1��� so that |��|� + |��|� = 1 in a Hilbert space spanned 

by canonical basis states |�0� = � �10  and |�1� = � �01.  When a qubit is queried, obtained is a 

probabilistic answer, instead of a deterministic one. That will be, the state |�0�� with 
probability |��|�, and |�1�� with probability|��|�. Also quantum algorithms were designed 
following this quantization. Various strategies for quantum algorithms emerged, along 
with the one based upon the idea introduced by Aharanov [4], and it was developed under 
the term ‘quantum walks’. Currently, two main categories of quantum walks are being 
considered: discrete and continuous quantum walks; while discrete quantum walks were 
studied under two subcategories as Markov chain-based and coin-based walks. 

Coin-based quantum walk is the explicit quantum analogue of classical random walk, in 
which the walker is at some position on a discretized straight line initially, where the coin 
flip takes place to decide either to move to left or to right. The walk is thus determined by 
the probability of finding the walker at some point at a given time. Mathematically, the 
state of the walker is thus the tensor product of coin states and the vertex states (.Berry  
and Wang, 2010). The most accepted mathematical model states that the walker is in the 
Hilbert space ℋ� ⊗ ℋ� where ℋ� is the coin state, spanned by the orthonormal basis 
states |�1��� and |�0���, and ℋ� is the position Hilbert space spanned by the basis states of 
vertices on the straight line the walker moves. Thus, a generic state of the walker can be 
expressed as |��(�)�� = ∑ ��(�, �)|�1���|���� !"#$! + �%(�, �)|�&���|���� ∈ ℋ� ⊗ ℋ�, where ��(�, �) and �%(�, �) are left and right amplitudes respectively, of the walker at position �, time �. 

Hadamard Walk over a Line 

Outcome of the coin flip in a quantum walk depends upon the choice of the coin. 
Commonly used coins are Grover’s coin, Hadamard coin, balanced coin, Pauli’s coin etc. 
For instance, if Hadamard coin () was selected, the evolution of the walk could be 
regarded as repeated alternative application of () ⊗ *+ and the shift ,-  defined as follows, 
with the initial state |�0���|�0�� : The coin operation is defined as ():  ℋ�  →  ℋ� so that ��|�0��� + ��|�1��� 0)→ �√� (�� + ��)|�0�� + �√� (�� − ��)|�1��, and the shift operation is defined as ,-: ℋ� ⊗ ℋ�  →  ℋ� ⊗ ℋ� so that |�0���|���� 3-→ |�0���|�� + 1��  , |�1���|���� 3-→ |�1���|�� − 1��  . 
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Analytical Solution of Hadamard Walk  

An analytical solution of the Hadamard walk along the straight line was derived by Nayak 
and Vishwanath (2008). The methodology adopted by them was reducing the time 
evolution of the system into the eigenvalue problem in the Fourier space by discrete 
Fourier transformation. First, the state of the walker at the position � at time � + 1 is 
expressed in terms of the states at the positions � − 1 and � + 1 at time � by |��(�, � +1)�� = 45 |��(� − 1, �)�� + 4$|��(� + 1, �)��, where 45 = 6 0 01 √28 − 1 √28 9 and 4$ =
61 √28 1 √280 0 9. Then in the Fourier space it takes the form :��;(<, � + 1)�� = 4=;;;;:��;(<, �)�� 
for  4=;;;; = >?=45 + >$?=4$, and after solving with the relevant initial condition, and 
transformed back to the time domain, the solution was obtained (Aharanov et al, 1993). 
The importance of this solution is, its extendibility for regular graphs, as quantum walk on 
the infinite straight line was found to be isomorphic to the quantum walk on certain 
regular graphs, as shown by N. Shenvi, J. Kempe and K. Whaley(2003). 

Two-particle Quantum Walks 

For many potential practical applications of quantum walks, multi-particle walkers are 
preferred instead of single particle walkers. A two particle walker has several possibilities 
to interact: they might evolve their walks individually, independent of the states of each 
other, or they can interact when confronted Berry and Wang, 2011).  Needless to say, the 
walk takes place in the Hilbert space(ℋ� ⊗ ℋ�) ⊗ (ℋ� ⊗ ℋ�). Identity interaction is 
one way of interacting, in which the coin operator @+ collapses down to the identity 
operator at common vertices. For the two-particle Hadamard walk, @+ = () ⊗ () when the 
two particles are at different vertices, and @+ = *+ when they are at the same vertex. In A-
phase interaction, another possibility of interacting, rather than using the identity coin 
operator, the phase of all vertex states are being shifted by A. However, the non-
interacting quantum particles are also not totally independent of each other due to 
quantum entanglement. Regarding the identity interaction, when entanglement is 
neglected, the problem can be transformed to the following form which might be helpful 
in obtaining analytical solutions: 

If the 4 × 4 matrix P? is defined for each E = 1,2,3,4 as P? = GHI=J so that HI= =K 1, L = < = E  0, otherwise�, and   

U� = V 0001 28   0001 28   0001 28   0001 28 W,     U� = V 01 2800   01 2800   0−1 2800   0−1 2800 W,    

UX = V 001 280   00−1 280   001 280   00−1 280 W, UY = V1 28000   −1 28000   −1 28000   1 28000 W , 
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then the state at positions �, Z at time � + 1 is given by 

 |��((�, � + 1), (Z, � + 1))�� = 4�|��((� − 1, �), (Z − 1, �))�� + 4�|��((� − 1, �), (Z +1, �))�� + 4X|��((� − 1, �), (Z + 1, �))�� + 4Y|��((� + 1, �), (Z + 1, �))��, 
where,  4? = U?for Z≠� and Z≠� ± 2,  4� = U�, 4� = \�, 4X = UX and 4Y = UY,for Z = � +2,  4� = U�, 4� = U�, 4X = \X and 4Y = UY, for Z = � − 2,  4� = \�, 4� = U�, 4X = UX and 4Y = \Y.for Z = �,  
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