Two-particle Quantum Walks over a Line

Anuradha Mahasinghé', Jingbo Wand, and Jagath Wijerathna*
!Departmet of Mathematics, Faculty of Science, Usiteof Colombo
?School of Physics, University of Western Australia

Introduction

Quantum computing, the quantum analogue of cldssoraputing makes use of qubits -
guantum analogue of classical bits, as the elemerdaantum registers of storing,
manipulating and measuring data (Nakahara and C2008). Mathematically, a qubit is
a unit vector of the form, |0) + c,|1) so thatic;|? + |c,|? = 1 in a Hilbert space spanned

by canonical basis staté®) = [(1)] and [1) = [(1)] When a qubit is queried, obtained is a

probabilistic answer, instead of a deterministice.oifhat will be, the stat¢0) with
probability |c,|?, and|1) with probabilityjc,|?. Also quantum algorithms were designed
following this quantization. Various strategies fguantum algorithms emerged, along
with the one based upon the idea introduced by &iwr [4], and it was developed under
the term ‘quantum walks’. Currently, two main caiggs of quantum walks are being
considered: discrete and continuous quantum walkde discrete quantum walks were
studied under two subcategories as Markov chaie¢band coin-based walks.

Coin-based quantum walk is the explicit quantuml@nee of classical random walk, in
which the walker is at some position on a disceetigtraight line initially, where the coin
flip takes place to decide either to move to leftamright. The walk is thus determined by
the probability of finding the walker at some poatta given time. Mathematically, the
state of the walker is thus the tensor productadh states and the vertex states (.Berry
and Wang, 2010). The most accepted mathematicatinsbates that the walker is in the
Hilbert spaceH, ® Hp, whereH, is the coin state, spanned by the orthonormalsbasi
states|1). and|0)., andH} is the position Hilbert space spanned by the bstsi®es of
vertices on the straight line the walker moves. sTlaigeneric state of the walker can be
expressed agy(t)) = Yn-—o (0, t)|1)cIn), + ag(n, t)|o)cIn), € H, ® Hp, where
a;,(n,t) andag(n,t) are left and right amplitudes respectively, of tedker at position

n, timet.

Hadamard Walk over a Line

Outcome of the coin flip in a quantum walk depengi®n the choice of the coin.
Commonly used coins are Grover’s coin, Hadamard, dmlanced coin, Pauli’'s coin etc.
For instance, if Hadamard coid was selected, the evolution of the walk could be
regarded as repeated alternative applicatiof @ I and the shiff’ defined as follows,
with the initial state|0).|0),: The coin operation is defined & H, - I, so that

H
c1]10)¢c + c3|1)c — \/—li(c1 + c,)|0) + \/%(cl — ¢,)|1), and the shift operation is defined as

~ T T
T:H, ® Hp - H, ® Hp so that0)c|n), = [0)¢c|n + 1),, [1)cIn), = [1)cln — 1), .

306



Analytical Solution of Hadamard Walk

An analytical solution of the Hadamard walk alohg straight line was derived by Nayak
and Vishwanath (2008). The methodology adopted HBmt was reducing the time
evolution of the system into the eigenvalue problenthe Fourier space by discrete
Fourier transformation. First, the state of thek®alat the positiom at timet+ 1 is
expressed in terms of the states at the positiorsl andn + 1 at timet by [¢(n, t +

0

0
D)y=M, Yy(n—1,t)) + M_[p(n + 1,t)), where M, = [1/\/_ _ 1/\/_ and M_ =
2 2

1 1
[ /\/5 /\/7] Then in the Fourier space it takes the fdihik, t + 1)) = My [ (k, t))
0 0

for M, =e**M, + e *M_, and after solving with the relevant initial cotoi, and
transformed back to the time domain, the soluti@s wbtained (Aharanost al, 1993).
The importance of this solution is, its extendtlgifior regular graphs, as quantum walk on
the infinite straight line was found to be isomahto the quantum walk on certain
regular graphs, as shown by N. Shenvi, J. Kempe&andhaley(2003).

Two-particle Quantum Walks

For many potential practical applications of quamtwalks, multi-particle walkers are
preferred instead of single particle walkers. A fpaoticle walker has several possibilities
to interact: they might evolve their walks indivally, independent of the states of each
other, or they can interact when confronted Beng Wang, 2011). Needless to say, the
walk takes place in the Hilbert sp&2e ® Hp) ® (H,. ® Hp). Identity interaction is
one way of interacting, in which the coin operatbrcollapses down to the identity
operator at common vertices. For the two-partickel&imard walkC = H ® H when the
two particles are at different vertices, afid= I when they are at the same vertexmin
phase interaction, another possibility of intenagtirather than using the identity coin
operator, the phase of all vertex states are behified by =. However, the non-
interacting quantum particles are also not totatigependent of each other due to
guantum entanglement. Regarding the identity icteva, when entanglement is
neglected, the problem can be transformed to thewfimg form which might be helpful
in obtaining analytical solutions:

If the 4 x 4 matrix P; is defined for each = 1,2,3,4 as P, = (pj) so thatpj, =
{Lj=k=i
0, otherwise’

0 0 0 O 0 0 0 0
0 0 0 O 1/ 1/ -1/ -1
1/2 1/2 1/2 1/2 0 0 0 0
0 0 0 0 1/2 —1/2 —1/2 1/2
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then the state at positionsm at timet + 1 is given by

[p((n,t + D), (m, ¢t + 1)) = My|[p((n — 1,0), (m — 1,£))) + Mz |p((n — 1,0), (m +
where,

Mi = leOI' m=n andm#n. i 2, Ml = Nl’ MZ = Pz, M3 = N3 andM4_ = N4,f0r m=n-++
2, M1:N1, M2:N2, M3:P3 andM4:N4, fOI’mZn—Z, M1:P1, M2:N2,
M3 = N3 andM4 = P4_f0rm =n,
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