
Querying Mediated Web Services

M. Sabesan
Dept. of Information Technology

Uppsala University

Sweden.

Tel: +46 18 471 7778

mailto: msabesan@it.uu.se

Tore Risch
Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Gihan Wikramanayake
University of Colombo

School of Computing

Sri Lanka

gnw@ucsc.cmb.ac.lk

Abstract

 Web services provide interfaces to web resources

described by WSDL interface definitions. The Web

Service MEDiator system (WSMED) enables querying

data accessible through web services. WSMED allows

web service meta-data to be automatically extracted

from any WSDL description. Then views can be created

in terms of the imported meta-data and queried using

SQL. To enhance query performance, WSMED permits

to complement the automatically extracted web service

meta-data with semantic enrichments. A WSMED

prototype is being evaluated over existing web services

to verify the effectiveness of the approach. It is being

investigated how semantic enrichments and other query

optimization methods are useful for efficient querying of

mediated web services.

Keywords: Web Services - Views - Query Processing -

Binding Patterns

1. Introduction

 The growth of the Internet and the emergence of XML

for data interchange have increased the importance of

web services [27] incorporating standards such as SOAP

[24], WSDL [1] and XML Schema [25]. The interface

description language WSDL provides an XML format

that describes interfaces to a web service as a collection

of self-contained descriptions of operations. XML

Schema is used for describing types and structure of

messages used in WSDL operation descriptions. SOAP

provides a standardized system communication protocol.

 One of the important applications of web services is to

search for data accessible through web service operations.

However, unlike relational databases web services do not

provide any high-level query language or support view

capabilities for querying the data. Therefore the user has

to access a web service by implementing navigational

programs in a high level language such as Java, C that

invokes the web service operations to retrieve the desired

information. In this work we provide the capability to

define declarative queries and views over data extracted

from web services.

 The WSMED (Web Service MEDiator) engine

permits integration of data from heterogeneous remote

systems accessible through web services. It permits SQL

queries over data produced by distributed web service

enabled data sources. Any web service can be accessed

by importing its WSDL interface descriptions. The

imported WSDL interface descriptions are stored in

WSMED as meta-data. To enhance query processing, the

meta-data can be complemented with user-provided

semantic enrichments describing properties of data in the

sources not provided by WSDL. The user can define

views of data from the web services in terms of the

imported meta-data. Applications then query these views

transparently as if all the data was stored in a relational

database. SQL is used by applications and users for

querying these views. Composed SQL views can be

defined in terms of the web service views. A mediator

query optimizer automatically decides strategies to access

wrapped web service operations to minimize the

execution cost.

 The remainder of this paper is organized as follows.

Section 2 formulates the research issues we are

addressing. Section 3 discusses related work. Section 4

describes a motivating example used for our study.

Section 5 overviews the architecture of WSMED.

Finally, section 6 summarizes our approach and outlines

future directions.

2. Research issues

 The development of a web service based mediator

prototype is expected to provide insights into a number of

research questions:

1. To what extent can the web service standards, such

as WDSL, SOAP, and XML-Schema, be

automatically utilized by a mediator engine to

query the sources efficiently and scalable?

39

2. How can views in a high level query language

such as SQL be defined in terms of imported web

service descriptions?

3. How can the modern query optimization and

rewrite techniques be used to provide efficient and

scalable access that optimally utilizes the limited

data access and update capabilities of different

web services?

4. What minimal set of extra semantic enrichment is

needed in addition to the current web service

standards in order to provide scalable access

through the views?

3. Related work

 SOAP and WSDL provides standardized basic

interoperation protocols for web services but no query or

view capabilities. Several systems have been built to

query XML in general, e.g. [3] [5] [8] [13] [14], without

providing support for web service access. WSMS [17]

also studies queries to mediated web services. However,

they currently concentrate on pipelined execution of web

service queries by importing WSDL descriptions, while

we concentrate on utilizing semantic enrichments for

scalable execution of database queries to high level views

of wrapped web service operations. As some other view

integration approaches [2][4][6][7][18][19] we also

utilize binding patterns as one of our semantic

enrichments to access data sources with limited data

capabilities. We are investigating whether the binding

pattern mechanism in [12] and other semantic

enrichments such as keys, cost estimates, and foreign key

relationships can improve the processing time for queries

over data accessible through web services.

Chocolate [10] also creates views of web services

based on importing WSDL descriptions. Some user

modification of the views is possible by

adding/deleting/renaming attributes, changing data types,

and splitting/merging views, but not the kinds of

semantics enrichments we are considering for efficient

queries.

 [9] [11] propose to use semantic query optimization

techniques for optimization of heterogeneous multi-

database queries. Some of those methods could be

applicable in our environment as well but we aim at

minimizing the semantic enrichments needed for scalable

query execution.

4. Motivating example

 For the initial evaluation we use a publicly available

web service that provides access and search to the

National Nutrient Database for US Department of

Agriculture. It is available through a WSDL description

[23]. The database contains information about the

nutrient content of over 6000 food items. We illustrate

WSMED by the operation SeachFoodByDescription to

search foods given a food key word or a food group code.

The operation returns ndbnumber, longdescription and

foodgroupcode as the results. A view (Table 1) is defined

in WSMED to execute queries over this web service

operation.

ndb keyword descr gpcode

19080 Sweet Candies,

semisweet

chocolate

1900

………. ……… ………… ……….

Table 1. food view
 The following SQL query uses the above to retrieve

the description of foods that have food group code equal

to 1900 and keyword ‘Sweet’:

 select descr

 from food

 where gpcode=’1900’ and keyword=’Sweet’;

Figure 1 shows the WSMED view definition of food.

create SQLview food (Charstring ndb ,

 Charstring keyword,

 Charstring descr,

 Charstring gpcode)

as multidirectional

 (“ffff” select ndb, “”,descr, gpcode

 where foodDescr(“”,“”,)=<ndb,descr,gpcode>)

(“fffb” select ndb, “”,descr

 where foodDescr(“”,gpcode)= <ndb,descr,gpcode>)

(“fbff” select ndb,descr,gpcode

 where foodDescr(keyword, “”)= <ndb,descr,gpcode>)

(“fbfb” select ndb, descr

where foodDescr(keyword,gpcode)=<ndb,descr,gpcode>)

Figure 1. SQL view
 The view is defined in terms of a generic web service

data access query function that wraps the web service

operation foodDescr. Several different web service

search definitions are used in the view definition to

specify the web service operation calls depending on how

a query to the view is specified. For example, the

strategies may depend on what view attributes are known

or unknown in the query, i.e. the view binding patterns.

In our example the view binding patterns are:

1. ffff- all the attributes of the view food are free. That

is, the query does not to specify any attribute

selection value.

2. fbff- a value is specified in the query only for the

attribute keyword.

3. fffb- a value is specified only for groupcode.

4. fbfb- both the values keyword and groupcode are

specified.

40

 Another important semantic enrichment we use is that

the attribute ndb turns out to be the key in food and

specified by calling the system function declare_key:

declare_key(“food”, {”ndb”});

This information is important for estimating costs to

access web service operations and for unifying redundant

web service calls.

5. WSMED system

 This section gives an overview of the WSMED

system. The web service schema describes the internal

web service meta-database in WSMED that stores WSDL

definitions and semantic enrichments. System

components sub section describes the sub components of

the system.

5.1 Web service schema

 Figure 2 shows an extended ER-diagram of the web

service schema that represents the WSDL core elements

[1] service, operation, and element.

Figure 2. The web service schema

 A service describes a particular web service and

supports a set of operations and depicted by the Service

entity. The name attribute corresponds to the name of the

web service; namespaceURI is a URI reference to

identify a web service. Each operation named name

represents a procedure that can be invoked through the

web service. The style indicates whether the operation is

RPC-oriented (messages have parameters and return

values) or document-oriented (messages containing

documents). The encoding style is a URI that indicates

the encoding rules for data in the SOAP messages. The

target URL determines the address of the SOAP message.

The SOAPactionURI used to identify the intent of a

SOAP Message.

WSDL

data type

WSMED

data type

WSDL

data type

WSMED

data type

anyURI Charstring Integer Real

baseBinary Charstring Language Charstring

Boolean Boolean Long Integer

Byte Integer Name Charstring

Date Date NCName Charstring

dateTime Charstring NegativeInteger Real

Decimal Real NMTOKEN Charstring

Double Real NMTOKENS Charstring

Duration Charstring NonnegativeInteger Real

ENTITIES Charstring nonPositiveInteger real

ENTITY Charstring NormalizedString Charstring

Float Real NOTATION Charstring

gDay Charstring positiveInteger real

gMonth Charstring QName Charstring

gMonthDay Charstring Short integer

gYear Charstring String Charstring

gYearMonth Charstring Time Time

hexBinary Charstring Token Charstring

ID XS_ID unsignedByte integer

IDREF XML unsignedInt integer

IDREFS XML unsignedLong integer

Int Integer unsignedShort integer

Table 2: Mappings between WSDL and WSMED
data types

 The ports relationship represents the association

between a service and its operations. Each operation has a

number of input elements and output elements. It is an

abstract definition of the data being transmitted and is

associated with a data type, i.e. the input and output

elements define the signature of the operation. Complex

data elements may consist of other sub-elements where

each sub-element has a data type, along with a name and

the number of minimum and maximum occurrences

within the super element. The WSMED uses a conversion

table (Table 2) for type conversion from/to a XML

Service

Operation

ports

input output

1

N

1

name

M min

occurs

Element

max

occurs

sub

elements

type

N

Relationship (function in WSMED)

Entity (type in WSMED)

Attribute (function in WSMED)

N

Direction of function

Cardinality constraints

name

1

N

style encoding

style

targetURL

SOAPaction

URI

namespace

URI

name

1

1

41

Schema data type to/from the corresponding data type in

WSMED.

4.2 System components

 The WSMED prototype is illustrated by Figure 3. For

high level and scalable query execution over the data

provided by a web service, WSMED requires

representation of its WSDL meta-data in the internal

database of WSMED. The WSDL Importer can import

any WSDL description using the tool kits WSDL4J [22]

and Castor [20]. For a given URL, the retrieved WSDL

document is parsed and converted into the format used by

WSMED’s predefined web service schema for WSDL

(Figure 2). The extracted meta-data is stored as web

service descriptions in WSMED’s internal database.

 In addition to the web service descriptions, WSMED

furthermore keeps optional WSMED enrichments in its

local store extending the basic web service schema. These

WSMED enrichments include information necessary to

efficiently translate SQL queries into web service

operation calls using different strategies depending on the

semantics of the wrapped operations. A functional and

object-oriented query language [15] [16] is used for

defining the SQL views in terms of calls to one or several

web service operations.

Figure 3: WSMED system components

 The query processor exploits the web service

descriptions and WSMED enrichments to process

queries. The query processor calls the web service

manager component, implemented using the APIs SAAJ

[21] and JDOM [26]. The web service manager is

accountable for invoking web service calls in order to

retrieve the result for the user query. For this, it creates a

message format able to invoke the web service operation

using the SOAP [24] protocol over the communication

network. Then the structure of the SOAP reply message

is converted by the web service manager into the format

used by the query processor for further processing.

 Figure 4 illustrates architectural details of the query

processor. The calculus generator produces a domain

calculus expression from an SQL query. This expression

is passed to the query rewriter for further processing to

produce an equivalent but simpler domain calculus

expression. The query rewriter calls the view expander to

process the WSMED view and search definitions to

translate an SQL query over the WSMED view into a

corresponding calculus query directly calling web service

operations. An important task for the query rewriter is to

perform common sub-expression elimination between

different sub-queries calling the same web service

operation in order to minimize the number of calls. This

requires knowledge about what argument or result in a

web service operation can be used as a key.

Figure 4: Query Processor

The cost-based optimizer uses a generic web service

cost model to produce and optimize the user query

execution plan represented as an algebra expression. The

algebra has operators to invoke web services and to apply

external functions implemented in WSDL (e.g. for

extraction of data from web service results).

 The algebra expression is finally interpreted by the

execution engine. It uses descriptions of operations in the

web service meta-database to call the web service

operations in the execution plan. A call to the web service

manager is specified by web service properties such as

web service

arguments
SQL query

query

rewriter

cost-based

optimizer

execution

engine

calculus

generator

view expander

WSDL

Importer

Web Service

Manager

SQL

query

WSDL

document

Query

Processor

WSMED

enrichments

Web service

schema
Web service

descriptions

Results

Web

service

42

SOAPactionURI, style, encodingstyle, namespaceURI,

and targetURL (Figure 2). Furthermore, it contains the

actual parameters of the operation, called the input

elements.

Figure 5: Web service manager
 As shown by Figure 5 , the web service manager uses

two sub components to create a SOAP message: The

JDOM processor and the SOAP Processor. JDOM

processor is implemented using JDOM APIs while SOAP

processor using SAAJ (SOAP with Attachments API for

Java) APIs.

 The SOAP processor creates a request SOAP message

and sends it over the network to invoke the web service

operation call. The SOAP body is the essential part of the

SOAP message and it provides a simple mechanism for

exchanging mandatory information intended for the web

service operation call. The JDOM processor creates a

JDOM object that represents the mandatory information

for the SOAP body. The SOAP processor requires

additional information for SOAP message creation. The

XML format of the JDOM object is shown by Figure 6.

The input elements to the JDOM processor contain names

of elements such as SearchFoodByDescription,

FoodKeywords, and FoodGroupCode, and the values for

the elements, e.g. Sweet and 1900.

<SearchFoodByDescription>

 <FoodKeywords>Sweet</FoodKeywords>

 <FoodGroupCode>1900</FoodGroupCode>

</SearchFoodByDescription>

Figure 6: The request XML document

 The SOAP processor creates the final SOAP message

given the JDOM object (Figure 5) and the web service

properties and sends it over the network to invoke the

web service operation call. The response of the remote

web service call is received as a SOAP message. Contents

of the SOAP message is extracted by the SOAP processor

and sent it to the JDOM processor as a Java object. Then

the JDOM processor converts the message content into a

JDOM object. The JDOM object represents the XML

format as shown in Figure 7.

 The JDOM processor requires the output elements’

properties (Figure 2) of the web service operation call

such as type and maxoccurs to constructs the result object

of the web service call by extracting information from the

JDOM object. The type of output elements is used by the

JDOM processor for the conversion of XML data format

and data format used by WSMED while maxoccurs is

used to determine the result object structure. The JDOM

processor retrieves the values for type and maxoccurs

from the web service meta-database. After that the result

object is sent back to the execution engine.

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XML

Schema">

 <soap:Body>

 <SearchFoodByDescriptionResponse

xmlns="http://www.strikeiron.com/">

 <SearchFoodByDescriptionResult>

 <SearchByKeywordsOutput>

 <NDBNumber>02044</NDBNumber>

 <LongDescription>Basil, fresh </LongDescription>

 <FoodGroupCode>0200</FoodGroupCode>

 </SearchByKeywordsOutput>

 </SearchFoodByDescriptionResult>

 <ResponseStatus>

 <response_code>0</response_code>

 <response_string>Success</response_string>

 </ResponseStatus>

 </SearchFoodByDescriptionResponse>

 </soap:Body>

</soap:Envelope>

Figure 7: The response XML document
 The execution engine performs further post processing

specified by the algebra such as filtering and data

transformation before the query result is delivered to the

user.

g,h

b,c,d,e,faresults

SOAP message

a - input elements b - SOAPactionURI

c - style d -encodingstyle

e - namespaceURI f - targetURL

g - type h-maxoccurs

 JDOM

Object

 message

content

SOAP

Processor
JDOM

Processor

43

6. Conclusions and future work

 WSMED provides primitives for defining relational

views of web service data and supports SQL queries over

the views. We described the architecture of the WSMED

prototype system to evaluate different implementation

alternatives. The architecture utilizes publically available

subsystems such as WSDL4J, JDOM,SAAJ and Castor to

allow the WSMED query engine to access any web

service based on web service meta-data in a WSDL

description.

 The performance of queries varies very substantially

depending on what processing strategy is used.

Therefore, we are investigating query processing

strategies using our prototype and existing web services.

The query performance turns out to be very much

dependent on knowledge about some semantics of the

specific web service operations invoked not provided by

WSDL and therefore the user can provide these semantic

enrichments to WSDM for better query optimization. We

investigate how to utilize capability based query

optimization [4] to process the SQL queries over

semantically enriched views of web services.

 Future work includes how to minimize the required

semantic enrichments by using heuristic methods or by

adaptive query processing techniques based on

monitoring the behavior of web service calls.

 So far we assume all web service operations used in

queries are side effect free. A further future research issue

is semantic enrichments to allow SQL updates of web

service data views.

References

[1] E.Christensen, F.Curbera, G.Meredith, and S. Weerawara

na, Web services description language (WSDL) 1.1.,

W3C, http://www.w3.org/TR/wsdl, 2001.

[2] M.Duschka, Query Planning and Optimization in

Information Integration, Ph.D. Thesis, Stanford

University, Computer Science Technical Report STAN-

CS-TR-97-1598, 1997.

[3] L.Ennser, C.Delporte, M.Oba, and K.Sunil, Integrating

XML with DB2 XML Extender and DB2 Text

Extender,

http://www.redbooks.ibm.com/redbooks/pdfs/sg246130.pd

f , IBM Corp., 2001.

[4] H.Garcia-Molina, J.D Ullman, and J.Widom, Database

Systems: The Complete Book, ISBN 0-13-098043-9,

Prentice Hall, 2002, pp 1047-1069.

[5] G.Gardarin, A.Mensch, and A.Tomasic, An Introduction

to the e-XML Data Integration Suite, Proc. 8th

International Conference on Extending Database

Technology (EDBT ’02), 2002, pp. 297–306.

[6] A.Gupta, L.Haas, and Y. Papakonstantinou, Capabilities-

Based Query Rewriting in Mediator Systems, Proc. 4th

International Conference on Parallel and Distributed

Information Systems (PDIS ’96), 1996, pp 170-181.

[7] A.L.Halevy, Answering queries using views: A survey,

VLDB Journal, 4(10), 2001, pp 270-294.

[8] A. Halverson, V.Josifovski, G.Lohman, H.Pirahesh, and

M. Mörschel, ROX: Relational Over XML, Proc. 30th

VLDB Conference (VLDB ’04), 2004, pp 264-275.

[9] C.Hsu, and C.A.Knoblock, Semantic Query Optimization

for Query Plans of Heterogeneous Multidatabase Systems,

IEEE Transactions on Knowledge and Data Engineering ,

12(6), 2000, pp 959-978.

[10] V.Josifovski, S.Massmann, and F.Naumann, Super-Fast

XML Wrapper Generation in DB2: A Demonstration,

Proc. International Conference of Data Engineering,

(ICDE’03), 2003, pp 756-758.

[11] C.Li, Describing and Utilizing Constraints to Answer

Queries in Data-Integration Systems, Proc. IJCAI 2003

workshop on Information Integration on the Web (IIWeb-

03), 2003, pp 163-168.

[12] W.Litwin, and T.Risch, Main Memory Oriented

Optimization of OO Queries using Typed Datalog with

Foreign Predicates, IEEE Transactions on Knowledge and

Data Engineering , 4(6), 1992, pp. 517-528.

[13] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J.

Widom, Lore: A Database Management System for

Semistructured Data, SIGMOD Record, 26(3), ACM Press

, New York, USA, 1997, pp 54-66.

[14] J.Naughton, et al. , The Niagara Internet Query System,

IEEE Data Engineering bulletin, 24(2) , 2001, pp. 27-33.

[15] T.Risch and V.Josifovski, Distributed Data Integration by

Object-Oriented Mediator Servers, Concurrency and

Computation: Practice and Experience J., 13(11), John

Wiley & Sons, 2001, pp 933-953.

[16] T.Risch, V.Josifovski, and T.Katchaounov, Functional

Data Integration in a Distributed Mediator System, in

P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.):

Functional Approach to Data Management - Modeling,

Analyzing and Integrating Heterogeneous Data, ISBN 3-

540-00375-4,Springer,2003,pp 211-238.

[17] U.Srivastava, J.Widom, K.Munagala, and R.Motwani,

Query Optimization over Web Services,

http://hake.stanford.edu/wsms/index.htm, 2005.

[18] J.D.Ullman, Information Integration Using Logical

Views, Proc. 6th International Conference on Database

Theory (ICDT ’97), 1997, pp 19-40.

[19] V.Zadorozhny, L.Raschid, T.Urhan, M.E.Vidal, and

L.Bright, Efficient Evaluation of Queries in a Mediator

for Web Sources, Proc. International conference on

Management of data (SIGMOD ’02), 2002, pp 85-96.

[20] http://www.castor.org/index.html.

[21] https://saaj.dev.java.net/.

[22] http://sourceforge.net/projects/wsdl4j.

[23] http://ws.strikeiron.com/USDAData?WSDL

[24] http://www.w3.org/TR/soap12-part1/.

[25] http://www.w3.org/TR/2004/REC-xml-20040204/

[26] http://www.jdom.org/

[27] http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

44

