

Software Quality Assurance in Agile and Waterfall Software Development

Methodologies: A Gap Analysis.

BY

Lakmali De Zoysa

(2009/MISM/05)

Submitted in accordance with the requirements for the degree of

MASTERS IN INFORMATION SYSTEMS MANAGEMENT

at the

UNIVERSITY OF COLOMBO

SUPERVISOR: DR. KAPILA PONNAMPERUMA

CO-SUPERVISOR: DR GAMINI WIJERATNE

FEBRUARY 2011

I

DECLARATION

I certify that this Dissertation does not incorporate without acknowledgement any

material previously submitted for the Degree or Diploma in any University, and to

the best of my knowledge and belief it does not contain any material previously

published or written by another person except where due reference is made in the

text

Date: ………………………………. ………………………………………

 Lakmali De Zoysa

The undersigned, have supervised the dissertation entitled UALITY ASURANCE

IN AGILE AND WATERFALL SOFTWARE DEVELOPMET

METHODOLOGIES: A GAP ANALYSIS presented by Lakmali De Zoysa, a

candidate for the degree of Masters in Information Systems Management, and hereby

certify that, in my opinion, it is worthy of submission for examination.

Date: …………………….. ………………………………………….

Dr. Kapila Ponnamperuma

Supervisor

II

ACKNOWLEDGMENT

It is a pleasure to thank those who made this thesis possible. I am heartily thankful to

my supervisors, Dr Kapila Ponnamperuma, Dr. Gamini Wijayarathne and our

coordinator Dr. Chaminda Jayasundara, whose encouragement, supervision and

support from the preliminary to the concluding level enabled me to develop an

understanding of the subject. Also I owe my deepest gratitude to Dr. Mrs. Kodikara

Librarian and Dr. Ruwan Gamage Assistant Librarian of the University Moratuwa for

kindly granting me permission to access the thesis section of the library. I‘m very

much grateful to Mrs. Rukie Salgado and my uncle Mr. Arunashantha De Silva

Deputy Legal Draftsmen for the government of Sri Lanka, for their eagerness to

correct the language of the document. This thesis would not have been possible if not

for the enormous support given in data collection by Mr. Wasantha Kumara, Mr.

Kanishka Karunarathne, Mr. Tharaka Kulasinghe, Mrs. Nimeka Abedeera, Mr.

Gayath Chaminda, Mr. Amila Dharmaratne, Mr. Ruvinda Rathnegoda and Mr.

Chinthaka Indikadahena. I‘m grateful to Mr. Rukshan Abeygunawardene lecturer

Statistics Department of the University of Colombo and Mrs Nadeeja Dodangoda,

lecturer American College of Higher Education, without whose guidance, support and

encouragement the analysis of the research would have been such a difficult task. I

would like to thank my batch mate Mr. Naleen Perera, for sharing his knowledge

throughout the process and the guidance given on handling SPSS software. Words

alone cannot express the thanks I owe to my parents, my grand aunt and my husband,

for their constant encouragement and assistance so readily given. Lastly, I offer my

regards and blessings to all those who rendered their support in any way during the

completion of this project.

III

ABSTRACT

The purpose of this study was to investigate whether the software development

companies can achieve expected software quality through Agile development. In

order to reach this goal, the first objective of the research was to identify the software

quality factors through various quality models and quality management philosophies.

Secondly, to identify the software development process models. Thirdly, to analyse

the software quality difference between development methodologies in terms of

selected quality factors. And finally to identify the development technique by which

high quality software products could develop. The research was conducted in the Sri

Lankan context focusing on software development companies registered with the Sri

Lanka Exports Association. After the preliminary investigation on obtaining relevant

information, four companies namely; Virtusa, Team Work, DMS and E- College were

selected for the research. The second pilot survey reflected that it was impossible to

collect data from clients. Thus, the research was aimed only on developer oriented

quality factors. These selected factors include correctness, testability, changeability,

install ability, time and budget. The research was confined to analyse the quality

difference only between Waterfall and Agile since the second pilot survey revealed

that the Waterfall is the most widely used in Sri Lanka. Both qualitative and

quantitative research methodology was utilized in this study. The researcher tendered

190 questionnaires among testers, developers and QA leads via e-mails. The response

rate for questionnaires was eighty one percent and the accepted rate was seventy two

percent. Twelve interviews were carried out with the Project Managers to capture

project related information. The result of the questionnaire revealed no significant

difference between the two development methods in achieving correctness and install

ability. Whereas, the difference in testability and changeability was significant and

reflected that Agile is better than Waterfall. The cumulative analysis of the product

quality factors showed that a high level of software quality can be achieved through

Agile development. Analysis of the interviews reflected that there is no significant

difference in the software project quality between the two development methods. The

author recommends applying Agile techniques for software development projects

where the requirements are complex, difficult to capture and frequently fluctuating

(At situations where high degree of testing and changeability is required). Any

method can be used if the main focus is to achieve only project quality.

IV

TABLE OF CONTENTS

Declaration .. I

Acknowledgment ..II

Abstract .. III

Table of Contents .. IV

List of Tables .. VI

List of Figures...VIII

List of Abbreviations ... X

CHAPTER ONE.. 1

1. INTRODUCTION ... 1

1.2 Background ... 3

1.3 Problem Statement .. 7

1.4 Research Aim & Objectives ... 8

1.5 Significance of the study.. 8

1.6 Research Limitations ... 9

1.7 Thesis Structure ... 10

CHAPTER TWO ... 11

2. LITERATUR REVIEW .. 11

2.1 Introduction ... 11

2.2 Terminology .. 11

2.3 Software Quality Management Philosophies .. 14

2.4 Software Quality Modals ... 18

2.5 Software Engineering Process Models ... 22

2.6 Agile Software Development & Waterfall Software Development 38

2.7 Related studies .. 52

2.7 Conclusion .. 69

CHAPTER THREE ... 71

3. METHODOLOGY.. 71

3.1 Introduction ... 71

3.2 Research Approach .. 71

V

Based on the identified quality factors and the attributes of each factor following

conceptual frame work was derived; .. 76

3.3 Population ... 76

3.4 Sample Size ... 77

3.5 Sampling Technique .. 78

3.6 Data Collection.. 78

3.7 Data Analysis .. 80

CHAPTER FOUR ... 85

4. ANALYSIS .. 85

4.1 Introduction ... 85

4.2 Data Received ... 85

4.3 Hypothesis Test ... 87

4.4 Demographic Analysis... 127

4.5 Summary ... 141

CHAPTER FIVE ... 143

5. DISCUSSION ... 143

5.1 Introduction ... 143

5.2 Reiteration of the findings ... 143

5.3 Limitations and Further Research .. 154

CHAPTER SIX ... 156

6. CONCLUSIONS .. 156

6.1 Introduction ... 156

6.2 Conclusion .. 156

6.2 Recommendations ... 158

References .. 160

Appendixes ... 169

VI

LIST OF TABLES

Table 1: Agile Adoption & percentage of Change .. 58

Table 2: AM Characteristics .. 59

Table 3: Traditional vs. Agile Development ... 60

Table 4: Population .. 77

Table 5: Sample ... 78

Table 6: Questionnaire Design ... 79

Table 7: Quality Difference ... 82

Table 8: Objective vs. Analysis.. 84

Table 9: Data Received .. 85

Table 10: User Expectation coverage in the final product... 88

Table 11: User expectation Coverage in the Specification .. 89

Table 12: Covering the System Design in the Implementation 92

Table 13: One Sample Test for Correctness ... 94

Table 14: Execution of the Test Scripts .. 97

Table 15: System Implementation Adhere to the Coding Standards 98

Table 16: One Sample Test for Testability ... 102

Table 17: Ease of Modifying the Products ... 105

Table 18: Interaction between Modules ... 107

Table 19: Ease of integrating new components .. 110

Table 20: One Sample Test for Changeability .. 111

Table 21: No Changers in Installation .. 114

Table 22: One Sample Test for Installability .. 118

Table 23: Projects Completed on Time .. 120

Table 24: Chi Square of Time .. 121

Table 25: Projects Completed within the Budget .. 122

Table 26: Chi Square of Budget ... 123

Table 27: One Sample Statistics for Product Quality .. 124

Table 28: One Sample Statistics for Correctness - Developer 127

Table 29: One Sample Statistics for Correctness - Tester 128

Table 30: One Sample Statistics for Correctness – QA Lead 129

Table 31: One Sample Statistics for Testability – Developer 130

Table 32: One Sample Statistics for Testability – Tester .. 131

Table 33: One Sample Statistics for Testability – QA Lead 132

VII

Table 34: One Sample Statistics for Changeability – Developer 133

Table 35: One Sample Statistics for Changeability – Tester 134

Table 36: One Sample Statistics for Changeability – QA Lead............................... 135

Table 37: One Sample Statistics for Installability – Developers 136

Table 38: One Sample Statistics for Installability – Testers 137

Table 39: One Sample Statistics for Installability – Testers 138

Table 40: One Sample Statistics for Product Quality – Developer 139

Table 41: One Sample Statistics for Product Quality – Tester 140

Table 42: One Sample Statistics for Product Quality – QA Lead 140

VIII

LIST OF FIGURES

Figure 01: SEA Registered Company List.. 6

Figure 02: McCall‘s Quality Model ... 18

Figure 03: Boehm‘s SW Quality Characteristics Tree .. 19

Figure 04: ISO Quality Model ... 20

Figure 05: The ISO Quality Attributes ... 21

Figure 06: The Evolution of Software Process Models ... 24

Figure 07: Waterfall Model.. 27

Figure 08: V Model ... 28

Figure 09: Spiral Model ... 32

Figure 10: Phases in the Unified Process.. 33

Figure 11: SWD Phases & Generic Activities .. 33

Figure 12: RUP Model... 36

Figure 13: Model Comparison ... 37

Figure 14: Extreme Programming .. 50

Figure 15: Adaptive SW Development... 50

Figure 16: Scrum ... 52

Figure 17: AM Characteristics ... 59

Figure 18: Effectiveness of agile software development compared with traditional

approaches. .. 65

Figure 19: Agile success rates by level of team member distribution 65

Figure 20: SW Product Quality .. 75

Figure 21: SW Project Quality ... 75

Figure 22: Conceptual Frame Work ... 76

Figure 23: Respondents ... 86

Figure 24: Specification Covered by Design .. 91

Figure 25: Implementation Free from Faults .. 93

Figure 26: Histogram of Correctness.. 95

Figure 27: Box plot of Correctness .. 96

Figure 28: Simple Code Structures... 99

Figure 29: Interaction between Modules .. 100

Figure 30: Histogram of Testability ... 103

Figure 31: Box Plot of Testability .. 104

Figure 32: Effort to Accommodate Minor modifications .. 106

file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212178
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212179
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212180
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212181
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212182
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212183
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212184
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212185
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212187
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212188
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212189
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212190
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212191
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212192
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212193
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212194
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212197
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212198
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212199
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212205
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212210

IX

Figure 33: Side effects of the Changes ... 109

Figure 34: Histogram of Changeability .. 112

Figure 35: Box Plot of Changeability ... 113

Figure 36: Modifications at the Installation .. 115

Figure 37: Hardware Software compatibility ... 116

Figure 38: Histogram of Install ability .. 118

Figure 39: Box Plot of Install ability .. 119

Figure 40: Histogram of Product Quality .. 125

Figure 41: Box Plot of Product Quality ... 126

file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212224
file:///C:/Users/Buddhika/Desktop/Viva/After%20Viva2/Viva%20Corrected%20Thesis.docx%23_Toc308212227

X

LIST OF ABBREVIATIONS

 AM Agile Modeling

ANSI American National Standard Institute

 ASD Adaptive Software Development

 CMMI Capability Maturity Model Integration

FRUPS Functionality, Reliability, Usability, Performance,

Supportability

 ICTA Information and Communication Technology Agency

IID Iterative Incremental Development

IMF International Monitory Found

 IT Information Technology

 PM Project Manager

 QA Quality Assurance

 RUP Rational Unified Process

 SAD Systems Analysis and Design

 SDLC Software Development Life Cycle

 SEA Sri Lanka Exports Association

 SLASI Sri Lanka Association for the Software Industry

 SLASSCOM Sri Lanka Association of Software & Service

Companies

 SQA Software Quality Assurances

 SRS Software Requirement Specification

 SW Software

 SWD Software Development

 UP Unified Process

 XP Extreme Programming

1

CHAPTER ONE

1. INTRODUCTION

1.1 OVERVIEW

One of the pioneers in software development arena Barry Boehm stated that ―The last

decade of the 20
th

 century has witnessed a growing use of software products in a

variety of application areas and their correct operation is significant for business

success‖ (Boehm, 2006, pp. 20-21). Hence, Software development companies have to

deliver quality software products within a shorter period. This situation has lead

computer specialists, analysts and developers to introduce effective and efficient

development models, as well as proven software project, process and product quality

techniques (Boehm, 2006, pp. 24-25).

As per the Juran and Frank‘s definition, it is not only the customer who benefits from

a focus on high quality but businesses that value quality become more responsive and

innovative, increase their competitive differentiation, and greatly reduce their total

cost of development and time to market (Juran & Frank, 1988).

If a company unable

to deliver a quality product to its customer‘s negative word of mouth could prevent

the company getting new customers and hence will not be able to survive in the

modern competitive market. An equally acclaimed authority in software development

Pressman claims that achieving quality products requires applying a high-quality

process throughout development, integration, and testing. Software quality assurance

is an umbrella activity that is applied throughout the software process and it consists

of set of auditing and reporting functions that affects the effectiveness and

completeness of quality control actions. (Pressman, 2010, pp. 413) This helps to make

sure that any agreed upon standards and procedures are followed and most

importantly to ensure that the problems are found and dealt with.

2

At early stages where the economy was not growing fast and the customer needs were

not very complicated, the traditional development methodologies such as Waterfall, V

shaped and Spiral had seen sufficient to cater to the user requirements. But as time

progressed there was a requirement for complex systems in a shorter period. Hence in

2001 Kent Beck and 16 other software developers, writers and consultants signed the

―Manifesto for Agile Development‖ (Pressman, 2010, pp.65) Agile development

methodologies (such as XP, Scrum, and ASD) focus on higher customer satisfaction,

lower defect rates, faster development times and a solution to rapidly changing

requirements. Traditional approaches (such as Water fall, Spiral, or CMM-based

methods) focused on predictability, stability, and high assurance. However, both

approaches have situation dependent shortcomings that, if left unaddressed, could lead

to project failures.

As discussed above information technology is undergoing continuous improvement.

To keep pace, software development organizations need to release business-critical

software in less time, but this venture often results in compromised quality. So the

question arises: How can a company save time and reduce costs without sacrificing

quality?

The aim of this research is to identify the reasons why companies are rapidly moving

in to agility and whether they were able to achieve the expected software quality in

agile development, compared to traditional process models. Finally, this research aims

to explore how companies can achieve/strike a balance between software quality and

the agility.

3

1.2 BACKGROUND

1.2.1. CONCEPTUAL BACKGROUND

Quality is the degree to which a system, component, or process meets customer or

user needs or expectations.(IEEE Std. 610-12-1990) When considering the user

expectations in relation to software products it is not only receiving a defect free

product, but also receiving the product on time and within the expected budget, with

relatively less defects. The Literature Review Chapter begins at page 11 of this thesis

discusses further on quality and quality attributes.

Software Quality Assurance (SQA) defines and conducts the activities required to

ensure software quality. (Pressman, 2010) According to IEEE standards SQA is ―A

planned and systematic pattern of all actions necessary to provide adequate

confidence that the item or product conforms to established technical requirements.‖

(IEEE Std. 610.12-1990)

Due to the growing market conditions (Callen, 2007)

today, software development

companies need to incorporate requirement changes even in the later stage of

development to cater to the frequently changing user requirements. But this should

not result in longer periods to release a working product and should not exceed the

budget and should be relatively defect free. (Pressman, 2010, pp.65)

Agile SW development combines a philosophy and set of development guidelines.

The philosophy encourages customer satisfaction, early incremental delivery of

software, highly motivated project teams, informal methods and overall development

simplicity. The development guidelines stress delivery over analysis, design and

active and continuous communication between developers and customers. (Pressman,

2010, pp.65) Whereas, the traditional models used in times where the requirements

for a problem are well understood and not very complicated. There are number of

software development process models that can be categorized as ‗Prescriptive process

4

models‘ (such as Waterfall model, V-model), ‗Incremental process models‘ and

‗Evolutionary process models‘ (such as Spiral model) (Pressman, 2010, pp.61-62)

Irrespective of the process model is utilized, a generic process framework for software

engineering defines five framework activities namely communication, planning,

modeling, construction and deployment. (Pressman, 2010, pp.31) These five activities

are common to any software engineering model. The process flow describes how the

framework activities and the actions and tasks that occur within each framework

activity are organized with respect to sequence and time (Pressman, 2010).

1.2.2 CONTEXTUAL BACKGROUND

Over the last ten years Sri Lankan IT industry has been growing exponentially and has

eventually formed into the following three distinguishable segments (Saparamadu,

n.d)

 Software Application Product Market

 Software Services

 Offshore Development

In the application product market the Sri Lankan IT companies have concentrated on

software development for various industries and managed to position themselves in

the global market.

The corporations with the world‘s leading IT companies gave Sri Lanka much

exposure in the SW services field.

Offshore development is a type of offshore outsourcing where Sri Lankan SW

companies have gained considerable amount of projects because of their ever growing

talent. Currently over 50, 000 are employed in the IT and BPO industry in Colombo

5

and the work force is growing at over 20 % year on year. Sri Lanka boasts high levels

of education with one of the highest literacy rates in South Asia (Saparamadu, n.d).

Sri Lanka is ranked among the top 50 Global Outsourcing destinations by ‗AT

Kearney‘ and ranked among top 20 Emerging Cities by ‗Global Service Magazine‘

With the above information we can come to a conclusion that Sri Lanka is very much

suited for SW development and out sourcing activities and the country has a well

educated and literate population. The investment climate is one of the best in the

region.

Due to the emerging demand in the IT industry in Sri Lanka there are number of ICT

associations established in the country and few of them are listed below

 Sri Lanka Association for the Software Industry (SLASI)

 Sri Lanka Software Exports Association (SEA)

 Sri Lanka Association of Software & Service Companies (SLASSCOM)

 Information and Communication Technology Agency (ICTA)

Since this research is focused only on the companies registered with the SEA brief

description of the association is stated below.

The Association, which was formed in 1999, had a membership of 39 ICT companies.

Today the membership of the association has increased to 47 registered companies.

The SEA focuses on developing Sri Lanka as an international software marketplace

through exports of world-class software. Both the Board of Investment of Sri Lanka

and Export Development Board are patrons of the Association. The SEA is also

affiliated to the Ceylon Chamber of Commerce (Anon, Sri Lanka Export

Development Board) Figure 16 summarizes the companies in relation to the Services

offered, Industry served and the Technology focus.

http://www.boi.lk/
http://www.tradenetsl.lk/
http://www.chamber.lk/
http://www.srilankabusiness.com/index.asp
http://www.srilankabusiness.com/index.asp

6

(Source: Anon, Island software)

Figure 01: SEA Registered Company List

7

1.3 PROBLEM STATEMENT

In a modern economy it is often difficult to predict how a computer based system

evolves as time passes. Market setting change quickly, end user needs evolve, and

new competitive threats emerge without warning. In order to cater to this situation the

software development companies should be sufficiently capable to incorporate

requirement changes even in a later stage of the development, but should deliver

working products in a short time. Thus, most of the IT companies are moving into

agile development these days to respond to this fluid business environment

(Highsmith, 2001).

Once a software product undergoes the different stages of a development phases, a

major task is to employ software quality assurance strategies to ensure the adaptation

of the end product in the company's environment. The quality assurance of a software

product is an ongoing process, which begins in/during the very early stages of the

development (Daniel, 2004). The product designed by software Development

Company must be process compliant to function successfully in a business

environment.

Hence the burning question within the researcher of this thesis is ‗Can the Software

Development Companies in Sri Lanka achieve expected Software Quality through

Agile Development?‘

In the process of finding the answers for the above problem the very question this

research tries to find the answer is ‗is there a quality difference between the software

products developed using Agile and Traditional methods and if there is a difference

what is the healthier method?‘

8

1.4 RESEARCH AIM & OBJECTIVES

A qualitative and quantitative study is carried out to identify the common software

development models in the Sri Lankan IT industry. The study is mainly highlight

whether the companies are able to achieve expected software quality through agile

development. The specific objectives of this study can be stated as:

Aim – To determine the most suitable software development methodology in

achieving high quality in software products

Objectives

 To identify the Software Quality factors.

 To identify the Traditional Software development models.

 To identify the software quality gap between Agile and identified

traditional method for each of the identified quality factor.

 To identify the appropriate development method to attain each of the

identified quality factor

1.5 SIGNIFICANCE OF THE STUDY

As already mentioned Information Technology is undergoing constant innovation. To

keep pace, software development organizations need to release business-critical

software in less time, but this increases risk often results in compromised quality. So

the question arises: How can a company save time and reduce costs without

sacrificing quality?

9

For a company to survive and to be a pioneer in any industry it has to expand the

market, while retaining existing customers and attracting new customers. Moreover

the SW development company needs to cater to its customers with quality products.

If the company‘s product is not up to the user‘s requirements it will not receive

further projects from the existing client, as well as negative word of mouth will

prevent the company getting new customers.

This research identifies whether the companies are able to achieve the quality aspects

with agility compared to traditional models and how companies can balance between

agility and software quality.

Such a study will help the companies to use most appropriate process model in their

development. This, on the one hand, will lead the companies to develop SW products

on time, within the budget and relatively error free, and on the other hand help

companies to retain existing customers and attract new customers through positive

word of mouth publicity. The research will bring industrial attention to the software

quality in agile development and will guide the Sri Lankan SW development

companies to face the challenge of global competition successfully.

1.6 RESEARCH LIMITATIONS

Due to the vastness of the Software Development sector, this study is confined to the

Software Development organizations registered with the ‗Software Exports

Association‘ (SEA) in Sri Lanka. The research focuses only on the organization

oriented quality factors. Based on the results of the pilot survey user oriented quality

factors are excluded from this research (refer page 73 for details). Since it has found

from the pilot study that the Waterfall model is the most common traditional method,

the research compares the Agile method with the Waterfall model.

10

1.7 THESIS STRUCTURE

This thesis is structured in two parts. The first part includes the chapters two and

three, focuses on the previous findings and the methodology used. Chapter 2 is

dedicated to literature review of software quality assurance in Agile development.

This review of the literature includes the basic quality related terminologies, popular

quality models and quality management philosophies in its first three sections and

further moves toward discussing the other related researches. Chapter 3 is a

methodological chapter and describes the research methods, variables, data collection

and data analysis. The second part of the thesis includes the chapters Four, Five and

Six and it is focuses on data analysis and empirical results, Discussion of findings &

Conclusions and finally the recommendations of the study.

11

CHAPTER TWO

2. LITERATUR REVIEW

2.1 INTRODUCTION

The chapter provides a comprehensive review of published work from secondary

sources related to the topic of this thesis. The chapter helps in identifying the subject

area precisely through what has been already proven. The Literature Review is

presented in five sections as follows,

 Defining terminologies (Quality, Software Quality and Quality Assurance)

 Identifying software quality factors via various quality management philosophies

and few famous quality models.

 Description of Software development process models and its evolution

 Agile Software development and Waterfall Software Development

 An analysis of other related researches

The first section of the chapter stats by defining the term quality and evolves the

discussion through describing the quality management philosophies, popular quality

models and software development process models respectively in the sections 2.2,

2.3, 2.4, 2.5 and lastly the section 2.6 discusses about the other related researches.

2.2 TERMINOLOGY

What is quality?

In the literature different people have defined quality in various different ways and

there were no one specific definition stated for the term ‗Quality‘. Also in the

12

literature quality is defined from various perspectives. Few definitions for the term

quality from different perspectives are stated below;

 Customer Based

o Quality can be defined as the degree to which a product, process or a

service meets the requirements (Madura, 2007)

o Quality is fitness for use (Juran J M, 1988)

o Quality consist of the capacity to satisfy wants (Edwards C D, 1968)

 Manufacturing Based

o Quality is the degree to which a specific product confirms to a design or

pacification.(Gilmore H L, 1974)

o Quality [means] conformance to requirements (Crosby P B, 1979).

 Product Based

o Quality refers to amount of the unpriced attributes contained in each unit

of the priced attribute (Leifler K B, 1982)

 Value Based

o Quality is the degree of excellence at an acceptable price and the

control of variability at an acceptable cost (Broh R A, 1982)

What is Quality Software?

Quality software is a software product which is reasonably defect-free, delivered on

time and within the budget, meets requirements and/or expectations, and is

maintainable. (Raman, 2009)

However, quality is obviously a subjective term. It will depend on who the 'customer'

is and their overall influence in the scheme of things. For a software product the term

‗customer‘ might include end-users, customer acceptance testers, customer contract

officers, customer management, development organization's management/

13

accountants/ testers/salespeople, future software maintenance engineers, stockholders,

magazine columnists, etc. Each one of them will have their own aspects on 'quality'.

For example, an end user might define quality as friendly and defect free while the

accounting department might define quality in terms of profit (Hoyer, 1996).

What is Software quality assurance?

The IEEE standard ANSI/IEEE 730-202 defines software quality assurance as a

―Planned and systematic pattern of all actions necessary to provide adequate confident

that an item or product confirms to established technical requirements‖. By going

down the path of IEEE definition two major camps defines the SW quality. (Hoyer &

Hoyer, n.d, pp.53-62)

 Conformance of the specification: quality defines in terms of the level which the

product or service meets its written specification.

 Meeting customer needs: Satisfying customer explicit or implicit needs

irrespective of any measurable product or service characteristics.

Currently software quality assurance is measured in two ways, from technical

perspective and from the user perspective. (Kokol et al., 1991)

In the technical perspective of measuring SW quality is based on specifications.

Developers measure quality and assure specification in terms of errors in code

through testing process and through other mechanisms such as formal specifications

and structured programming (Musa et al., 1990)

The end user perspective of software quality is measured through user experience to

denote how well software meets user expectations. User dissatisfaction does not

necessarily result from failure to meet specifications or coding errors, but can occur

by delays in delivering the product, as well exceeding the estimated budget.

14

2.3 SOFTWARE QUALITY MANAGEMENT PHILOSOPHIES

This section presents different philosophies of quality from view points of quality

management experts. These quality management philosophies proved a good

alternative to formalize quality models on which the research is based. Quality

management requires customer satisfaction, prefers prevention to inspection, and

recognizes management responsibility for quality. (Schwallbe, 2004)

2.3.1 FOURTEEN POINTS FOR MANAGEMENT - DEMING

Walter Edward Deming defines quality in terms of customer satisfaction (Deming,

1988) Customer satisfaction is beyond conformance to specifications. According to

Deming, the judge of quality should be the end user or the customer. Deming argues

that the management system should be implemented in a way that everyone in the

organization is responsible for quality of their output to the internal stake holders. He

introduced fourteen points for management for people to understand and implement

necessary quality transformation.

1. Create constancy of purpose for improvement of product and service. Stay in

business and provide jobs through innovation, research, constant improvements

and maintenance.

2. Adopt a new philosophy: For the new economic age, management needs to take

leadership for change into learning organization.

3. Case dependence on mass inception: Eliminate the need for mass inception by

building quality in to the product.

4. End awarding business on price: Aim at minimum total cost and move toward

single suppliers.

15

5. Constant improvement of the system of production and service: Improvement is

not a onetime effort. Management is obligated to continually look for ways to

reduce waste and improve quality.

6. Institute training: Workers should train properly on their jobs and learn by

objective method.

7. Institute leadership: Leading shall consist of helping people to do a better job and

to lean by objective methods.

8. Drive out fear: To assure better quality and productivity, people should feel

secure.

9. Break down barriers between departments: Team work culture across departments

10. Eliminate slogans, exhortations and numerical targets: Let workers formulate their

own slogans. Then they will be committed to the contents.

11. Eliminate numerical quotas or work standards: Quotes take into account only

numbers, not quality or methods. They are usually a guarantee of inefficiency and

high cost including doing damage to the company.

12. Remove barriers to taking pride in to workmanship: People are eager to do a good

job and distressed when they cannot achieve targets.

13. Institute a vigorous program of education: Both management and the work force

should to be educated in the knowledge and understanding including team work

and statistical techniques.

Take action to accomplish the transformation: It will require a special top

management team with a plan of action to carry out the quality mission. (Deming,

1988)

A critical mass of people in the company must comprehend the fourteen points

16

2.3.2 THE IMPORTANCE OF THE TOP MANAGEMENT COMMITMENT TO QUALITY -

JURAN

Joseph M. Juran proposes following two meanings to quality (Juran, 1988)

1. Quality consists of those product features which meet the needs of customers and

thereby provides product satisfaction.

2. Quality consists of freedom from deficiencies

Juran‘s hand book proposes quality as ―Fitness for use‖ rather than meeting

―Customer satisfaction‖, (Juran J M, 1988) arguing that it is not a feasible task to

meet customer needs. His view is much closer to the thought – ―Conformance to

Specification.‖ The three elements of the Juran trilogy are as follows;

1. Quality planning: A process that identifies the customers, their requirements, the

product and service features customers expect, and the processes that will deliver

those products and services with the correct attributes and then facilitate the

transfer of knowledge to the producing arm of the organization.

2. Quality control: A process in which a product is examined and evaluated against

the original requirements expressed by the customer. Problems detected are then

corrected.

3. Quality improvement: A process in which the sustaining mechanisms are put in

place so that quality can be achieved on a continuous basis. This includes

allocating resources, assigning people to pursue quality projects, raining those

involved and pursuing projects and in general establishing a permanent structure

to pursue quality and maintain the gains secured. (Juran, 1988)

17

2.3.3 STRIVING FOR ZERO DEFECTS - CROSBY

Philip B Crosby is a strong advocate of ―Conformance to specification‖. Crosby

summarizes his perspective on quality in fourteen steps built around following four

fundamental ―absolutes‖ of quality management.

1. Quality is defined as conformance to requirement; not as ―goodness‖ or

―elegance‖

2. The system for causing quality is prevention, not appraisal. That is, the quality

systems for suppliers attempting to meet customer‘s requirements are to do it right

the first time. Crosby is a strong advocate of prevention, not inspection. In a

Crosby oriented quality organization everyone has the responsibility for his/her

own work. There is no one else to detect errors.

3. The performance standard must be zero defects, not which ―close enough‖.

Crosby has advocated the notation that zero errors can and should be the target.

4. The measurement of quality is the cost of quality. Cost of imperfection, if

corrected, has an immediate beneficial effort on bottom line performance, as well

as on customer relations. (Crosby, 1979)

2.3.4 FISHBONE DIAGRAMS - ISHIKAVA

Kauru Ishikava defines quality as ―meeting customer needs‖. (Ishikava K, 1985) He

further argues that no specific quality standard could ever design or meet the expected

quality levels. According to Ishikava, quality is a very broad concept which goes

beyond product, process, service, information quality etc... He introduced quality

circles through Fish bone diagrams.

18

2.3.5 TOTAL QUALITY CONTROL - FEIGENBAUM

Armand Baum built his thought around a concept ―Total quality control‖ (Baum,

1983). Baum states that quality is a dynamic which must be defined in terms of

customer experience. He further states that quality should satisfy customer‘s explicit

and implicit needs (Baum, 1983).

2.4 SOFTWARE QUALITY MODALS

The previous section of this chapter focused on different viewpoints of quality

management gurus. These points could be helpful in solving common quality

management problems in Sri Lankan Software Development companies. Quality

management philosophies presented in the previous section represents flexible and

qualitative view points of quality; this section presents rigid and qualitative quality

structures which is a roadmap of identifying independent variables for current study.

2.4.1 MCCALL’S QUALITY MODEL

 (Source: McCall, 1977, pp.4)

Portability

Re-Usability

Inretoperatability

Correctness

Reliability

Efficiency Integrity

Usability

Maintainability

Flexibility

Testability
Product

Revision

Document

Operation

Product

Transition

Figure 02: McCall’s Quality Model

19

Jim McCall‘s quality model is primarily focused on system developers and the

development process. However, he has tried to bridge the gap between users and

developers by causing on number of quality factors, considering both users and

developers priorities. (McCall, 1977, pp.3) The quality model illustrated in the

diagram below is organized around three quality characteristics.

2.4.2 BOEHM’S QUALITY MODEL

(Source: Boehm, 1978, pp.25)

Genera

l

Utilitie

s

Portability

Device

Independent

Maintainabilit

y

Reliability

Efficiency

Human

Engineering

Modifiability

Understandability

Testability

Self Certainness

Accuracy

Robustness

Completeness

Consistency

Accountability

Device Efficiency

Accessibility

Communicativene

ss

Structuredness

Self

Descriptiveness

Consensus

Augment ability

Legibility

As-is-Utility

Figure 03: Boehm’s SW Quality Characteristics Tree

20

Berry W Boehm‘s model illustrated in the above diagram has similarities to McCall‘s

quality model. His qualitative approach defining quality stems from three levels in the

hierarchy, which ends with primitive characteristics. (Boehm, 1978) These primitive

characteristics individually contribute to overall quality level.

2.4.3 ISO 9126

Among the ISO 9000 series of quality standards, ISO has released the ISO 9126:

Software Product Evaluation depicted in the diagram below. (ISO/IEC, 2001)

Functionality

Maintainabili

ty

Reliability

ISO

9126

Portability

Usability

Efficiency

Source: Zhu, 2007, pp. 32

Figure 04: ISO Quality Model

21

ISO further propose quality characteristics/guidelines to evaluate the six areas of

importance mentioned above.

(Source: Zhu, 2007, pp. 34)

Each quality factor/ six areas of importance is represented by sub factors as depicted

in the above diagram.

2.4.4 CMMI

The Carnegie Mellon Software Engineering Institute (SEI) introduced Capability

Maturity Model Integration to evaluate organizations maturity levels through process

management, project management, and engineering and support maturity levels.

CMMI defines five stages based on maturity levels. (Emanuel et al., 2000)

2.4.5 FRUPS QUALITY MODEL

Robert Grady has presented similar model to McCall and Boehm. FRUPS stands for

Functionality, Usability, Reliability, Performance and Supportability. FRUPS

categories have been divided into two main categories; Functional and Non-

Functiona

lity
Reliability Usability Efficiency Maintaina

bility
Portability

Quality

ISO 9126

Suitability

Accuracy

Interpretabil

ity

Security

Functiona

lity

Complian

ce

Adoptabil

ity

Install

ability

Co-

existence

Replace

ability

Portability

Complian

ce

Analyzabi

lity

Changeabili

ty

Stability

Testabilit

y

Maintainabi

lity

Complian

ce

Time -

Behavour

Resource -

Utilization

Efficiency

Complian

ce

Understandab

ility

Learn

ability

Operatobi

lity

Attractiven

ess

Usability

Complian

ce

Maturity

Fault-

tolerance

Recoverabi

lity

Reliability

Complian

ce

Figure 05: The ISO Quality Attributes

22

Functional. (Grady, 1992) These categories are usable in assessing product and

requirement quality levels.

Considering the above SQA philosophies and the various quality models it has

identified that the most of the quality factors in different models overlap with each

other. And it appears that almost all the models and philosophies have mainly focused

on the Users Requirements, Testability, Maintainability and Portability. When

considering the User requirements it includes not only adhering to their functional

requirements, but also delivering the product on time and within the expected budget.

When summarizing the literature found above, software quality can be categorize as:

 Project quality - deliver the product on time within the budget

 Process quality - effectiveness, , predictability, repeatability, improvement

(Tyrell,2000)

 Product quality - reliability, correctness, durability, maintainability ,

testability, installability ect

2.5 SOFTWARE ENGINEERING PROCESS MODELS

This segment of the literature survey presents different software development process

models commonly used in the industry. These process models help the researcher to

understand the software engineering process and different process flows and the

evolution of the software development models. The section starts by defining

―Software Process‖ and evolve through identifying generic frame work present in

every SW engineering process, irrespective of the model. Furthermore, the section

describes the evolution with some conventional models, their strengths and

weaknesses and move towards explaining the Agile software development and the

importance of the agility in the modern SW Engineering work.

23

2.5.1 SOFTWARE PROCESS & GENERIC PROCESS MODEL

Pressman commenting on the SW process says thus; ―When you work to build a

system, it is important to go through a series of predictable steps – a road map that

helps you create a timely high quality result. The road map that you follow is called a

‗software process‘‖ (Pressman, 2010, pp.31).

A process can be defined as a collection

of work activities, actions and tasks that are performed when some work product is to

be carried. (Pressman, 2010, pp.15)

A process frame work provides the basis for a complete SW Engineering cycle by

discovering few frame work activities that are applicable to any SW project,

irrespective of size and complexity. Pressman had described five generic activities

encompassed in the SW engineering processes as follows.

Communication – Before starting any technical work it is extremely important to

communicate and collaborate with the customer about his/her requirement.

Planning – This helps to simplify the work to be done. A SW project is a complicated

journey, and planning creates a ‗map‘ that helps to guide the team

Modeling – Prior to the construction of the system, model it for better understand the

SW requirements and design the system to achieve those requirements.

Construction – This consist of the activities related to code generation and testing to

uncover errors in the code.

Deployment – Delivery of the software to its end user. This can be done as a whole or

partially completed increment so that the customer can evaluate the product and

provide feedback to the supplier. (Pressman, 2010, pp.39)

24

2.5.2 EVOLUTION OF SOFTWARE DEVELOPMENT

The primary function of software development process models is to determine the

order of the stages involved in software development and to establish the transition

criteria for progressing from one stage to the next. (Boehm, 1988 pp. 61) During the

history of software development, different models and approaches have been

suggested for deal with the complexity and uncertainty of software development.

Figure 2.5 shows the evolution of process models in the past decades. As can be seen

in the y-axis of Figure 1, it has been suggested that the evolution of software

development models originates from the problems of ad hoc programming that, at

first, led towards traditional plan-driven models and towards iterative change-driven

models of software development. (Basili & Reiter, 1981) The term ‗ad hoc‘ is used to

refer to the low degree of methodological discipline. It should also be noted that the

positioning of the different software development models on the y-axis in Figure: 5 is

illustrative rather than scientific.

(Source: Basili & Reiter, 1981, pp.45)

Figure 06: The Evolution of Software Process Models

25

2.5.2.1 Plan-Driven Models for Software Development

The plan-driven approaches of software development have been defined as document-

driven, code-driven, and traditional process models (Boehm, 1988). As the names

suggest, a common feature for the plan-driven process models is their emphasis on

defining the scope, schedule, and costs of the project upfront including, for example,

an early fixing stage and extensive documentation of the end product requirements.

One common characteristic could also be the recurrence of the software development

phases only once during the development process, i.e., with only hints of iteratively

(Larman & Basili, 2003). In the following sections of this thesis, the process models

of this category will be referred to as traditional software development.

The two-step process model of code-and-fix, used in the early days of software

development, resulted in difficulties that necessitated explicit sequencing of the

phases of software development (Boehm, 1988). In particular, the need to design prior

to coding, to define requirements prior to design, and the need for early preparation

for testing and modification were identified (Boehm, 1988). One of the first models to

rise to that challenge was the stage wise model as early as in the middle of the 1950s

(Benington, 1983). This model evolved from the problems caused by the increasing

size of software programs, which could not be handled by a single programmer

(Benington, 1983). In 1968, the NATO Science Committee held a software

engineering conference in Garmisch, Germany, where the ‗software crisis‘ or

‗software gap‘, was discussed (NATO Science Committee 1969). A standardization of

the software development process with an emphasis on quality, costs, and

development practices was the key recommendation of the conference (Lycett et al.,

2003). Soon after this, as a refinement of the stepwise model, the ‗waterfall model‘

was introduced.

26

The Waterfall Model: Early version of the waterfall model was introduced in 1970

by Royce (1970) and it has since evolved into a concept consisting of the sequential

phases of requirements analysis, design, and development (Larman & Basili, 2003).

According to Boehm (1988), the waterfall model provided two main advances over

the stepwise model: it introduced prototyping to parallel the stages of requirements

analysis and design, and provided feedback loops between the sequential stages. It

should also be noted that, already in the early waterfall model of Royce (1970), it had

been realized that it might be necessary to first build a pilot model of the system, i.e.,

to conduct two cycles of development and to obtain feedback to adjust the model.

Thus, hints of iterations in the model can be seen. This iterative feedback-based step

has been lost in most descriptions of this model, although it is clearly not classic IID.

(Larman & Basili, 2003, p.48) Today, the waterfall model has been adopted for most

software acquisition standards in government and industry (Boehm, 1988). Though

the waterfall model has solved various core problems in software development, it also

includes features not appropriate for every software development context (Boehm,

1988). A central problem of the waterfall model has been identified as its emphasis on

fully elaborated documents as completion criteria for early requirements and design

phases. (Boehm, 1988, p.63) In the water fall model, a reasonably sequential approach

is used. (Has a linear process flow) The result of one phase will virtually lead to the

next. Phases need to be worked completely for the project to advance. This model is

suitable at times where the requirements are fixed, stable and well understood. The

main disadvantages are that this is not applicable to large and ongoing projects where

the requirements are ever changing. And there is lack of quality assurance during

phases. (Pressman, 2010, p.40)

27

The V-Model: This model can be considered a variation of the waterfall model. The

original V-Model includes similar phases to the waterfall model, but its phases are not

defined as a linear activity but form a V-shape. The V-Model first became a standard

for German civil and military federal agencies in 1997, as a result of the Development

Standards for IT Systems of the Federal Republic of Germany. In this model, the

Coding- phase is situated in the intersection of the V, while the software design,

software verification, system design, system verification, and requirements

engineering, system validation form the crescent counterparts each side of the V-

shape. The model emphasizes traceability between the requirements, design and

implementation. (Schauble, 2007) The lack of attention to quality assurance in the

waterfall model was one of the reasons that have led to development of the V –

model. As the team moves down the left base of the V, basic problem requirements

gradually converts to more detailed technical representation. Once the code

generation is done the team moves up the right side of the V where there is chain of

tests (SQA activities) associated to validate each of the models created in the left side.

Since the model is almost similar to the water fall model the same disadvantages are

applicable to the V – model except lack of SQA activities. (Pressman, 2010)

(Source: Pressman, 2010, pp.42)

Figure 07: Waterfall Model

28

(Source: Pressman PS. 2010, p.47)

More commonly, it has been argued, that no life-cycle scheme, even with variations,

can be applied to all system development. (McCracken & Jackson, 1982, p.30) On the

other hand, according to the survey study of Fitzgerald and Wynn (2004), despite

numerous existing software development methodologies, as much as 60% of software

development organizations do not apply any development methodology. An

additional problem has been identified in using a disciplined approach to software

development; rather than focusing on the end (the development of software),

developers become pre-occupied with the means (the software development method).

(Fitzgerald & Wynn, 2004, p.65) In practice, the result may be the disparity between

the organizational software development process and its actual implementation in the

software development teams (Fitzgerald & Wynn, 2004).

Another dilemma identified among plan-driven approaches to software development,

is the pursuit of certainty. The up-front requirements definition, and locking of the

project scope, leads to contracts and decisions based on estimations of costs, time and

resources. However, such estimates have been found to be highly prone to uncertainty

Requireme

nts

modeling

Architectur

al design

Component

design

Code

generation
Unit

testing

Integration

testing

System

Testing

Acceptance

testing

Figure 08: V Model

29

(Morien, 2005). Nonetheless, the success of software projects is often measured

against these estimates as it may be appealing, from the viewpoint of both customer

and supplier, to agree fixed costs, scope and schedule for the project up-front.

However, it has been stated that certainty is a myth and is the most uncertain part of

any project. (Morien 2005, p.519) In fact, it could be argued that the quest for

certainty, in both time and money, may not only fail to pay off in these respects but

may seriously affect the quality of the end product as well.

Hence, it can be argued that the plan-driven models of software development can and

should be applied in a dynamic way by repeating the phases or even the entire

process, if necessary. However, the original purpose of these process models was not

to welcome changes during the development, but rather to try to fix factors, such as

scope, time and money, up-front in order to eliminate change which was considered a

risk factor.

2.5.2.2 Iterative Change-Driven Models for Software Development

The central software development models, developed after the waterfall model, seem

to have the common aim of enabling, at least to some degree, the evolution of product

requirements during the process of software development. This contributed one main

modification to the earlier software development models: the adoption of the iterative

and incremental approach. Iterative development refers to the overall lifecycle model

in which the software is built in several iterations in sequence (Larman, 1998).

According to Larman (1998), iteration can be considered as a mini-project in which

the activities of requirements analysis, design, implementation and testing are

conducted to produce a subset of the final system, often resulting in internal iteration

release. An iteration release has been defined as a stable, integrated and tested

30

partially complete system. (Larman, 1998, p.10) Incremental development involves

adding functionality to a system over several releases, i.e., a repeated delivery of a

system into the market or production. Thus, one incremental delivery may be

composed of several iterations. A development approach where the system is

developed in, several iterations is called iterative and incremental development (IID),

yet it is often referred to as iterative development. (Larman & Basili, 2003) Even

though agile software development has recently brought the IID approach of

developing software into the spotlight, the history of these approaches is, in fact,

considerably longer (Larman & Basili, 2003). Many of the earlier change driven

approaches have adopted the ideologies of prototyping, for example, where the first

early prototype gradually evolves into the final software product with no formal

specifications or co-operation with the customer (McCracken & Jackson, 1982).

Among the first models that focused on increasing the possibility of determining

product improvements throughout the development process, was the evolutionary

development model. This concept was first introduced in 1981 (Gilb, 1981) and has

been expanded by Gilb (1988, 2005). This method suggested an iterative development

approach in which the product increment was understood as a delivery to the real

customer rather than a prototype (Gilb, 1981). While evolutionary delivery also lacks

plans for future deliveries, it does attempt to capture feedback to guide future

deliveries. This is in contrast to pure incremental delivery where the plan is drafted

for several future deliveries and feedback is not the sole driving force (Larman, 1998).

The evolutionary model was followed by the transform model (Balzer et al., 1983),

which is also based on the iterative development model and on adjusting the product

during the development. The transform model, however, had a strong emphasis on

product specifications due to its ideology of focusing on automatic transformation of

specifications into code (Boehm, 1988). This approach had its origin in the problems

31

of the earlier software development models producing spaghetti code, which was

difficult to modify and maintain (Boehm, 1988).

The Spiral Model: This was introduced in the late 1980s. The model typically

consists of four iteratively repeatable steps as mentioned below:

1) Determining the objectives, alternatives, and constraints,

2) Evaluating alternatives, and identifying and resolving risks,

3) Development and verification, and

4) Planning the next phase. (Boehm, 1988)

Boehm (1988) defined the spiral model as a risk-driven approach for software

development. In the spiral model, the iteratively evaluated strategy for resolving the

risks of the next spiral has an effect on the choice of the software development

approaches to be adopted. Depending on the risks, the spiral model then allows the

adoption of any mixture of development approached, such as prototyping or elements

from the specification-oriented waterfall approach modified to incremental

development. According to Boehm, the risk-driven approach also means that the

results of each risk analysis activity has an effect on the amount of time and effort

allocated to the different development activities in the following spiral, while also

influencing the required level of completeness, formality, or granularity of product

specifications. (Boehm, 1988)

32

(Source: Pressman, 2010, p.47)

Figure 09: Spiral Model

The Unified Process - This is another iterative and change driven model that

emerged in the early 1990s. This process model consists of use case-driven and risk-

driven procedure. It also takes account of evolutionary software development based

on iterations and increments. A unified process is an iterative and incremental

software development process framework providing evolutionary feel that is essential

in the modern software development. (Kroll et al, 2003) This model was introduced

by James Rumbaugh, Grady Booch and Ivar Jacobson during the early 1990s and it is

an attempt to draw on the best features and characteristics of traditional software

process models. (Pressman 2010, pp.81)

Unified process divides the project in to 4 phases – Inception, Elaboration,

Construction and Transition and the five generic frame work activities

(communication, Planning, Modeling, Construction and Deployment) are included

with no exception.

33

(Source: Lewis, 2006, p.46)

The figure below depicts the relationship between UP phases and the general SW

development activities.

(Source: Pressman, 2010, p.51)

Construction

Deployment

Planning

Modeling
Communication

Inception
Elaboration

Construction

Transition

Figure 10: Phases in the Unified Process

Figure 1: SWD Phases & Generic Activities

34

 Inception

As shown in the diagram (Figure 9) this is the smallest phase in the project, and

ideally it should be quite short. If the Inception Phase is long, then it is usually an

indication of excessive up-front specification, which is contrary to the spirit of the

Unified Process.

The goals of the Inception phase can be list as follows:

 Establish a justification or business case for the project

 Establish the project scope and boundary conditions

 Outline the use cases and key requirements that will drive the design tradeoffs

 Outline one or more candidate architectures

 Identify risks

 Prepare a preliminary project schedule and cost estimate (Kroll et al,2003)

 Elaboration

The Elaboration phase focuses on capturing system requirements as much as

possible. The primary goals of Elaboration can be listed as follows:

 To address known risk factors

 To establish and validate the system architecture

Activities carried out in this phase include the creation of use case diagrams,

conceptual diagrams (class diagrams with only basic notation) and package

diagrams (architectural diagrams).

In order to achieve the second objective a partial implementation of the system is

carried out; this includes developing core, most architecturally significant,

http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Risk#Economic_risk
http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Package_diagram
http://en.wikipedia.org/wiki/Package_diagram

35

components. It is built in a series of small, time boxed iterations. By the end of the

Elaboration phase the system should have stabilized executable architecture

baseline that support the key system functionality and exhibit the right behavior in

terms of performance, scalability and cost.

Elaboration phase‘s final deliverable is a plan that includes cost and schedule

estimates for the Construction phase. Since this plan is based on the Elaboration

phase experience should be accurate and credible.

The Lifecycle Architecture Milestone marks the end of the Elaboration phase.

(Kroll & Kruchten P, 2003)

 Construction

This is the largest phase in the project consisting of much iteration. In this phase

the rest of the system is built on the foundation established in Elaboration phase.

The features of the system are implemented in a series of short, time boxed

iterations and each result in an executable release of the software.

The Initial Operational Capability Milestone marks the end of the Construction

phase.

 Transition

The final phase of the project is Transition. A system that has been developed

through all the above phases is deployed to its end user at this phase. Feedback

received from an initial release (or initial releases) may result in further

refinements to be incorporated in several Transition phase iterations. The

Transition phase also includes system conversions and user training. The Product

Release Milestone marks the end of the Transition phase.

36

Unified process can be described in two models namely Rational Unified Process and

Agile Unified Process.

 Rational Unified Process

 Agile Process

Since the research is based on Agile development the literature survey section does

not provide details of the Rational Unified Process (RUP). However, for the

completeness of this section a pictorial representation of RUP is attached below

(Figure: 11).

(Source: Witmann, 2005)

Agile software development, which emerged in the mid-1990s, can also be classified

as an iterative and change-driven software development approach. It could be argued

that at present there is no common agile process model with specified phases, but

there is rather a set of fundamentals (Agile Alliance 2001)

Figure 2: RUP Model

37

The diagram below illustrates how Beck (1999) has compared the traditional process

with the iterative process.

According to Lorman ―in modern iterative methods, the recommended length of one

iteration is between one and six weeks‖, (Lorman, 2004 p.11), where as the

―incremental deliveries are often between three and twelve months‖ (Lorman, 2004,

p. 20). The principles of agile development suggests a short (i.e. From two weeks to

two months) duration of development iterations. Evo also promotes relatively short

delivery cycles of few weeks (Lorman, 2004). Similarly as in the evolutionary model

agile methods also consider the term ―iterative‖ as referring to evolutionary

advancement of the product rather than just rework. (Lorman & Basili, 2003) The

next section discusses the agile development in detail.

Analysis

Design

Implementation

Test

Analys

is Design
Imple

mentat

ion

Test
Analys

is Design
Imple

mentat

ion

Test
Analys

is Design
Imple

mentat

ion

Test

Time

Waterfall Iterative

 (Source: Beck, 1999, p.189)

Figure 3: Model Comparison

38

2.6 AGILE SOFTWARE DEVELOPMENT & WATERFALL SOFTWARE

DEVELOPMENT

This section detailed both Agile and Waterfall methods including their history,

fundamentals and current status. A few agile techniques common in the Sri Lankan

context has also been detailed in the later part of the section.

2.6.1 WATERFALL SOFTWARE DEVELOPMENT

History of Waterfall Development

As the history says, originally waterfall model was mentioned by Dr. Winston W.

Royce in 1970 in the article "Managing the Development of Large Software Systems:

Concepts and Techniques". In the article he proposed what is now popularly referred

to as the waterfall model as an initial concept. His paper then explored how the initial

model could be developed into an iterative model, with feedback from each phase

influencing previous phases, similar to many methods used widely and highly

regarded by many today (Royce, 1970).

Phases of the Waterfall Model

The Waterfall Method is comprised of a series of very definite phases, each one run

intended to be started sequentially only after the last has been completed, with one or

more tangible deliverables produced at the end of each phase. According to the article

published by Paul Smith Waterfall model can be classified in as 10 phase and 6 phase

model. According to the article the 10 phase model consist of the following phases

and respective deliverables. (Smith, 2011)

1. Initiation Phase: An opportunity is spotted, and is proposed in a formal

Concept Proposal Document.

39

2. System Concept Phase:

o Deliverables:

 System Boundary Document (to define the scope or boundary of the

concept),

 Cost Benefit Analysis,

 Risk Management Plan,

 Feasibility Study. Typically evaluated in three areas: economical,

operational, technical.

3. Planning Phase:

o Used as a reference to keep the project on track and to evaluate the

progress of the MIS team.

o Provides the basis of acquiring the resources needed to achieve a solution.

o Deliverables:

 A Project Management Plan is developed.

4. Requirements Analysis Phase:

o Deliverables:

 Software requirement specification

 Dataflow diagrams

5. Design Phase: The requirements are analyzed in order to design the product's

architecture.

o Deliverables:

 Design of the Output Requirement including frequency, distribution,

volume and format.

 Design of the input layouts

http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/WaterfallSDLCDeliverables/tabid/599/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/WaterfallSDLCDeliverables/tabid/599/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/WaterfallSDLCDeliverables/tabid/599/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/DesignPhase/tabid/573/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/WaterfallSDLCDeliverables/tabid/599/Default.aspx

40

 Finalized file design including File Name, Field Names, Field Type,

Field Size, Primary Key and Foreign Keys.

6. Development Phase: The design is converted into reality and then white box

tested by the development team.

7. Integration and Test Phase: The product is tested by the development team,

Quality Assurance staff, and final users.

8. Implementation/Deployment Phase: The product is rolled out into a

production environment.

9. Operation and Maintenance Phase: The system is monitored to ensure it

continues to meet performance requirements, with periodic In-Process

Reviews to suggest ways on improving the system.

10. Disposition Phase: The product is removed from service, with special

emphasis on archiving the data, or moving to another system.

Six phase model for small organizations has been described in the article as follows

(Smith, 2011)

 Initiation/Planning/Concept Phase (5% of the project)

 Requirements Analysis Phase (10% of the project)

 Design Phase (15% of the project)

 Development Phase (40% of the project)

 Integration and Test Phase (20% of the project)

 Implementation/Deployment Phase (10% of the project)

In Royce's original waterfall model, the following phases are followed in order;

(Royce, 1970).

http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/DevelopmentPhase/tabid/588/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/TestingPhase/tabid/571/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/DeploymentPhase/tabid/589/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/WaterfallMethodSDLC/OperationsMaintenancePhase/tabid/598/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/WaterfallMethodSDLC/OperationsMaintenancePhase/tabid/598/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/DesignPhase/tabid/573/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/DevelopmentPhase/tabid/588/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/TestingPhase/tabid/571/Default.aspx
http://skysigal.xact-solutions.com/Resources/SoftwareDevLifeCycle/DeploymentPhase/tabid/589/Default.aspx

41

1. Requirements specification

SRS is a complete description of the behavior of a system to be developed. It includes

a set of use cases that describe all the interactions the users will have with the

software. In addition to use cases, the SRS also contains non-functional requirements.

2. Design

Software design is a process of problem solving and planning for a software solution.

After the purpose and specifications of software are determined, software developers

will design or employ designers to develop a plan for a solution. It includes low-level

component and algorithm implementation issues as well as the architectural view.

3. Construction or coding

Construction is the realization of a technical specification or algorithm as a program

4. Integration

Here the various codes designed by different programmers are integrated together

5. Testing and debugging

Methodical process of uncovering and reducing the number defects/bugs in the

software product

6. Installation

Locate the program onto a computer system so that it can be executed.

Maintenance

Is the modification of a software product after delivery to correct faults, to improve

performance or other attributes.

http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Designer
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Installation_(computer_programs)
http://en.wikipedia.org/wiki/Execution_(computing)
http://en.wikipedia.org/wiki/Software_maintenance

42

Advantages of the Waterfall Model

As been described by Bhakti Satalkar the most important advantage of the model is

that it imposes control, since the start and the end of each of the phases is well

decided. This also helps in recognize the progress in the system, not only for the

vendor, but also for the client. Because the requirements of the system along with the

design are written down before hand, it guarantees that there is no waste of time or

efforts. This in turn ensures that the system does not slip on the schedule. Writing the

specification of the system in advance also ensures that the customer expectations are

met. The written document helps the next team in the next phase, as all the details

about the system are well mentioned in the document (Satalkar, 2011).

When the requirements and design are made before the start of the actual

development of the system, the quality of the system is better. It also proves to be of

help in identifying the flaws in the system and correcting them in advance. Due to

clear demarcation of phases, knowledge transfer between the different teams is

efficient (Satalkar, 2011).

Since the system is planned well in advance, the number of resources required to

develop the system are also not many. There is clear distribution of work, which can

be carried out as all the tasks are well defined in advance (Satalkar, 2011).

At the end of each phase, there is quality control and quality assurance activities been

carried out. When the tests are carried out at the end of each of the phase, it helps in

getting rid of bugs in the system, before the bugs give rise to some more bugs in the

system. This in turn helps in quality control and quality assurance activities (Satalkar,

2011).

43

Disadvantages of the Waterfall Model

The very assumption that the all the system requirements can be frozen before the

system is designed is the biggest disadvantage of the waterfall model. When a new

system has to be designed more often than not the user of the system is not able to

give all the requirements at one go and the requirement changing again is not new. If

an existing system is to be automated, then this disadvantage no more remains a

disadvantage (Satalkar, 2011).

Since the hardware and the software requirements are also frozen at the beginning of

the project, the hardware and software chosen often becomes obsolete, as the software

projects often taken long period of time to be completed. Another disadvantage of the

system is that a working model is not available till the last stage of software

development. Therefore the client is not able to find out any mistakes in the software,

till the final version is given to him (Satalkar, 2011).

Another disadvantage of this software development model lies in its biggest

advantage. One cannot go back to the earlier stage, once the development work has

moved to the next phase. Therefore, in case there is a problem in the design phase,

then the implementation phase and the further phases face a lot of problems. Due to

this disadvantage was the modified waterfall model introduced, where one can go

back to the previous stage in a loop (Satalkar, 2011).

2.6.2 AGILE SOFTWARE DEVELOPMENT

History and Fundamentals of Agile Development

The emergence of agile methodologies began in the mid 1990‘s, with the surfacing of

Extreme Programming (XP) (Beck 1999), Scrum (Schwaber, 1995), eXtream Testing

(Jeffries 1999), Crystal Family of Methodologies (Cockburn 1998), Dynamic System

http://www.buzzle.com/articles/modified-waterfall-model.html

44

Development Method (DSDM) (Stapleton 2003), Adaptive Software Development

(ASD) (Highsmith, 2000) and Feature-Driven Development (FDD) (Code et al.,

1999)

 The principles of agile development can be traced back to lean manufacturing in

1940s, and Agile manufacturing in the early 1990s. Lean manufacturing is based on

the fundamentals of short cycle time reduced setup, multi-skilling and flow being in

place while driving out waste in time, activity, inventory and space (Ross & Francis,

2003). The essence of the agile approach in manufacturing has been summarized as

―the ability of an enterprise to thrive in an environment of rapid and unprintable

change‖ (Gould 1997, p28). While the debate between the actual differences of lean

and agile is still continuing n the manufacturing sector (James 2005), the central

ideologies of both can be found in the fundamentals and methodologies of agile

software development. For example, in Lean software development (Poppendieck &

Poppendieck 2003) the lean principles are integrated with agile practices.

In software development, the agile ‗movement‘ was launched in 2001 when the

various originators and practitioners of these methodologies met to identify the

common aspects of these methods that both combined old and new ideas and clearly

shared some particular ideologies in common. As a result, the manifesto for Agile

Software Development was drafted and the term ―agile‖ was chosen to combine the

methods and techniques that would share the values and principles of the Agile

Manifesto (Agile Alliance 2001) set out the central elements of agility that should be

embedded in any method claiming to be agile. The agile manifesto emphasizes the

agile values listed below on the left, while the items listed below on the right are still

considered valuable.

45

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

As per the Agile Alliance the twelve principles of agile software development are

mentioned below (Agile Alliance, 2001);

1. The highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. The welcoming of changing requirements, even late in development, for the

benefit of the customer‘s competitive advantage

3. Frequent delivery of working software, the release cycle ranging from a

couple of weeks to a couple of months, with a preference for a shorter

timescale

4. Daily collaboration of business people and developers throughout the project

5. Building of projects around motivated individuals by offering them an

appropriate environment and the support they need, and trusting them to get

the job done

6. Emphasis on face-to-face conversation for conveying information and within

a development team

7. Working software is the primary measure of progress

8. Agile processes promote a sustainable development pace for the sponsors,

developers, and users

9. Continuous attention to technical excellence and good design enhances

agility

46

10. Simplicity is essential for maximizing the amount of work not having to be

done

11. Self-organizing teams give best results in terms of architectures,

requirements, and designs

12. Regular reflection of teams on how to become more effective, and tuning and

adjusting its behaviour accordingly.

The principles of agile software development can be considered as fundamental

ideologies that should be embedded in the practices of any software development

method claiming to be agile.

The core features of agility that should be embedded in any true agile method have

been further specified as follows:

 Iterative development of several cycles,

 Incremental development,

 Enable the teams to self-organize and determine the management of work,

 Emergence of processes, principles, and work structures during the project.

 (Boehm & Turner, 2003)

In addition, the active involvement of users in requirements and planning, and the

importance of tacit knowledge are identified as further important elements of agile

software development (Boehm & Turner, 2003).

Many of the principles behind the agile software development methods are not

claimed to be new. Several of these ideologies and related agile software development

methodologies have roots in, for example, the preceding iterative methodologies

(Abrahamsson, 2001) and agile and lean industrial product development

(Poppendieck & Poppendieck, 2003). In addition, it has been widely acknowledged

47

prior to the agile movement that the different methods of software development are

far from being neutral and universally applicable (Malouin & Landry, 1983).

Benington, among many others, has earlier considered top-down programming and

specification as highly misleading and dangerous, as it assumes that sufficient detailed

knowledge is available up-front to precisely know the objectives before producing a

single line of code, and because it erroneously parallels the software development to

the manufacturing industry (Benington, 1983). Furthermore, the positive effect of

regular employee involvement in operating decisions and a high degree of

responsibility for overall performance in high team spirit, loyalty, and motivation

have also already been recognized among production workers (Deming, 1990).

Neither has the iterative or incremental mode of software development been invented

only by agile proponents, but it has a long history in software development (Larman

& Basili, 2003). However, the agile software development approach has

accomplished a novel mixture of old and new software development principles that

have been gaining increasing interest among practitioners and researchers alike.

Williams and Cockburn suggest that the novelty of agile software development is, .if

anything, the bundling of the techniques into a theoretical and practical framework.

(Williams & Cockburn 2003, p. 40)

In conclusion, the fundamentals of agile software development propose a very

different view to the certainty aspect in the software development process, compared

to the plan-driven approaches. In agile software development, the uncertainty of

schedule, scope and budget of any software development project can be considered as

a baseline assumption. Thus, agile software development methodologies can be

regarded as a means of responding to the uncertainty of software development, rather

than as a means of achieving certainty.

48

Current Status of Agile Software Development

Currently, there is considerable discussion in scientific forums, both in favour and

against agile methodologies. The early agile methodologies, especially, received

criticism for the lack of scientific evidence (Abrahamsson, 2002), and their suitability

only for software development contexts where small teams were producing non-

safety-critical products with volatile requirements (Williams & Cockburn, 2003)

Since the early days of agile software development, an increasing amount of interest

has been paid to agile methods, by both practitioners and researchers, thus creating a

growing body of empirical data on the different aspects of agile software

development. Apart from the individual methods and practices of agile software

development, problematic issues have arisen, such as the scalability of agile software

development for large and multisite projects (Eckstein 2004 ; Lindvall et al., 2004)

and the compatibility of agile methods with existing standards (Lycett et al., 2003;

Paulk, 2001; Reifer, 2003). Recently, the organizational and business aspects of

agility have been receiving more attention (Baskerville et al., 2005; Coplien &

Harrison, 2005; Oleson, 1998). Accordingly, the early agile methods and techniques

have been evolving and are being updated. e.g., XP (Beck & Andres 2004), Scrum

(Schwaber, 2004; Schwaber & Beedle, 2002), Crystal (Cockburn, 2005), Test-Driven

Development (TDD) (Beck, 2003), and DSDM (Staplenton, 2003)

At present, the most empirical evidence on the agile methodologies problem in

adopting agile methodologies can be found in balancing the currently dominating

engineering ideologies and methodologies of manageable, predictable and repeatable

processes with agile software development methods, which again embrace self-

organization, process adaptation and constant changes (Lycett et al., 2003). Balancing

the two approaches has been suggested in order to benefit from their strengths, and to

compensate for their weaknesses (Boehm & Turner, 2003).

49

Also there has been some confusion regarding the relationship between unplanned

coding and agile software development. It has been proposed that one reason for this

confusion is the piecemeal approach of agile software development (Highsmith &

Cockburn, 2001). For instance, quality in design in agile software development is

prioritized in ongoing design done in smaller chunks instead of massive up-front

design of the system (Highsmith & Cockburn, 2001). In fact, the existing agile

methodologies, such as Scrum for agile project management and XP for

implementation of software, all seem to propose a rather disciplined approach to

conducting the tasks of software development (Kähkönen & Abrahamsson, 2000;

Nawrocki et al., 2001; Paulk, 2001) Studies indicate that by adopting different agile

methods and practices, individual agile software development teams can accomplish a

methodology that meets with the goals of CMMI level 2. However, there still seems

to be a need to extend agile methodologies in order to meet, for example, CMMI

requirements related to more organizational level practices.

Some Common Agile Techniques

Extreme Programming (XP)

The most widely used approach to agile SW development is extreme programming.

Communication, simplicity, feedback, courage and respect are the five values that

provide foundation to XP. (Pressman, 2010)

To achieve simplicity XP restrict

developers to design only for immediate needs, rather than consider future needs with

the intent to create a simple design that can be easily implemented in code. If the

design has to be improved it can be recaptured at a later time. (Pressman, 2010)

XP uses an object oriented approach as its preferred development paradigm and

encompasses set of rules and practices within its four frame work activities: planning,

design, coding and testing. (Pressman, 2010)

50

(Source: Pressman 2010, p80)

Adaptive Software Development (ASD)

ASD has been proposed by Jim Highsmith as a technique for building complex

software and systems. ASD mainly focus on human collaboration and team self-

organization. ASD life cycle incorporates three phases: speculation, collaboration and

learning. (Pressman 2010)

(Source: Highsmith, 1997, p.67)

Pair programming

Coding

Test

Planning

Design

Simple design

CRC cards

Unit test

Spike solutions

prototypes

Acceptance test

Continuous integration
Unit test

Software increment

Project velocity computed

Figure 4: Extreme Programming

Figure 5: Adaptive SW Development

51

Scrum

The name Scrum is derived from an activity that occurs during a rugby match. This

method was conceived by Jeff Shutherland and his development team in the early

1990s. Recently further development on the Scrum method has been performed by

Schwaber and Beedle. (Pressman, 2010)

Scrum emphasis use of a set of software process patterns that have proven effective

for projects with tight time lines, changing requirements and business criticality.

Scrum consists of set of development actions as described below:

Backlog: A prioritized list of project requirements or features that provide business

value for the customer. Items can be added to the backlog at any time. This is how it

incorporates the changes. The project manager set the priorities of the items in the

backlog

Sprints: Consists of work units required to achieve a requirement defined in the

backlog this has to fit into pre defined time –box. During a sprint changes are not

introduced. Sprint enables the team to work in short but stable environment.

Scrum Meetings: These are short (typically 15 minutes) meetings held daily by the

team. Three main questions are asked and answered at these meetings:

 What did you do since the last scrum meeting?

 What obstacles are you encountering?

 What do you plan to accomplish by the next team meeting?

The tame leader named scrum master lead the meeting and assess the responses from

each member. These meetings help to uncover potential problems as early as possible.

Demos: Use to deliver the SW increment to the customer so that the functionality that

has been implemented can be demonstrated and evaluated by the customer. The demo

52

may not contain all planned functionality, but those functions that can be delivered

within the time-box that was established. (Pressman, 2010)

(Source – Schwaber & Beedle 2004, p.54)

2.7 RELATED STUDIES

Because agile development is such a new topic it was very difficult to find related

researches. Some analysis was found, but most of the articles and books about the

agile development are written by the inventors of agile manifesto and since there can

be some sort of biasness toward their own methods the researcher of this thesis has

not made much attention on those.

Over view of Agile Management and Development Methods – Addicam.V.Sanlay

The white paper helped the researcher to identify the current software management

and development environment, circumstances of the current situation, identify current

management and development methods and ascertain how current management and

Figure 6: Scrum

53

development processes can handle the problem. Finally it has provided a comparison

of agile and traditional methods for a selected software product.

According to author of the above white paper, today, there is a constant need for

delivering more in a given amount of time (Sanjay, 2005). In addition, other attributes

of the current development environment identified by the author are listed below.

 Availability of skilled professionals - the newer the technology, tools, methods, and

domain, the smaller the pool of skilled professionals.

 Stability of implementation technology - the newer the technology, the lower the

stability and the greater the need to balance the technology with other technologies

and manual procedures

 Stability and power of tools - the newer and more powerful the development tool,

the smaller the pool of skilled professionals and the more unstable the tool

functionality

 Effectiveness of methods - what modeling, testing, version control, and design

methods are going to be used, and how effective, efficient, and proven are they

 Domain expertise - are skilled professionals available in the various domains,

including business and technology (Sanjay, 2005). Due to this situation today many

of the development processes are uncontrolled, the inputs and outputs are either

unknown or loosely defined, the transformation process lacks necessary precision

and the quality control is not defined. (Sanjay, 2005) Therefore, today it is difficult

to emphasis on process and upfront planning hence ―heavy‖ or ―monumental‖

models like waterfall and spiral which focus primarily on planning is not suitable to

cater to the today‘s ever changing environment. (Sanjay, 2005)

―Currently, most software management & development is considered a ―chaotic‖

activity, better known as ―code and fix‖. This mean software is written without much

54

of an underlying plan, and the design of the software system is cobbled together.‖

(Sanjay, 2005) As Sanjay has described in his white paper the unpopularity and

unsuitability of these traditional ―heavy‖ methodologies have lead companies to move

for modern methods like agile.

In its second section the white paper describes the history, characteristics of agile

development, where to and where not to use agile, currently available agile

development processes like extreme programming, scrum, crystal, dynamic systems

development method (DSDM) and wisdom. This helped the researcher to sharpen

knowledge in agile development.

History of Agile Development

In February of 2001, a group of people, frustrated with the existing heavy software

methodologies met in Utah to find some common ground in alternate software

development. They came up with this manifesto:

We are uncovering better ways of developing software by doing it and helping others

does it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more. (Highsmith, 2001) This manifesto is the cornerstone of all the different Agile

Software Management & Development methods.

55

Agile Development Characteristics

Today‘s time-sensitive business climate requires that we quickly accommodate

requirements changes during development and, after development, be equally adept at

delivering the upgrades caused by software‘s rapid software evolution and the

customer‘s ever-increasing requirements (Aoyama, 2000). A dominant idea in agile

development is that the team can be more effective in responding to change if it can:

 Reduce the cost of moving information between people

 Reduce the elapsed time between making a decision to seeing the consequence of

that decision

 Place people physically closer

 Replace documents with talking in person and at whiteboards, and

 Improver the team‘s amicability-its sense of community and morale- so that people

are more inclined to relay valuable information quickly

 Make user experts available to the team or, even better, part of the team and

 Work incrementally (Cockburn et al., 2001)

Where to use Agile Development

Agile Management & development methods are used under the following

circumstances:

 Customers/users are active participants in requirements and/or analysis modeling

efforts

 Changing requirements are welcomed and acted upon accordingly – there is no

―requirements freeze‖

56

 Working on the highest priority requirements; first, as prioritized by your project

stakeholders, and in turn focusing on highest risk issues as work progresses

 Taking an iterative and incremental approach to modeling

 Primary focus is on the development of software, not documentation or the models

themselves

 Modeling as a team where everyone‘s input is welcome

 Actively trying to keep things as simple as possible – using the simplest tools

available and creating the simplest model(s) that do the job

 Discarding most, if not all, models as development progresses

 Customers/business owners make business decisions, developers make technical

decisions.

 The content of your models is recognized as being significantly more important than

the format/representation of that content

 Test what you are describing with your model(s) is a critical issue being continually

considered as you model (Ambler, 2001)

Where not to use Agile Development

Agile development methods are not used under the following circumstances:

 Goal is to produce documentation, such as a requirements document, for sign-off by

one or more project stakeholders

57

 Using a case tool to specify the architecture and/or design of software BUT not

using that specification to generate part or all software

 Customers/users have limited involvement with your efforts. For example they are

involved with initial development of requirements, perhaps available on a limited

basis to answer questions, and at a later date will be involved in one or more

acceptance reviews of your work

 Focusing on a single model at a time. Common examples are ―use case modeling

sessions‖, ―class modeling sessions‖, or ―data modeling sessions.‖ The root cause of

this problem is typically ―one artifact developers‖ such as people specialized in data

modeling or user interface modeling – with Agile Method generalists should be

leading the effort.

 Working towards a freeze of one or more models – In other words you are taking a

serial approach.

 Delivering models and/or documentation to another team who will then evolve the

system further. In other words, ―handing off‖ work in a serial manner

The third section describes few companies that have moved to agile methods and a

comparison of the projects before and after adapting agile techniques. This helps the

researcher to get an idea how certain project characteristics have been by moving

towards agility. But this has not discussed the difference of cost, time and number

of defect factors before and after adaption.

58

Table 01: Agile Adoption & percentage of Change (Source: Sanjay, 2005)

Before adapting

Agile

After adopting

Agile
% Change

Total Code size 45773 15048
-67%

Average methods

per class
6.30 10.95 +73%

Average lines per

method
11.36 5.86 -48%

Average cyclometric

complexity
3.44 1.56 -54%

This white paper helps the research to sharpen the knowledge in the subject area and

provides an answer to the first research question ―Why today‘s companies are rapidly

moving into agile software development?‖ But it has not focused on the main research

question, ―Whether the companies were able to achieve required process, project and

product quality through agility?‖

Agile Systems Development and Stakeholder Satisfaction:

A South African Empirical Study - Carlos Ferreira & Jason Cohen

The above named research was implemented using 59 South African Development

projects. The aim of the research is to identify how five important characteristics of

agile method (namely, iterative development, continuous integration, collective

ownership, test-driven design and feedback) influence stakeholder satisfaction.

(Ferreira & Cohen, 2008) To facilitate research Ferreira and Cohen has built a

conceptual model (figure: 17) and hypothesis. Within the study the stakeholder

satisfaction has been considered in terms of satisfaction with process and satisfaction

with outcome. The independent variables of the research are the above mentioned five

dimensions of agile development. Ferreira and Cohen have briefly explained each of

the five characteristics as illustrated in the below Table 2. These details have helped

the researcher to enhance knowledge in the subject area.

59

(Source: Ferreira & Cohen, 2008)

Table 02: AM Characteristics (Source: Ferreira & Cohen, 2008)

AM Characteristics Description

Iterative Development

Quick delivery of small working software releases at

regular intervals or cycles

Continuous Integration

New code is integrated in to the production base code

continuously, ideally after each task is completed.

Collective Ownership

Any developer has the right to add or maintain the code

anywhere in the system at any time

Test-Driven Design

Developers write tests before they code. This practice

aims to encourage developers to think before coding

Feedback

Frequent feedback loop with customers allows

developers to ascertain the accuracy of the functionality.

Ferreira and Cohen have also described the differences between traditional models

and agile development. This helped the researcher to clarify understanding on both

methods. Some of the differences noted by Ferreira & Cohen are as follows;

Figure 7: AM Characteristics

Iterative

Development

Continuous

Integration

Collective

Ownership

Test-Driven

Design

Feedback

AM

Characteristics

Satisfaction with

process

Satisfaction with

outcome

Stakeholder

Satisfaction

60

Table 03: Traditional vs. Agile Development (Source: Ferreira & Cohen, 2008)

The research done by Ferreira and Cohen has focused on agility and customer

satisfaction where as the project focuses on identifying the quality gap between

traditional methods and agile development. Since customer satisfaction and software

quality related to each other this has provided direction to the researcher to carry out

the research on quality and agility, even though the researches have different aims and

methodologies. Ferreira and Cohen have done their study in the context of South

Africa, where as this research focuses on the Sri Lankan software development

industry. Ferreira and Cohen have carried out a hypothesis testing and developed five

hypotheses to achieve research objectives. Though the above mentioned study is to

find the customer satisfaction on some important agile characteristics, the research

aimed at Investigating whether there is a quality difference between agile and

traditional methodologies and in accentuating the difference.

Traditional Methods Agile Development

Process oriented, life cycle base and

plan driven with heavy documentation

No upfront planning and heavy

documentation

Focused on optimized processes
Short iterative cycles of development based

on product features.

Neither rapid feedback nor changes for

the system under development

Collaborative decision making,

incorporation of rapid feedback and

change, and continuous integration of code

changes into the system under development

Plan projects around tasks and

documentation

Plan projects around features where

development is evolutionary and iterative

Fix functionality and then adjusts time

and resources to reach the functionality

Fix time and resources, and then adjust the

amount of functionality

61

Agile Modeling (AM) – Using Models to Carry Out the Development Process

By Scott Abler, 2002

―Using agile modeling techniques and tools allows software developers to consider

complex problems before addressing them in programming. Agile planning and

development uses software modeling principles to let a developer design a software

system that truly meets the customer‘s requirements. This will lead to develop a final

product capable of catering the user‘s expectation‖ (Ambler, 2002). As described

above according to Scott Ambler who offered a suite of principles and practices for

software modeling, it is easy to meet user expectations or customer requirements

through Agility. According to Scott following factors make a contribution to the high

achievement of user expectations in Agile development.

 Stakeholders actively participate in the agile planning and development

 Teamwork is established

 Appropriate artifact (such as UML diagrams) is used to create suitable models

 Several models are created in parallel

 Correctness of the agile software models is verified

 The verified models are implemented and the resulting interface is presented

to the user

 Standards for agile requirement management are met

Also the values of the agile software development methodology have pointed out by

Scott as stated below;

62

 Communication – the agile team can exist and do tasks only in case

communication channels are established. The project manager is a person who

ultimately cares for establishing and maintaining the channels. Agile modeling

entails using agile project management software to build such channels and let

the team communicate with each other in real time.

 Simplicity. Agile planning and development will let the project team to make

their effort simple yet complete. Simple project management can be achieved

if developers clearly know their roles and duties within the agile modeling

project, and there are no nodes that make team collaboration and data

exchange more complicated.

 Rapid Feedback – the agile development process becomes effective if team

members request and give feedback. The agile project manager can receive

feedback to analyze issues and implement solutions that best contribute to the

achievement of balanced agile estimating and planning.

 Humility means a developer understands that he or she may not know

everything about the project so he/she should collaborate with the team to

share knowledge and perceive software development ideas. Following this

principle is a great contribution to the agile development management.

But in his study he has not considered traditional methods nor had compared Agile

with Waterfall or any other traditional method. But the aim of this research is to

indentify whether there is a difference in software quality between the products

developed using Agile and traditional methods. (Ambler, 2002)

http://www.mymanagementguide.com/guidelines/project-management/

63

An Introduction to Agile Software Development

By Szalvay, 2004

The article begins with describing the two development methods and further it moves

toward to contrast the two methods. As been described in the article one of the most

important differences between the agile and waterfall approaches is that waterfall

features distinct phases with checkpoints and deliverables at each phase, while agile

methods have iterations rather than phases. The output of each iteration is working

code that can be used to evaluate and respond to changing and evolving user

requirements.

Waterfall assumes that it is possible to have perfect understanding of the requirements

from the start. But in software development, stakeholders often don‘t know what they

want and can‘t articulate their requirements. With waterfall, development rarely

delivers what the customer wants even if it is what the customer asked for.

Agile methodologies embrace iterations. Small teams work together with stakeholders

to define quick prototypes, proof of concepts, or other visual means to describe the

problem to be solved. The team defines the requirements or the iteration, develops the

code, and defines and runs integrated test scripts, and the users verify the results.

Verification occurs much earlier in the development process than it would with

waterfall, allowing stakeholders to fine-tune requirements while they‘re still relatively

easy to change. (Szalvay, 2004)

As stated above the article discuses the practical differences in the in methodology

used in Agile and Waterfall methods. But in contrast this study aims at identifying the

software quality difference between the products developed using these methods.

64

Agile Adaption Rate Survey result: February 2008

By Jon Erickson, 2008

This survey was performed in early February 2008 using 642 respondents. The

survey was announced by Jon Erickson, the editor of the Dr. Dobb's Journal.

The findings of the survey stated:

1. 69% of respondents indicated that their organizations are doing one or more

agile projects. Of those that hadn't yet started, 15% believed their

organizations would do so within the next year.

2. 61% of developers think that their orgs are doing agile, whereas 78% of

management thinks so. Apparently developers are a bit more discerning.

3. 82% of organizations doing agile were beyond the pilot project phase.

4. Respondents overwhelmingly indicated that agile teams are producing higher

quality, have greater productivity, and enjoy greater stakeholder satisfaction.

See Figure 2.18.

5. Agile success rates: 82% for co-located teams, 72% for near located (people in

different cubes, on different floors, working from home), 60% for significantly

distributed (planes would be involved to get people together). See Figure 2.19

6. 84% of agile teams have iteration lengths of 4 weeks or less, and 2 week

iterations are the most popular.

7. Although on average the costs are lower on agile teams, 23% of respondents

believe they are experiencing higher average costs. 40% said costs were

unchanged and 37% had lower costs.

8. Co-located agile projects are more successful on average than non-co-located,

which in turn are more successful than projects involving off shoring.

http://www.ddj.com/
http://www.ambysoft.com/surveys/agileFebruary2008.html#Figure1
http://www.ambysoft.com/surveys/agileFebruary2008.html#Figure2

65

(Source: Ambler, 2007)

Figure 8: Effectiveness of agile software development compared with traditional

approaches.

(Source: Ambler, 2007)

Figure 9: Agile success rates by level of team member distribution

66

Waterfall Model Vs Agile

By Gray Pilgrim, 2010

This article is a comparative analysis of waterfall model vs agile model of software

development. According to the article two of the most popular software development

models are the 'Waterfall Model' and the 'Agile Model'. This article makes a waterfall

model vs agile model comparison that will serve to point out the differences in the

two different methods of software development. This comparative analysis may help

in choosing which model is conducive for software development project.

The article discusses the differences between Waterfall Vs Agile in terms of

Efficiency, Suitability and Conceptual differences. (Pilgrim, 2010)

Efficiency: The author of this article has determined the efficiency by the quality of

ultimate software product, number of bugs and the development time consumed. The

finding of the Pligrim‘s study has reflected that the Agile is more efficient than

Waterfall due to its adaptability to the real world. (Pilgrim, 2010)

Suitability: According to the findings of the above study Waterfall model is suited

for development of programs that are already stable where the design does not need a

major alteration. Agile development is more suitable at situations where the

requirements are changing rapidly. (Pilgrim, 2010)

Conceptual Differences: Waterfall model as its name reflected has a sequential

process in software development. Just like water progressively falls from one altitude

to the lower in a waterfall the production cycle of a software progress sequentially in

the Waterfall model. Where as in agile breed of models focused on ‗agility‘ and

‗adaptability‘ in there development.

http://www.buzzle.com/authors.asp?author=29994
http://www.buzzle.com/editorials/3-13-2005-67039.asp

67

Improving Software Quality with Agile testing

By Sugnadhi AD et al., 2008

The article published in the International Journal of Computer Applications stated

―Software engineering can be complex and hence has the risk of project delays,

defective product due to time constraints that lead to the risk of losing projects from

the customer. To succeed it demands the use of IT methodologies. But off the shelf

methodologies are not flexible. QA is an important part of software and ensures the

quality of deliverable. Agile development completely redefines quality assurance

work—from formal roles to day-to-day activities—making some traditional QA

responsibilities and outputs irrelevant. In this paper, we describe application of Agile

testing to software quality management that will ease development and testing. Also

we will explain how it helps in better planning and time management and how it

enables clients to achieve improved coordination of their test resources with the agile

development team by allowing automated tests to be developed in tandem with code

development on the same set of requirements. We‘ll summarize with existing agile

testing applications, most notably by describing how to effectively use professional

testers and how to thoroughly acceptance-test a system that‘s too large and complex

for a single customer to specify and the future of agile testing.‖

Waterfall Vs Agile: Can they be Friends

By Alberto Gutierrez

In the above mentioned article Gutierrez distinguished between projects suitable for

Agile Development and projects suitable for Waterfall development.

According to the article Agile is best suited to projects that:

68

 Focus on time to market - Time to market measures how fast a company can

have a product out in the market from the moment they start developing. A fast

time to market allows the company to have its product available long before its

competitors. Agile is a sure bet to achieve very fast times to market as at the end

of each iteration the application should be production ready.

 May require a high degree of change - Requirements can and do change for

projects as they progress. Agile provides a flexible process that optimizes

feedback so changes can be introduced reliably during development.

 Have one unique important deliverable: the product - There are many projects

that only have one important output, the final product. Agile focuses on the

product, almost ignoring other artifacts, such as documentation.

And the Waterfall best suited projects include

 Are contract based - The customer requires the company providing the software

to commit in writing to fulfill a series of requirements. Since Waterfall is

document driven, it lends itself to contracts that are heavily based on

requirements. This helps to guarantee that everything specified on the contract is

complete.

 Are focused on analysis - Some software development projects require the

analysis to be completed beforehand; this would be the case of very complex or

critical systems that require many validation steps or approvals. Being a

sequential process Waterfall is naturally suited to this purpose.

 Have more than one deliverable - Not just the product, but also the user

manual, the architecture …etc. Waterfall produces documents and artifacts other

than the software itself. For some projects, these artifacts are considered almost

as important as the final product.

69

The Agile Impact Report: Proven Performance Metrics from the Agile

Enterprise

By Toronto & Boulder, 2008

The article discusses the advantages of Agile development in terms of ‗Time to

Market‘, ‗Productivity‘ and ‗Number of defects‘

Under the subheading Time to Market it has stated the following;

Larger software development teams, especially when geographically dispersed, often

struggle to deliver their software on time. By adopting Agile practices, companies

measured in this study were able to produce large-scale enterprise software in four to

eleven months, compared to the six to thirteen months a typical organization required

to deliver comparable software. Overall, Agile companies experience an average

increase in speed of 37 percent. The customers who participated in the study saw an

average increase of 50 percent in their time-to-market when compared to the industry

average.

2.7 CONCLUSION

According to the literature presented in this chapter Agile vs Waterfall plays a major

role in today‘s software development industry. It seems that no IT meeting/discussion

ends up without comparing Agile and traditional methodologies. In order to keep pace

in the global competitive market most of the IT companies are looking forward to

adopt cost and time effective development methods. As stated in the literature unlike

the traditional methods Agile techniques facilitate number of incremental releases.

Hence software development companies are rapidly moving in to Agile development

due to the factor Time to market. But the argument on the other hand was though this

method facilitate to release working products in short cycles can they achieve the

70

expected level of quality through Agile development in terms of various different

quality factors introduced by different quality models and quality management

experts.

When considering the related researches the researcher of this thesis observed that

there are vast number of researches done on agile software development and its

advantages. But none of them conducted in the Sri Lankan context. In addition, there

were very few researches done to check quality difference between Agile and

Traditional methods except the factors time to market and cost effectiveness.

71

CHAPTER THREE

3. METHODOLOGY

3.1 INTRODUCTION

This chapter provides the road map (outline) to achieve the research objectives. The

chapter presents the research design by describing the research approach, target

population, sample size, sampling technique, data collection and data analysis

methods.

3.2 RESEARCH APPROACH

It is the observation by the researcher of this paper that majority of the software

development companies in the industry today are rapidly moving towards Agile

development. As explained in the literature, the main reason for this diversification is

the ‗time to market‘ and ‗feasibility to incorporate requirement changes even in the

later stages of development‘ (Williams & Cockburn, 2003) According to the industry

professionals this is very important for their survival in the modern rapidly changing

environment. But the puzzle with the researcher of this thesis is whether the

companies are able to achieve expected software quality through Agile development

and to ascertain the most appropriate agile technique in the Sri-Lankan context.

In the process of seeking answers to the above question the researcher initiated the

following steps:

72

Step1: Feasibility study to check the possibility of collecting relevant information.

The researcher identified the major software development companies in the island and

considered the IT companies providing software development services and registered

with the Software Exports Association. There were 27 such companies as of June

2009 (Figure 01). Then the researcher sent e-mails to these companies inquiring their

ability to provide information for the above research. Out of them only seven

companies agreed to provide data.

Then the researcher designed a preliminary questionnaire to investigate the feasibility

of obtaining relevant information for the research (See Appendix A). Only four

companies were selected for this research based on the responses provided in the

feasibility study. The selected companies are Virtusa Pvt Ltd, Teamwork

Technologies, DMS Software and E-College.

The researcher then conducted another study to find out the different agile techniques

in usage in the selected companies (See Appendix B). Unfortunately the result

reflected that only one company is using Scrum, ASD and XP techniques. All the

other companies were using only Scrum. Hence, the researcher found that it is

impossible to identify the most suitable agile technique for Sri Lankan context at

present.

Based on the feedback for the pilot surveys conducted, the researcher decided to

confine this research to find the answer to the research problem: “Is there a quality

difference between the Software products developed using Agile and Traditional

methods? And if there is a difference what is the healthier method? ”

73

Step 2: discovery of software quality factors and identification of quality factors to

be considered at the research.

From the literature survey the researcher has identified set of quality factors via

different philosophies of quality after considering the view points of quality

management gurus and various quality models.

Through a preliminary investigation the researcher identified that it is not possible to

obtain client information; therefore it was impossible to measure software quality

from the user‘s perspective. (See Appendix A Q7) Due to such difficulties the

researcher confined this research only to developer oriented (Organizations view point

of) quality attributes.

Therefore, it was decided to take the blending of organization related quality

attributes from all three popular models referred to in the previous chapter.

It is not an easy task to differentiate developer oriented quality attributes from user

oriented attributes, as quality classifications are different from each model, and some

attributes are subjective to multiple definitions.

According to the analysis done by Berender on ‗Software Quality Attributes and

tradeoffs‘, the following criterion in chapter 4 has selected as developer oriented

attributes to be consider in the current study:

 Correctness

 Testability

 Changeability / Stability

 Install ability (Berander et al., 2005)

As per the literature survey, quality software is a software product which is

reasonably defect-free, delivered on time and within budget, meets requirements

74

and/or expectations (Raman, 2009). Therefore, the number of defects, time and cost

factors are also considered in the research. As described in the previous chapter time

and the cost factors are considered under project quality, where as the number of

defects are considered under product quality. According to Raman all the above

identified quality factors on the other hand affects the defects ratio.

The following section describes in detail the quality factors selected. For consistence

interpretation of the quality attributes, the definition of attributes have been used

according to Software Engineering Institute‘s (SEI) Software Technology Road Map

Glossary (SEI:Glossary, 2011) and ISO 9126 definitions (ISO/IEC 9126, 1991)

Correctness

―The degree to which a system or a component free from faults in its specification,

design, and implementation‖ (SEI:Glossary, 2011)

Testability

―The degree to which a system or a component facilitate the establishment of test

criteria and the performance of tests to determine whether those criteria have been

met‖ (SEI:Glossary, 2011).

Changeability

―The capability of the software product to enable a specified modification to be

implemented‖ (ISO/IEC 9126, 1991)

Stability

―The capability of the software product to avoid unexpected effects from

modifications of the software‖ (ISO/IEC 9126, 1991)

Install ability

―The capability of the software product to be installed in a specified environment‖

(ISO/IEC 9126, 1991)

75

 Having identified the variables, the following relationship have been derived based

on the definitions and reviewed literature:

In the Berander‘s analysis he has acknowledged set of quality attributes for each of

selected quality factor. Quality factor and corresponding attributes are listed below;

 Correctness – Compliance Specifications, Uniformity of Functionality, Defects

per Kilo of Lines of Code (KLOC)

 Testability – Test Coverage Percentage, Test Effectiveness Ratio, Simplicity,

Coding Standards.

 Changeability / Stability – Ability to modify, Errors after modifications, Effoer for

modifications, Level of Cohesion and Coupling

 Install ability – Stability level of the system after installation

Deliver On Time

Deliver on budget

Project Quality

Correctness

Testability

Changeabilit

y

Stability

Install ability

Product Quality No. of Defects

Figure 10: SW Product Quality

Figure 11: SW Project Quality

76

Based on the identified quality factors and the attributes of each factor following

conceptual frame work was derived;

3.3 POPULATION

Since the study is based on software development organizations, the research has

focused on companies registered with the ―Software Exports Association Sri Lanka‖.

There were 31 registered members with the association as of 1
st
 of July 2009 and out

of it 27 companies are engaged in software development. (Figure 01) According to the

feasibility study (Described in page 72, step1) conducted, only 4 companies out of 27

were feasible for the research. These four companies were selected based on the

Compliance Specifications

Uniformity of functionality

Defects per KLOC (Kilo of Lines Of

Code)

Test coverage %

Test effectiveness ratio

Simplicity

Consistency of code (Coding Standards)

Ability to modify

Errors after modifications

Effort for modifications

Level of cohesion and coupling

Stability level of the system after

installation

Project

Quality

Product

Quality

Quality

Attribute
Software

Quality

Deliver On

Time

Deliver on

budget

Correctness

Testability

Changeability

Install ability

Quality

Factor

Figure 12: Conceptual Frame Work

77

capability to collect relevant information. (See Appendix A) The target population for

the research includes Project managers, Developers, Quality Assurance team leads

and Testers. Employees under the above mentioned designations were selected

because they can directly provide the required information for the research. The table

given below (Table 4) summarizes the number of employees in each company in

selected professions (Appendix C)

Table 04: Population

Company Name

Number of personals as

Total

PM’s Developers QA Leads Testers

Virtusa Corporation 62 650 75 250 1040

Team Work Technologies 06 40 02 05 53

DMS Software Technologies 01 30 01 05 37

E- Colledge 05 70 06 25 106

Total 74 790 84 285 1233

3.4 SAMPLE SIZE

Morgan‘s theory (Krejcie & Morgan, 1970) is used to decide the sample size

separately for each company. The research applies the theory to the total number in

the population (company wise) and decides the total sample size for each company.

Then it has calculated the amounts for each category proportionately (Table 5). If the

value is with decimal points it is rounded out to the next highest number. The research

has taken a confidence interval of 95% to 99% and the error term is 0.1 when

applying the theory.

Note: If there is only one employee under a given category the employee is taken for

the sample without applying the theory.

78

Table 05: Sample

3.5 SAMPLING TECHNIQUE

Random Sampling technique is used to select the sample with the given inclusive

criteria

 Respondent must have at least one project completed in each method.

The researcher handed over the questionnaires or conducted interviews only with

individuals who satisfied the above criteria.

3.6 DATA COLLECTION

The research collected data through interviews and questionnaires prior to submitting

the questionnaire or conducting interviews, the researcher made sure that the

randomly selected individual satisfied the above mentioned inclusive criteria.

The researcher conducted interviews with the project managers to collect in depth and

in detailed information. The interviews mainly focus on capturing the project specific

demographics. These demographics include time and the cost factors. The semi

structured interviews facilitated the research to gather answers not only for set of pre

defined questions, but also for some important hidden information.

Company Name

Number of personals as

Total

PM’s Developers QA Leads Testers

Virtusa Corporation 05 54 06 22 88

Team Work Technologies 02 26 02 04 34

DMS Software Technologies 01 22 01 04 28

E- Colledge 03 34 03 12 52

Total 12 136 12 42 203

79

As already mentioned above, the research collected data not only through interviews,

but also by providing questionnaires to QA leads, Developers and Testers. The

questionnaires were distributed mainly via e-mails and helped the research to obtain

information from a large number of personnel. The questionnaire focused on

capturing details on the following areas:

1. Correctness

2. Testability

3. Changeability

4. Install ability

Below table summarizes the questionnaire design (See Appendix D)

Table 06: Questionnaire Design

Quality Factor Measure \ Attribute (Berander et al., 2005) Questions

Correctness

H01

Compliance Specifications

Uniformity of functionality

Defects per KLOC (Kilo of Lines Of Code)

Q-05 to Q-09

Testability

H02

Test coverage %

Test effectiveness ratio

Simplicity

Consistency of code (Coding Standards)

Q-10 to Q-12 &

15

Changeability/

Stability

H03

Ability to modify

Errors after modifications

Effort for modifications

Level of cohesion and coupling

Q-13 to Q-17

Install ability

H04
Stability level of the system after installation Q-18 to Q-20

80

3.7 DATA ANALYSIS

The aim of this study is to analyse the software quality difference between Agile and

Waterfall techniques. And if there is a difference then to identify the technique by

which a company can produce better quality software products.

In order to analyze this variation the research used Hypothesis testing and the

following Hypothesis was derived considering the selected quality factors.

Hypothesis 1

H0 – There is no difference in Correctness between the software products developed

using Agile and Waterfall methods (µAC - µWC = 0)

H1 – There is a difference in Correctness between the software products developed

using Agile and Waterfall methods (µAC - µWC ≠ 0)

 Hypothesis 2

H0 – There is no difference in Testability between the software products developed

using Agile and Waterfall methods

H1 – There is a difference in Testability between the software products developed

using Agile and Waterfall methods

 Hypothesis 3

H0 – There is no difference in Changeability between the software products

developed using Agile and Waterfall methods

H1 – There is a difference in Changeability between the software products developed

using Agile and Waterfall methods

Hypothesis 4

H0 – There is no difference in Install ability between the software products developed

using Agile and Waterfall methods

81

H1 – There is a difference in Install ability between the software products developed

using Agile and Waterfall methods

Hypothesis 5

H0 – There is no difference in Time to Market between the software products

developed using Agile and Waterfall methods

H1 – There is a difference in Time to Market between the software products

developed using Agile and Waterfall methods

Hypothesis 6

H0 – There is no difference in estimated and actual budgets between the software

products developed using Agile and Waterfall methods

H1 – There is a difference in estimated and actual budgets between the software

products developed using Agile and Waterfall methods

Based on findings for the above hypothesis finally to come up with,

Hypothesis 7

H0 – There is no difference in software quality between the software products

developed using Agile and Waterfall methods

H1 – There is a difference in software quality between the software products

developed using Agile and Waterfall methods.

As reflected by the research topic ―Software Quality in Agile Development: A gap

Analysis between Agile and Waterfall Software Development Methodologies‖,

primarily it is intended to capture the gap between Agile and Waterfall techniques for

each identified quality factor. Therefore the research is designed to capture the gap for

each question by subtracting the weight received for Waterfall by the weight received

for Agile.

82

When discussing about the weights, the research used 5 point Likert scale that uses

the responses Strongly Disagree, Disagree, Neutral, Agree and Strongly Agree. In this

research each has been weighed as given below:

1 = Strongly Disagree

2 = Disagree

3 = Neutral

4 = Agree

5 = Strongly Agree

Therefore, the potential differences for each question can vary between ±4. The table

below (Table: 7) describes the potential differences and the feasible weighting to

reach each difference:

Table 07: Quality Difference

Difference Agile Waterfall Perception

+ 4 5 1 Huge Difference

+ 3
5 2 Moderate

Difference 4 1

+ 2

5 3

Little Difference 4 2

3 1

+ 1

5 4

Very little

Difference

4 3

3 2

2 1

+ 0

5 5

No Difference

4 4

3 3

2 2

1 1

-1

4 5

Very little

Difference

3 4

2 3

1 2

- 2

3 5

Little Difference 2 4

1 3

-3
2 5 Moderate

Difference 1 4

-4 1 5 Huge Difference

83

Method of analysis:

 Once all the questionnaires are collected calculate the Agile – Waterfall gap

for each question for every respondent.

Eg: Gap Q5 = Agile Q5 – Waterfall Q5

 Compute each respondents view for each identified quality factor

Eg: Take the average of the related gaps

Correctness = Average (Gap Q5, Gap Q6, Gap Q7, Gap Q8, Gap Q9)

 Finally, in order to test the derived hypothesis on Correctness, Testability, and

Changeability and Install ability use One Sample T – test on each of the above

identified quality factors.

 In order to check the hypothesis on Time and Budget use the Chi Square Test.

84

The 8 table below summarizes the Analysis techniques with specific objectives.

Table 08: Objective vs. Analysis

Objective Analysis Method Data Collection

1. To identify SW Quality Factors - - Literature

Survey

2. To identify SW development

process models

- - Literature

Survey

3. To identify the quality

difference between the

development methods for

identified quality factors

Hypothesis 1
One Sample

T Test

Questionnaire

Q05 –Q09

Hypothesis 2
One Sample

T Test

Questionnaire

Q10 –Q12 & 15

Hypothesis 3
One Sample

T Test

Questionnaire

Q13 –Q17

Hypothesis 4
One Sample

T Test

Questionnaire

Q18 –Q20

Hypothesis 5
Chi Square

Test
Interview

Hypothesis 6
Chi Square

Test
Interview

4. To identify the most suitable

development method in attain

each of the identified quality

factor

Hypothesis

Test

From the

confidence

interval

-

85

CHAPTER FOUR

4. ANALYSIS

4.1 INTRODUCTION

This chapter presents and discusses the findings on the research done on Software

Quality in Agile Development. In order to achieve its objective this chapter examine

the quality gap between software products developed using Agile and Waterfall

techniques. As described in Chapter 3: Methodology, the data was analyzed using

One Sample T – test and Chi Square test. The chapter starts by presenting the data

received with the demographic profile of the responders. It moves to the analysis of

each of the quality factor aimed in the research and concludes with a brief summary

of key findings.

4.2 DATA RECEIVED

In order to collect data the researcher tendered 190 questionnaires among Developers,

Testers and QA Leads. The table below recapitulates the data received.

 Table 09: Data Received

Company

Developers QA Leads Testers

Smpl Rcvd Acc Smpl Rcvd Acc Smpl Rcvd Acc

Virtusa 54 47 20 6 6 6 22 20 18

DMS 22 18 14 1 1 1 4 4 4

TeamWork 26 26 26 2 2 2 4 4 4

E-Colledge 34 22 16 3 2 2 12 3 0

Total Sample 136 12 42 190

Total Receive 113 11 31 155

Total Accepted 76 11 26 113

Response Rate 81.59%

Valid % against Sample 59.47%

Valid % against Responses 72.90%

86

Smpl – Sample Size

Rcvd – Total Received

Acc – Accepted Amount (Questionnaires within the inclusive criteria)

As summarizes in the above Table 9 the researcher received 155 questionnaires filled

out of total tendered. Therefore, the response rate is around 82%. As cited in the

Chapter 3 Methodology the inclusive criteria for the data collected is that

‗respondents should fill the questionnaire against both the development methods

Agile and Waterfall‘. Consequently 42 responses that were not within the inclusive

criteria had eliminated. Thus out of 155 questionnaires received, only 113 have been

considered in this analysis.

Figure 13: Respondents

87

The pie chart (Figure 23) above presents the diversification of the 113 responders

participating in the study based on their designation. According to the chart out of

valid questionnaires 67.3% respondents are developers, 23% are testers and 9.7% are

QA leads.

Following rates are calculated by analyzing questionnaires received

Total Values

 Response Rate : 81.58 %

 Valid rate against Sample : 59.47 %

 Valid Rate against responses : 72.90 %

 Total Rejection Rate : 27.09 %

Respondent Categories

 Response rate of Developers : 83 %

 Response rate of testers : 74 %

 Response rate of QA leads : 92 %

 Valid response rate of developers : 67.25 %

 Valid response rate of testers : 83.87 %

 Valid response rate of QA leads : 100 %

4.3 HYPOTHESIS TEST

The second part of the findings presents and analyses the collected data on the

identified quality factors such as Correctness, Testability, Changeability, Install

ability, Time and Budget. In the process of analyzing each of the above quality

factors, this section provides a brief analysis of each question used to describe the

identified quality factor.

88

4.3.1 CORRECTNESS

As presented in Chapter 3: Methodology, questions 5 to 9 in the questionnaire

designed to capture the information related to the quality factor – ‗Correctness‘. This

section briefly analyses the responses received for each question and further provide a

summary analysis using One sample T – test to verify the derived hypothesis.

Question 5 - The components we deliver almost meet user expectations.

The calculation is done by subtracting the weight receives for Waterfall by the weight

receives for Agile. A positive difference implies that Agile is better in meeting user

expectations than Waterfall. Where as a negative difference implies that Waterfall is

better in meeting user expectations than in Agile development.

Table 10: User Expectation coverage in the final product

Q5. Meet User Expectations 100 %

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 10 8.8 8.8 8.8

-1.00 10 8.8 8.8 17.7

.00 49 43.4 43.4 61.1

1.00 36 31.9 31.9 92.9

2.00 8 7.1 7.1 100.0

Total 113 100.0 100.0

As can be seen in the above Table 10 the calculated differences between Agile and

Waterfall for meeting user expectation vary between -2 and +2. Since the variation

does not go beyond ±, 2 we can conclude that though there is a variation between

Agile and Waterfall in relation to achieving user expectations, no respondents have

89

perceived a huge difference between the two development methods. (For example no

one has rated 1 for Agile and 5 for Water fall or wise versa)

According to the values presented in table 10, out of the total 113 responses received,

17.6 % of responses plunge at negative region and 39 % plunge at positive region.

And the majority 43.4 % falls on 0 this means majority of the respondents assume that

there is no significant difference between the two development methods for the factor

identified by question number 9. As described in chapter on methodology, this can be

achieved by selecting the same rating for both development methods (Example 1-1, 2-

2, 3-3, 4-4 or 5-5). Out of those who perceive that there is a difference more

respondents believe that Agile is better than Waterfall in meeting user expectations.

Question 6 - Our requirement specifications capture all the user requirements.

The calculation is done by subtracting the weight received for Waterfall by the weight

received for Agile; a positive difference implies that Agile is better in capturing user

requirements than Waterfall and a negative difference implies that Waterfall is better

in capturing user requirements than Agile.

Table 11: User expectation Coverage in the Specification

Q6 – Specification capture user expectations

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 14 12.4 12.4 12.4

-1.00 18 15.9 15.9 28.3

.00 55 48.7 48.7 77.0

1.00 12 10.6 10.6 87.6

2.00 14 12.4 12.4 100.0

Total 113 100.0 100.0

90

According to the values presented in Table: 11 calculated differences between Agile

and Waterfall in capturing user expectation varies between -2 and +2. This means

though there is a difference between the two methods the gap is small.

As been figured out by the above table, out of 113 total responses the majority of the

respondents consider that there is no difference between Agile and Waterfall

techniques. There are 55 respondents who support this observation and

proportionately it is 48.7 %. On the other hand, 23 % of the responses fall at the

positive region and 28.3 % of the responses in the negative region. When considering

the negative and positive frequencies there are more respondents toward negative.

This indicates that out of those who believe that there is a difference in capturing user

expectation, most of them assume that Requirement Specifications in Waterfall

method is satisfactory than SRS‘s in Agile method.

Question 7 - Our system design cover the specifications 100%

As already mentioned, the calculation in this section is done by subtracting the weight

receives for Waterfall by the weight receives for Agile. Thus a positive difference

implies that in Agile development System design is in 100 % adhere to the

specification in contrast to Waterfall. Where as a negative difference implies that

Waterfall is better in covering the specification than Agile. Deference equals to 0

means that the respondents have provided the same rating for both methods.

91

Figure 14: Specification Covered by Design

As illustrated by the bar chart (Figure 24) the calculated gap between Agile and

Waterfall for the above stated question number 7 varies among -2 and +3. This

indicates that the positive difference is strong than the negative difference. This

means there are people who thoroughly believe that Agile is better than Waterfall in

covering the specification in the design.

As can be seen at a glance the highest frequency falls on 0. This means that the most

of the respondents assume that there is no difference between the two development

methods for the above considered factor. According to the figures presented by the

above bar chart 53 entries falls on 0 and the total count falls at the negative side is 20,

whereas the total count falls at the positive side is 38.

92

Question 8 - Our system implementation cover the system design 100 %

Here also the differences were calculated by subtracting weight for Waterfall by the

weight for Agile. A positive difference implies that in Agile development system

implementation stick on to the system design than in Waterfall and wise versa. The

difference equals to zero implies that the respondents have provided the same rating

for both methods and there is no significant difference between the two techniques.

Table 12: Covering the System Design in the Implementation

Q8 – Implementation 100 % tally with the Design

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 8 7.1 7.3 7.3

-1.00 12 10.6 11.0 18.3

.00 49 43.4 45.0 63.3

1.00 26 23.0 23.9 87.2

2.00 10 8.8 9.2 96.3

3.00 4 3.5 3.7 100.0

Total 109 96.5 100.0

Missing System 4 3.5

Total 113 100.0

As per the values presented by the above table 12, out of total 113 entries 4 entries

had missing values, thus only 109 entries considered in this analysis.

According to the figures shown in the table the calculated differences vary within -2

and +3 where we can approximate that the strongest of the positive side is more than

the negative side for the above considered factor.

As per the values presented in the above table, 17.7 % responses of the responses in

the negative region and 35.3 % in the positive region and the majority 49 % is on the

fence.

93

Question 9 - Our system implementation 100% free from faults

The differences were calculated by subtracting weight for Waterfall by the weight for

Agile. A positive difference implies that in Agile development system implementation

is free from faults than in Waterfall; where as a negative difference implies the other

way round. The difference equals to zero presume that there is no difference between

the two development methods.

According to the figures presented in the above bar chart (Figure 25) the calculated

differences varies between -2 and +2. This indicates that the variation does not go

beyond ± 2 reflecting that though there is a difference between two methods, the gap

between the two methods is small. (For example no one has rated 1 for Agile and 5/4

for Water fall or vice versa or 2 for Agile and 5for Waterfall or vice versa)

As can be seen at a glance in the above chart the majority 77 of the responses fall on

the fence. 26 respondents fall at the positive region and only 8 in the negative region.

Out of total deviated responses there are more responses in the positive region. This

Figure 15: Implementation Free from Faults

94

means from those who articulated that there is a difference most assume that in Agile

development implementation is free from faults than in the Waterfall development.

Hypothesis: 01 – There is no mean difference in Correctness between the two

development methods Agile and Waterfall

This hypothesis can be check by following null and alternative hypothesis

 H0 - µAcorrectness - µWcorrectness = 0

 H1 - µAcorrectness - µWcorrectness ≠ 0

After analysing the calculated gaps in each related question independently, the

average gap of all the related questions was considered. Since the gap has been

considered as the data set One sample - T test is used to test the above intended

Hypothesis.

Therefore we can modify the above hypothesis by considering the calculated gap for

Correctness between Agile and Waterfall as follows.

 H0 - µGapCorrectnes = 0

 H1 - µGapCorrectnes ≠ 0

Table 13: One Sample Test for Correctness

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

Lower Upper

Correctness 1.547 112 .125 .13717 -.0385 .3128

95

Significant value in the table 13 is greater than 0.05; therefore we do not reject the

null hypotheses at 5% significance level. And conclude that there is no evidence to

say that there is a difference in Correctness between the software products developed

using Agile and Waterfall techniques which means ‗there is no difference in

Correctness between the software products developed using Agile and Waterfall

methods‘

Figure 16: Histogram of Correctness

The histogram above (Figure 26) illustrates that the data are approximately

symmetric. There do not appear any significant outliers in the tails. And it seems

reasonable to assume that the data are formed in the order of a normal distribution.

According to the figures presented in the Histogram: 26 most of the high frequencies

are positioned close to zero. Therefore, we can take for granted that there is much

likelihood toward our null hypothesis, ‗there is no significant difference in

96

Correctness of the product between the two development methods of Agile and

Waterfall.

Figure 17: Box plot of Correctness

This can be further justified by the box plot (Figure 27) given above. In the box plot

there are no outliers marked. The right whisker is appearing to be equal to the left

whisker. This indicates that the distribution is approximately symmetric; thus it is

reasonable to assume that the data has normal distribution. Furthermore, the central

tendency given by the box plot which is the median is equal to zero. As shown by the

histogram (Figure 26) the mean is equal to 0.14 which almost equals to zero. Since

the mean and median is equal to zero and the data has a normal distribution we can

justify that the mode is also equal to zero.

As per the information presented by the above two figures (Figure 26 & 27) we can

justify the suitability of the T-test (Table 13) for the quality factor ‗Correctness‘

97

4.3.2 TESTABILITY

As presented in Chapter: 3 Methodology, questions 10 to 12 and 15 in the

questionnaire has been designed to capture the information related to the quality

factor – ‗Testability‘ This section briefly analyses the responses received for each

question and further provide a summary analysis using One sample T – test to verify

the derived hypothesis.

Question 10 - We accomplish complete execution of test scripts

The calculation is done by subtracting the weight receives for Waterfall by the weight

receives for Agile. Thus a positive difference implies that Agile is better in executing

test scripts than Waterfall and a negative difference implies that Waterfall is better in

executing test scripts than Agile. Difference equals 0 can results when the rating is

same for both methods and implies that the respondent perceives that there is no

significant difference between the two methods.

Table 14: Execution of the Test Scripts

Execution of test scripts

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 4 3.5 3.5 3.5

-1.00 10 8.8 8.8 12.4

.00 75 66.4 66.4 78.8

1.00 16 14.2 14.2 92.9

2.00 8 7.1 7.1 100.0

Total 113 100.0 100.0

As can be seen in Table 14 the calculated differences between Agile and Waterfall for

question number 10 vary between -2 and +2. Since the variation does not go beyond ±

2 we can conclude that though there is a variation between Agile and Waterfall in

98

relation to completion of executing test scripts, no respondent perceives that there is a

huge difference between the two development methods. (For example no one has

rated 1 for Agile and 5 for Water fall or wise versa)

According to the values presented in table 14, out of 113 responses received, 12.3 %

of responses plunge at negative region and 21.3 % plunge at positive region. The

majority 66.4 % falls on 0 where the perception is towards no difference between the

two methods. Since count at positive side is more than the count at negative side, out

of those who perceive that there is a difference, more believes that Agile is better than

Waterfall in completing the execution of test scripts.

Question 11 - We always adheres to the Coding standards in implementing our

systems.

The analysis is made based on the calculation done by subtracting the weight receives

for Waterfall by the weight receives for Agile. Hence, a positive difference implies

that in Agile development system implementation adheres to the cording standards

than in the Waterfall development. A negative difference implies the other way round.

The difference equals to 0 results if the rating is same for both the methods and it

implies that there is no difference between the two development methods.

Table 15: System Implementation Adhere to the Coding Standards

System Implementation adhere to Coding Standards

Frequency Percent Valid Percent

Cumulative

Percent

Valid -1.00 12 10.6 10.6 10.6

.00 77 68.1 68.1 78.8

1.00 14 12.4 12.4 91.2

2.00 8 7.1 7.1 98.2

4.00 2 1.8 1.8 100.0

Total 113 100.0 100.0

99

As can be seen by the above table 15, the calculated differences between Agile and

Waterfall techniques vary between -1 and +4. This describes that there is a huge

positive difference compared to the negative difference. (For example one can rate 5

for Agile and 1 for waterfall, but no one has rated 5 for Waterfall and 1, 2, or 3 for

Agile)

By looking at the values depicted in the above Table 15 it is reasonable to wrap up

that the majority 68.1 % of the respondents assume that there is no difference between

the two methods and 21.3 % in the positive region and 10.6 % in the negative region.

Question 12 - We do not employee many complex structures in our codes

Here also the differences are calculated by subtracting Waterfall by Agile as

mentioned above.

Figure 18: Simple Code Structures

100

According to the figures presented in the above bar chart (Figure 28) the calculated

differences varies between -2 and +3. This means that the positive difference is

stronger than the negative difference.

In relation to the frequencies shown in the above bar chart (Figure 28) the majority of

the responses fall on 0. As represented by the chunk there are 71 respondents who

have provided the same rating for both methods. In the positive region there are 30

respondents and in the negative region there are only 8 respondents. From among

those who consider that there is a difference between the two methods most assumes

Agile is better than Waterfall in the use of simple coding structures.

Question 15 - Our systems maintain law interaction between modules

For this question also the difference is calculated as described above. Thus, a positive

difference indicates that in Agile development there is low interaction between

modules compared to Waterfall. A negative difference indicates that the interaction

between modules is low in Waterfall development than in Agile

Figure 19: Interaction between Modules

101

As been figured out by the above bar chart (Figure 29) the calculated differences for

Agile and Waterfall techniques for the factor is identified by question number 15

varies between -2 and +3. By analyzing this variance we can sum up that the positive

difference is stronger than the negative difference. This means some respondents

strongly believe that in Agile there is low interaction between modules than Waterfall

development.

By looking at the frequencies depicted by the bars we can see that the highest

frequency 67 falls on 0. This means many respondents have provided the same rating

for both the methods assuming that there is no significant difference between the two

methods. On the other hand, there are 38 responses in the positive region and the

minority 6 responses are in the negative region.

Hypothesis 2 - There is no mean difference in Testability between the two

development methods Agile and Waterfall

This hypothesis can be check by following null and alternative hypothesis

 H0 - µAtestability - µWtestability = 0

H1 - µAtestability - µWtestability ≠ 0

After analysing the calculated gaps in each related question independently, the

average gap of all the related questions has been considered. Since the gap has been

considered as the data set One sample - T test is used to test the above intended

Hypothesis.

Therefore, we can modify the above hypothesis by considering the calculated gap for

Testability between Agile and Waterfall as follows:

102

 H0 - µGapTestability = 0

 H1 - µGapTestability ≠ 0

Table 16: One Sample Test for Testability

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Testability 4.414 112 .000 .15929 .0878 .2308

Significant value in the Table 16 is less than 0.05; therefore; we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is no difference in Testability between the software products developed

using Agile and Waterfall techniques. This analysis proven that

As presented in Table 16 the confidence interval of difference falls between .0878 and

.2308. Since 0 does not fall within the interval and also when both limits are positive

we can conclude that the differences are mostly positive

As discussed above, the differences are calculated by subtracting weight for

Waterfall by the weight for Agile and the questionnaire consisted of positive side

questions where a positive difference implies that Agile is better than Waterfall;

where as a negative difference implies that Waterfall is better for the considered

quality factor. As per the values represented in the above table (Table 16), since we

have a positive difference we can wrap up that the Agile is more testable than

Waterfall.

Finally, we can conclude that there is a difference between Agile and Waterfall for the

quality factor Testability and the software products developed using Agile are more

testable than the products developed using Waterfall; hence Agile is at the forefront.

103

Figure 20: Histogram of Testability

The histogram above (Figure 30) illustrates that the data are approximately left

skewed. A significant outlier appears in the left tail. Therefore, it seems reasonable to

assume that the data are form in the order of a skewed distribution. According to the

figures presented in the histogram (Figure 30) most of the high frequencies are

positioned at the positive region (right hand side). Thus we can take for granted that

there is much likelihood toward the decision that Agile is better than Waterfall for the

considered quality factor Testability.

104

 Figure 21: Box Plot of Testability

This can be further justify by the box plot (Figure 31) given above. According to the

data presented in the box plot there are two outliers on either side and two extreme

outliers in the negative region. As can be seen by the diagram, 2
nd

, 3
rd

 and the 4
th

quartiles are located above the zero. This means that the 75 % of the data are

positioned in the positive region, where as only 25 % of data falls at the negative side.

Hence, we can conclude that there is much likelihood toward Agile development than

Waterfall method for the quality factor Testability.

As per the information presented by the above two figures (Figure 30 & 32) we can

justify the suitability of the T-test (Table 16) for the quality factor ‗Testability‘

105

4.3.3 CHANGEABILITY

As presented in the chapter on methodology, questions 13 to 17 in the questionnaire

have been designed to capture the information related to the quality factor –

‗Changeability‘ This section briefly analyses the responses received for each question

and further provide a summary analysis using One sample T – test to verify the

derived hypothesis.

Question 13 - Modifications can be done to our products without much difficulty

To analyze the responses received for this question, the calculation is done by

subtracting the weight receives for Waterfall by the weight receives for Agile. Thus, a

positive difference implies that in Agile development modifications to a product is

easier than in the Waterfall development. A negative difference implies the

modifications are easy in Waterfall method. The difference equals to 0 means that

there is no difference in the two methods in modifying the products.

Table 17: Ease of Modifying the Products

Ease of Modifying the products

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 6 5.3 5.3 5.3

-1.00 4 3.5 3.5 8.8

.00 57 50.4 50.4 59.3

1.00 30 26.5 26.5 85.8

2.00 14 12.4 12.4 98.2

3.00 2 1.8 1.8 100.0

Total 113 100.0 100.0

As can be seen by the above Table 17 the calculated differences between Agile and

Waterfall techniques vary between -2 and +3. This describes that positive difference

is stronger than the negative difference.

106

By looking at the values depicted in the above table (Table: 17) it is reasonable to

conclude that the majority 50.4 % of the respondents assume that there is no

difference between the two methods. And 40.7 % in the positive region suppose that

Agile techniques are better in incorporating modifications than Waterfall and the

minority 8.8 % in the negative region assuming that Waterfall is healthier.

Question 14 - Our systems do not need much effort to accommodate minor

specification changes

Similar to above, Question 13 the differences were calculated by subtracting Waterfall

by Agile as well.

Figure 22: Effort to Accommodate Minor modifications

As been figured out from the bar chart (figure 32) above, the calculated differences

for Agile and Waterfall techniques for the factor identified by question number 14

varies between -2 and +3. By analyzing this variance we can sum up that the positive

difference is stronger than the negative difference. This means some respondents

107

strongly believe that Agile is better than Waterfall in accommodating specification

changes.

By looking at the frequencies depicted by the bars we can see that the highest number

of responses falls at the positive region and the lowest number of responses at the

negative region. And a moderate amount falls on 0. When considering the amounts,

54 in positive side, 8 in the negative side and 49 on zero. Further, analyzing these

values it is reasonable to settle on that more of the respondents assume that Agile is

better than the Waterfall when accommodating specification changes.

Question 15 - Our systems maintain law interaction between modules

The calculation is done by subtracting the weight receives for Waterfall by the weight

receives for Agile. A positive difference implies that interaction between modules is

less in Agile, where as a negative difference implies the interaction between modules

is low in Waterfall method. The calculated value equals to 0 means that there is no

difference in two methods for the above considered factor.

Table 18: Interaction between Modules

Interaction between Modules

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 2 1.8 1.8 1.8

-1.00 4 3.5 3.6 5.4

.00 67 59.3 60.4 65.8

1.00 22 19.5 19.8 85.6

2.00 14 12.4 12.6 98.2

3.00 2 1.8 1.8 100.0

Total 111 98.2 100.0

Missing System 2 1.8

Total 113 100.0

108

As per the figures in the above table there are 2 missing values therefore out of 113

entries only 111 responses has been considered for the analysis.

According to the values presented in the above table 18, the calculated differences

between Agile and Waterfall techniques vary between -2 and +3. This describes that

positive difference is stronger than the negative difference.

By looking at the values depicted in the above Table 4.13, it is reasonable to conclude

that the majority 59.3 % of the respondents have provided the same ratings for both

the methods assume that there is no difference between the two methods. 33.7 %

respondents in the positive region suppose that the interaction between modules is low

in Agile development compared to Waterfall. The minority 6 % in the negative region

assume that Waterfall is better in achieving low interaction between modules.

Question 16 - When the changes are done to one module our systems has very low side

effects to other modules

Similar to previous questions here also the analysis is done by subtracting the rating

for Waterfall by the rating for Agile.

As been figured out from the above bar chart (figure 33) the calculated differences for

Agile and Waterfall techniques for the factor identified by question number 16 varies

between -4 and +3. By analyzing this variance we can sum up that the negative

difference is stronger than the positive difference. This means some respondents

strongly believe that in Waterfall method changes to a module can be done without

much affecting the other modules when compared to Agile techniques.

109

By looking at the frequencies depicted by the bars we can see that the highest number

of responses falls on 0. A moderate amount falls at the positive side and a little

amount in the negative side. Further analyzing these values it is reasonable to

reconcile that more of the respondents assume that there is no difference between two

methods and though very few strongly believe that Waterfall is better, many think that

with Agile the side effects of modifications is low.

Question 17 - Integration of a new component to the system does not create many

functional issues

The calculation is done by subtracting the weights receive for Waterfall by the

weights received for Agile. Therefore, positive difference implies that there are very

low functional issues in Agile development when integrating new components. Where

as a negative difference signifies that the Waterfall is better in integrating new

components. And the calculated value equals to zero means that there is no difference

between the two development methods.

Figure 23: Side effects of the Changes

110

Table 19: Ease of integrating new components

Ease of integrating new components

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 4 3.5 3.5 3.5

-1.00 6 5.3 5.3 8.8

.00 69 61.1 61.1 69.9

1.00 14 12.4 12.4 82.3

2.00 16 14.2 14.2 96.5

3.00 4 3.5 3.5 100.0

Total 113 100.0 100.0

According to the figures presented in the above table 19 there are no missing values;

therefore, total 113 responses entered is considered in this study.

As per the data presented in the table 19, the calculated differences between Agile and

Waterfall for the question number 17 varies between -2 and +3. Therefore, we can

further conclude that the positive side is much stronger than the negative side.

As shown in the above table there are total of 34 respondents falls at the positive

region and 10 respondents falls at the negative region, where as majority 69 responses

lays where the calculated value is equals to zero.

Therefore by analyzing the totals depicted by Table 19, the majority of respondents

believe that there is no difference between the two techniques in integrating new

components. When considering the positive and negative regions more respondents

fall at the positive region; whereas less count in the negative region. This means that

few respondents believe that compared to Agile, Waterfall makes less functional

issues when integrating new components.

111

Hypothesis 3 - There is no mean difference in Changeability between the two

development methods Agile and Waterfall

This hypothesis can be verified by following null and alternative hypothesis

 H0 - µAchangeability - µWchangeability = 0

H1 - µAchangeability - µWchangeability ≠ 0

After analysing the calculated gaps in each related question independently, the

average gap of all the related questions has been considered. Since the gap has been

considered as the data set One sample - T test is used to test the above intended

Hypothesis.

Therefore, we can modify the above hypothesis by considering the calculated gap for

Changeability between Agile and Waterfall as follows.

 H0 - µGapChangeability = 0

 H1 - µGapChangeability ≠ 0

Table 20: One Sample Test for Changeability

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Changeability 6.309 112 .000 .44513 .3053 .5849

Significant value in the table 20 is less than 0.05; therefore, we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to show

that there is no difference in Changeability between the software products developed

using Agile and Waterfall techniques; which means ‗there is a difference in

112

Changeability between the software products developed using Agile and Waterfall

methods‘

In table 20 the confidence interval of the differences falls between .3053 and .5849.

Since 0 does not fall within the interval and also both the limits are positive we can

conclude that the differences are mostly positive.

As discussed above the differences are calculated by subtracting Waterfall by Agile

and the questionnaire consisted of positive side questions. A positive difference

implies that the products develop using Agile is more changeable that the products

developed using Waterfall; where as a negative difference implies that the products in

Waterfall is more changeable. Since we have a positive difference as per the analysis

above, we can wrap up that for the quality factor ‗Changeability‘ Agile is better than

Waterfall.

Finally, we can conclude that there is a difference between Agile and Waterfall for the

quality factor changeability and the software products developed using Agile are more

changeable than the products developed using Waterfall; hence Agile is in the

forefront.

Figure 24: Histogram of Changeability

113

The histogram above (Figure 34) illustrates that the data are approximately left

skewed. There are no significant outliers in the diagram. Also it seems reasonable to

assume that the data are formed in the order of skewed distribution and are left

skewed. According to the figures presented in the histogram (Figure 34) most of the

high frequencies are positioned at the positive region (right hand side). Thus, we can

take for granted that there is much likelihood toward the decision that Agile is better

than Waterfall for the considered quality factor Changeability.

Figure 25: Box Plot of Changeability

This can be further justified by the box plot (Figure 35) given above. According to the

data presented in the box plot there are no significant outliers in the two tails. As

clearly depicted by the above diagram (Figure 35) 2
nd

, 3
rd

 and the 4
th
 quartiles are

located above zero. This means that the 75 % of the data are positioned in the positive

region, where as only 25 % of data falls at the negative side. Hence, we can conclude

that there is much likelihood toward Agile development than Waterfall method.

114

As per the information presented by the above two figures (Figure 34 & 35) we can

justify the suitability of the T-test (Table 20) for the quality factor ‗Changeability`

4.3.4 INSTALL ABILITY

As presented in Chapter 3: Methodology, questions 18 to 20 in the questionnaire has

been designed to capture the information related to the quality factor – ‗Install

ability` This section briefly analyses the responses received for each question and

further provides a summary analysis using One sample T – test to verify the derived

hypothesis.

Question 18 - Our systems do not challenge during the installation in the agreed

environment

The calculation is done by subtracting the weight receives for Waterfall by the weight

receives for Agile. A positive difference implies that compared to Waterfall there is

less challenges during the installation in Agile development. And a negative

difference signifies that Waterfall is better than Agile.

Table 21: No Changers in Installation

No challenges in the installation

Frequency Percent Valid Percent

Cumulative

Percent

Valid -2.00 2 1.8 1.8 1.8

-1.00 12 10.6 10.8 12.6

.00 77 68.1 69.4 82.0

1.00 14 12.4 12.6 94.6

2.00 6 5.3 5.4 100.0

Total 111 98.2 100.0

Missing System 2 1.8

Total 113 100.0

115

According to the values presented in Table 21, the calculated difference between

Agile and Waterfall for level of challenge during the installation varies between -2

and +2. Since the variation does not go beyond more than ± 2 we can conclude that

though there is a variation between Agile and Waterfall, no respondent perceive that

there is a huge difference between the two development methods. (For example no

one has rated 1 for Agile and 5 for Water fall or wise versa)

According to the values presented in table 21, out of 113 responses received, 12.6 %

of responses fall at the negative region; where as 17.7 % falls at the positive region.

The majority 68.1 % falls on 0. This reflects the fact that most of the respondents

assume that there is no difference between the two methods for the level of

challengers meets at the installation.

Question 19 - We have to incorporate minor modifications when installing our

systems in the agreed environment

Here also the differences were calculated by subtracting the weight receive Waterfall

by the weight receive for Agile

Figure 26: Modifications at the Installation

116

As been figured out by the bar chart above (Figure 36), the calculated differences for

Agile and Waterfall vary between -4 and +3. According to the variation we can

suggest that the negative difference is stronger than the positive difference. As clearly

depicted by the graph the responses fall on zero are dramatically large compared to

the values in the negative and the positive sides. According to the figures presented in

the chart there are only 14 respondents in the negative side, where as 20 falls at the

positive side and the majority 79 responses are on the fence.

Question 20 - Hardware configuration is always compatible with software we

developed when deploying our systems

Figure 27: Hardware Software compatibility

117

According to the values presented in the bar chart above (Figure 37), the calculated

differences between Agile and Waterfall for question number 20 varies between -2

and +2. Since the variation does not go beyond ± 2 we can conclude that though there

is a variation between Agile and Waterfall in relation to hardware and software

compatibility, no respondents have perceived a huge difference between the two

development methods. (For example no one has rated 1 for Agile and 5 for Water fall

or wise versa)

As been clearly depicted by the graph (Figure 37) the responses fall on zero are

dramatically large to the values falls on the negative and the positive sides. According

to the figures presented in the chart above there are only 12 respondents in the

negative side, where as 22 falls at the positive side and the majority 79 responses is on

the fence.

Hypothesis 4- There is no mean difference in Install ability between the two

development methods Agile and Waterfall

This hypothesis can be check by following null and alternative hypothesis

H0 - µAinstalability - µWinstalability = 0

H1 - µAinstalability - µWinstalability ≠ 0

After analysing the calculated gaps in each related question independently, the

average gap of all the related questions has been measured. Since the gap has been

considered as the data set One sample - T test is used to test the above intended

Hypothesis.

Therefore, we can modify the above hypothesis by considering the calculated gap for

Install ability between Agile and Waterfall methods as follows.

118

 H0 - µGapChangeability = 0

 H1 - µGapChangeability ≠ 0

Table 22: One Sample Test for Install-ability

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

Lower Upper

Installability .828 112 .409 .04720 -.0657 .1601

Significant value in the table 22 is greater than 0.05; therefore; we do not reject the

null hypotheses at 5% significance level. And conclude that there is no evidence to

say that there is a difference in Install ability between the software products

developed using Agile and Waterfall techniques; which means ‗there is no difference

in Install ability between the software products developed using Agile and

Waterfall methods‘.

Figure 28: Histogram of Install ability

119

The histogram above (Figure 38) illustrates that the data are approximately symmetric

and there appears to be significant outliers in the left tail. And it seems reasonable to

assume that the data are formed in the order of a normal distribution. According to the

figures presented in the histogram 38 most of the high frequencies are positioned

close to zero; therefore; we can take for granted that there is much likelihood toward

that there is no difference between the Agile and Waterfall methods for the above

considered quality factor ‗Install ability‘.

Figure 29: Box Plot of Install ability

 This can be further justified by the box plot (Figure 39) given above. As can be seen

by the box plot, in the positive region there are 4 outliers and 2 extreme outliers and in

the negative region there are 3 outliers and 4 extreme outliers marked. Since the right

whisker is appearing to be equal to the left whisker we can guess that the distribution

is approximately symmetric with outliers and it is reasonable to assume that the data

has normal distribution. Furthermore, the central tendency given by the box plot

which is the median equals to zero. As been shown by the histogram (Figure 38) the

120

mean is equals to 0.05 which almost equals zero. Since the mean and median is equals

to zero and the data has a normal distribution we can justify that the mode is also

equal to zero.

As per the information presented by the above two figures (Figure 38 & 39) we can

justify the suitability of the T-test (Table 22) for the quality factor ‗Install ability‘

4.3.5 ON TIME DELIVERY

As presented in chapter 3 Methodology, the information retrieved from the interview

has been used in this analysis. This section briefly analyses the responses received and

uses the Chi Square test to verify the derived hypothesis.

Table 23: Projects Completed on Time

Respondent Agile Waterfall A_CompOnTime W_CompOn time

1 2 2 1 2

2 6 1 6 1

3 7 2 5 1

4 2 3 0 2

5 1 4 1 2

6 1 10 1 6

7 2 8 2 3

8 1 2 1 1

9 3 5 1 2

10 5 9 3 4

11 2 2 1 2

12 7 2 5 0

Total 39 50 27 26

Percentage 69.23 52

The above table 23 shows the data collected from 12 project managers in relation to

the total number of projects completed during the past 5 years. According to the data

presented in table there are 39 total projects for Agile and 50 projects for Waterfall.

When considering the % of projects completed on time for Agile there are 69.23 %,

121

where as for Waterfall there are 52 %. By looking at the values presented it is

reasonable for us to assume that Agile is better for on time delivery when compared to

Waterfall.

Hypothesis 5 – There is no difference in Time to market between the two

development techniques.

H0 - µAtime - µWtime = 0

H1 - µAtime - µWtime ≠ 0

Table 24: Chi Square of Time

Method Agile Waterfall Total

Successful Observed 27 26 53

 Expected 23.22 29.78 53

Unsuccessful Observed 12 24 36

 Expected 15.78 20.22 36

 39 50 89

 χ2 = 3.78 14.25275 0.613689

 -3.78 14.25275 0.478677

 -3.78 14.25275 0.903486

 3.78 14.25275 0.704719

 Test Statistic 2.700571

 Critical value 3.841

According to the values presented in the above table 24, the calculated Chi Square

value for time period is 2.70 and the critical value for the sample is 3.8. Since the

observed value is less than the critical value there is no evidence to reject our null

hypothesis at 5 % significant level. Therefore, we can conclude that for the above

identified quality factor ‗On time delivery‘ statistically there is no significant

122

difference between the two development methods, though at a glance (Table 23) it

seems that Agile is better.

4.3.7 ON BUDGET DELIVERY

As presented in the chapter 3 Methodology, information retrieved from the Project

Managers via interview is used in this analysis. This section briefly analyses the

responses received and uses the Chi Square test to verify the derived hypothesis.

Table 25: Projects Completed within the Budget

Respondent Agile Waterfall A_CompOnBudget W_CompOnBudget

1 2 2 1 2

2 6 1 4 0

3 7 2 6 1

4 2 3 0 1

5 1 4 1 3

6 1 10 0 6

7 2 8 1 3

8 1 2 1 1

9 3 5 0 2

10 5 9 2 3

11 2 2 1 2

12 7 2 6 0

Total 39 50 23 24

Percentage 58.97 48

The above table 25 shows the data collected from 12 project managers in relation to

the total number of projects completed during the past 5 years. According to the data

presented in the table there are 39 total projects for Agile and 50 projects for

Waterfall. When considering the percentages of projects completed within the

budget; for Agile there are 58.97 %, where as for Waterfall there are 48 %. By

looking at the values presented in the table it is reasonable for us to assume that Agile

is better to complete the projects on time than Waterfall.

123

Hypothesis 6 – There is no difference in the budget between the two development

techniques Agile and Waterfall

H0 - µAbudget - µWbudget = 0

H1 - µAbudget - µWbudget ≠ 0

Table 26: Chi Square of Budget

Method Agile Waterfall Total

Successful Observed 23 24 47

 Expected 20.60 26.40 47

Unsuccessful Observed 16 26 42

 Expected 18.40 23.60 42

 39 50 89

 χ2 = 2.40 5.781593 0.280721

 -2.40 5.781593 0.218962

 -2.40 5.781593 0.31414

 2.40 5.781593 0.245029

 Test Statistic 1.058853

 Critical value 3.841

According to the values presented in the above table 26, the calculated Chi Square

value for time period is 1.05 and the critical value for the sample is 3.8. Since the

observed value is less than the critical value, there is no evidence to reject our null

hypothesis at 5 % significant level. Therefore, we can conclude that for the above

identified quality factor ‗Deliver on Budget‘, statistically there is no significant

difference between the two development methods, though at a glance (Table 25) it

seems that Agile is better.

4.3.7 PRODUCT QUALITY

As discussed in the above sections (Section 4.3. - 1, 2, 3, and4) after analyzing each

individual quality factor that contributes to the product quality, a cumulative

124

investigation has been done using One sample T- test for the calculated average to

verify the below specified Hypothesis.

Hypothesis 7

H0 - µAproductq - µWproductq = 0

H1 - µAproductq - µWproductq ≠ 0

Since the average gap has been taken as the data set bellow, the hypothesis is derived

and tested using One Sample T test

 H0 - µGapproductq = 0

 H1 - µGapproductq ≠ 0

Table 27: One Sample Statistics for Product Quality

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Product_ Quality 4.215 112 .000 .19720 .1045 .2899

Significant value in the table 27 is less than 0.05; therefore; we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is no difference in Software Product quality between the software products

developed using Agile and Waterfall techniques; which means ‗there is a difference in

Software product quality between the software products developed using Agile and

Waterfall methods‘.

125

In table 27 the confidence interval of differences falls between .1045 and .2899. Since

0 does not fall within the interval and also both the limits are positive, we can

conclude that the differences are mostly positive.

As discussed above the differences were calculated by subtracting Waterfall by Agile

and the questionnaire consisted of positive side questions; a positive difference

implies that Agile is favorable, where as a negative difference implies that Waterfall

is favorable. Therefore, by analyzing the above figures we can conclude that the

software product quality is higher in Software products developed using Agile

techniques, when compared to the products developed using Waterfall method.

Figure 30: Histogram of Product Quality

The histogram above (Figure 40) illustrates that the data are approximately left

skewed and a significant outlier appears in the left tail. And it seems reasonable to

assume that the data are formed in the order of a skewed distribution. According to

the figures presented in the histogram (Figure 40) most of the high frequencies are

126

positioned at the positive region (right hand side). Thus, we can take for granted that

there is much likelihood toward the decision that Agile is better than Waterfall for the

considered factor Product quality.

Figure 31: Box Plot of Product Quality

This can be further justified by the box plot (Figure 41) given above. According to the

data presented in the box plot there are significant outliers in the left tail. As clearly

depicted by the above diagram (Figure 41) 2
nd

, 3
rd

 and the 4
th
 quartiles are located

above zero. This means that 75 % of the data are positioned in the positive region;

whereas only 25 % of data falls at the negative side. Hence, we can conclude that

there is much likelihood toward Agile development than Waterfall method.

As per the information presented by the above two figures (Figure 40 & 41) we can

justify the suitability of the T-test (Table 27) for the factor ‗Product Quality`

127

4.4 DEMOGRAPHIC ANALYSIS

The demographic analysis below is based on the data collected from 76 Developers,

26 testers and 11 QA leads. The analysis was done against the quality factors

‗Correctness‘, ‗Testability‘, and ‗Changeability‘ and ‗Installability‘ respectively.

4.4.1. CORRECTNESS

Developer

 H0 - µGap_Developer_Correctness = 0

 H1 - µ Gap_Developer_Correctness ≠ 0

The table below presents the analysis done on the quality factor ‗Correctness‘. And it

is based on the responses of 76 developers who participated in the research.

Table 28: One Sample Statistics for Correctness - Developer

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Correctness 2.667 75 .009 .29605 .0750 .5172

Significant value in the table 28 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in Correctness between the software products developed

using Agile and Waterfall techniques which means from the perspective of the

developers ‗there is no significant difference in Correctness between the software

products developed using Agile and Waterfall methods‘

128

Tester

 H0 - µGap_Tester_Correctness = 0

 H1 - µ Gap_Tester_Correctness ≠ 0

The table below summarises the responses of 26 testers in the sample on the quality

factor ‗Correctness‘

Table 29: One Sample Statistics for Correctness - Tester

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Correctness -.948 25 .352 -.15385 -.4882 .1805

Significant value in the table 29 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in Correctness between the software products developed

using Agile and Waterfall techniques which means from the perspective of the testers

‗there is no significant difference in Correctness between the software products

developed using Agile and Waterfall methods‘

QA Lead

 H0 - µGap_Developer_Correctness = 0

 H1 - µ Gap_Developer_Correctness ≠ 0

The table 30 below represents the analysis done on the 11 responses received from

QA Leads related to the quality factor ‗Correctness‘.

129

 Table 30: One Sample Statistics for Correctness – QA Lead

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Correctness -1.150 10 .277 -.27273 -.8009 .2555

Significant value in the table 30 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in Correctness between the software products developed

using Agile and Waterfall techniques which means from the perspective of the QA

Leads participated in this research ‗there is no significant difference in Correctness

between the software products developed using Agile and Waterfall methods‘

As per the analysis none of the respondent categories believe that there is difference

in ‗Correctness‘ between the software products developed using Agile and Waterfall

techniques. This demographic analysis further justifies the finding ‗There is no

significant difference between Agile and Waterfall techniques for the quality factor

Correctness‘ in section 4.2.1 of the document.

4.4.2 TESTABILITY

Developer

The table below presents the analysis done on the developer‘s perception for quality

factor testability between Agile and Waterfall techniques.

 H0 - µGap_Developer_Testability = 0

 H1 - µ Gap_Developer_Testability ≠ 0

130

Significant value in the Table 31 is less than 0.05 therefore we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is no significant difference in Testability between the software products

developed using Agile and Waterfall techniques which means from the viewpoint of

the developers ‗there is a significant difference in Testability between the software

products developed using Agile and Waterfall methods‘

 Table 31: One Sample Statistics for Testability – Developer

One-Sample Test

Test Value = 0

t df Sig. (2-tailed) Mean Difference

95% Confidence Interval of the

Difference

Lower Upper

Testability 3.700 75 .000 .17456 .0806 .2685

According to the values presented in the Table 31 the confidence interval of

difference falls between .0806 and .2685. Since 0 does not fall within the interval and

also both the limits are positive we can conclude that the differences are mostly

positive. Since the differences are calculated by subtracting weight receive for

Waterfall by the weight for Agile a positive difference implies Agile is better than

Waterfall. Therefore we can conclude that from the perception of the developers

software products developed using Agile are more testable than the products

developed Waterfall method.

131

Tester

The table below summarizes results of the analysis done on Testability on the view

point of testers

 H0 - µGap_Tester_Testability = 0

 H1 - µ Gap_Tester_Testability ≠ 0

Table 32: One Sample Statistics for Testability – Tester

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed) Mean Difference

95% Confidence Interval of the

Difference

 Lower Upper

Testability 2.791 25 .010 .15641 .0410 .2718

Significant value in the Table 32 is less than 0.05 therefore we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is no significant difference in Testability between the software products

developed using Agile and Waterfall techniques which means from the viewpoint of

the developers ‗there is a significant difference in Testability between the software

products developed using Agile and Waterfall methods‘

According to the values presented in the Table 32 the confidence interval of

difference falls between .0410 and .2718. Since 0 does not fall within the interval and

also both the limits are positive we can conclude that the differences are mostly

positive. Since the differences are calculated by subtracting weight for Waterfall by

the weight for Agile a positive difference implies Agile is better than Waterfall.

Therefore we can conclude that from the perception of the testers software products

develop using Agile is more testable than the products develop in Waterfall method.

132

QA Lead

 H0 - µGap_QALead_Testability = 0

 H1 - µ Gap_QALead_Testability ≠ 0

Table 33: One Sample Statistics for Testability – QA Lead

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed) Mean Difference

95% Confidence Interval of the

Difference

 Lower Upper

Testability .498 10 .629 .06061 -.2103 .3315

Significant value in the table 33 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in Testability between the software products developed using

Agile and Waterfall techniques which means from the perspective of the QA Leads

participated in this research ‗there is no significant difference in Testability between

the software products developed using Agile and Waterfall methods‘

As per the analysis, Developers and Testers believe that software products developed

using Agile are more testable than the products developed using Waterfall. But it

reflected that from the view point of QA leads there is no significant difference

between two methods. Two third of the respondent categories assume that Agile is

more testable than Waterfall.

133

4.4.3 CHANGEABILITY

Developer

The table below presents the analysis done on the developer‘s perception for quality

factor changeability between Agile and Waterfall techniques.

 H0 - µGap_Developer_Changeability = 0

 H1 - µ Gap_Developer_Changeability ≠ 0

Table 34: One Sample Statistics for Changeability – Developer

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Changeability 6.055 75 .000 .55000 .3690 .7310

Significant value in the Table 34 is less than 0.05 therefore we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is no significant difference in Changeability between the software products

developed using Agile and Waterfall techniques which means according to the

developers ‗there is a significant difference in Testability between the software

products developed using Agile and Waterfall methods‘

According to the values presented in the Table 34 the confidence interval of

difference falls between .3690 and .7310. Since 0 does not fall within the interval and

also both the limits are positive we can conclude that the differences are mostly

positive. Since the differences are calculated by subtracting weight for Waterfall by

the weight for Agile a positive difference implies Agile is better than Waterfall.

Therefore we can conclude that from the perception of the developers software

134

products develop using Agile are more changeable than the products develop in

Waterfall method.

Tester

The table below presents the analysis done on the tester‘s perception for quality factor

changeability between Agile and Waterfall techniques.

 H0 - µGap_Tester_Changeability = 0

 H1 - µ Gap_Tester_Changeability ≠ 0

Table 35: One Sample Statistics for Changeability – Tester

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Changeability 2.423 25 .023 .23462 .0352 .4340

Significant value in the Table 35 is less than 0.05 therefore we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is no significant difference in Changeability between the software products

developed using Agile and Waterfall techniques which means according to the

developers ‗there is a significant difference in Changeability between the software

products developed using Agile and Waterfall methods‘

As can be seen by the values presented in the Table 35 the confidence interval of

difference falls between .0352 and .4340. Since 0 does not fall within the interval and

also both the limits are positive we can conclude that the differences are mostly

positive. Since the differences are calculated by subtracting weight for Waterfall by

135

the weight for Agile a positive difference implies Agile is better than Waterfall.

Therefore we can conclude that from the perception of the developers software

products develop using Agile are more changeable than the products develop in

Waterfall method.

QA Lead

The table 36 below presents the analysis of gap between Agile and Waterfall on the

perception of tester‘s for the quality factor changeability.

 H0 - µGap_QA Lead_Changeability = 0

 H1 - µ Gap_QA Lead_Changeability ≠ 0

Table 36: One Sample Statistics for Changeability – QA Lead

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Changeability .846 10 .417 .21818 -.3565 .7928

Significant value in the table 36 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in Changeability between the software products developed

using Agile and Waterfall techniques which means from the perspective of the QA

Leads participated in this research ‗there is no significant difference in Changeability

between the software products developed using Agile and Waterfall methods‘

As per the analysis, Developers and Testers believe that software products developed

using Agile are more changeable than the products developed using Waterfall. In

contrast the analysis done on the responses of QA leads reflected that there is no

136

significant different between the two methods in achieving the quality factor

Changeability.

4.4.4 INSTALL-ABILITY

Developer

The table 37 below presents the analysis of gap between Agile and Waterfall on the

perception of tester‘s for the quality factor changeability.

 H0 - µGap_Developer_Installability = 0

 H1 - µ Gap_Developer_Instalability ≠ 0

Table 37: One Sample Statistics for Installability – Developers

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Installability .877 75 .383 .07018 -.0893 .2296

Significant value in the table 37 given below, is greater than 0.05 therefore we do not

reject the null hypotheses at 5% significance level. And conclude that there is no

evidence to say that there is a difference in Installability between the software

products developed using Agile and Waterfall techniques which means from the

perspective of the developers participated in this research ‗there is no significant

difference in Installability between the software products developed using Agile

and Waterfall methods‘

137

Tester

The table below presents the analysis done on the tester‘s perception for quality factor

Installability between Agile and Waterfall techniques.

 H0 - µGap_Tester_Installability = 0

 H1 - µ Gap_Tester_Instalability ≠ 0

Table 38: One Sample Statistics for Installability – Testers

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

Lower Upper

Install-ability -.891 25 .381 -.05128 -.1698 .0673

Significant value in the table 38 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in Install-ability between the software products developed

using Agile and Waterfall techniques which means from the perspective of the testers

participated in this research ‗there is no significant difference in Install-ability

between the software products developed using Agile and Waterfall methods‘

QA Lead

The table 39 below presents the analysis done on the QA Lead‘s perception for

quality factor Install-ability between Agile and Waterfall techniques.

 H0 - µGap_QALead_Installability = 0

 H1 - µ Gap_QALead_Instalability ≠ 0

138

Table 39: One Sample Statistics for Installability – Testers

 One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

Lower Upper

Installability .886 10 .397 .12121 -.1837 .4262

Significant value in the table 39 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in Install-ability between the software products developed

using Agile and Waterfall techniques which means from the perspective of the QA

Leads participated in this research ‗there is no significant difference in Install-ability

between the software products developed using Agile and Waterfall methods‘

As per the analysis done on the quality factor Install-ability none of the respondent

categories believe that there is difference between the software products developed

using Agile and Waterfall techniques. This demographic analysis further justifies the

finding ‗There is no significant difference between Agile and Waterfall techniques for

the quality factor Install-ability‘ in the segment 4.3.4 page 96 of this document.

4.4.5 .PRODUCT QUALITY

Developer

 H0 - µGap_Developer_ProductQuality = 0

 H1 - µ Gap_Developer_ProductQuality ≠ 0

139

Table 40: One Sample Statistics for Product Quality – Developer

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Product Quality 4.447 75 .000 .27270 .1505 .3949

Significant value in the Table 40 is less than 0.05 therefore we have to reject our null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is no significant difference in SW Product Quality between the software

products developed using Agile and Waterfall techniques which means according to

the perception of the developers ‗there is a significant difference in Product Quality

between the software products developed using Agile and Waterfall methods‘

The confidence interval of difference (Table 40) falls between .1505 and .3949. Since

0 does not fall within the interval and also both the limits are positive we can

conclude that the differences are mostly positive. As describe above positive

difference implies Agile is better than Waterfall. Therefore we can conclude that

Software product quality is high in SW products developed using Agile than the SW

product developed using Waterfall.

Tester

 H0 - µGap_Tester_ProductQuality = 0

 H1 - µ Gap_Tester_ProductQuality ≠ 0

140

Table 41: One Sample Statistics for Product Quality – Tester

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Product Quality .790 25 .437 .04647 -.0747 .1677

Significant value in the table 41 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in product quality between the software products developed

using Agile and Waterfall techniques which means from the perspective of the testers

participated in this research ‗there is no significant difference in product quality

between the software products developed using Agile and Waterfall methods‘

QA Leads

 H0 - µGap_QALead_ProductQuality = 0

 H1 - µ Gap_QALead_ProductQuality ≠ 0

Table 42: One Sample Statistics for Product Quality – QA Lead

One-Sample Test

 Test Value = 0

t df Sig. (2-tailed)

Mean

Difference

95% Confidence Interval of the

Difference

 Lower Upper

Product Quality .203 10 .843 .03182 -.3166 .3803

Significant value in the table 42 is greater than 0.05 therefore we do not reject the null

hypotheses at 5% significance level. And conclude that there is no evidence to say

that there is a difference in product quality between the software products developed

141

using Agile and Waterfall techniques which means from the perspective of the QA

leads participated in this research ‗there is no significant difference in product quality

between the software products developed using Agile and Waterfall methods‘

According to the results presented, analysis done on developer‘s responses reflected

that there is a difference in achieving the SW product quality between the two

methods. Further it stated that SW quality is high in Agile development compared to

traditional Waterfall method. On the other hand results for testers and QA leads

reflected that there is no significant difference in achieving the SW product quality

between the two methods.

4.5 SUMMARY

The section begins with analyzing the validity of the data collected. There were 190

questionnaires distributed and 155 received in return. Out of the total received, only

113 were accepted to be considered at the analysis. Consequently, the respondent rate

is 82% and the valid rate against the total received is 72.9 %.

The second part of the chapter paid attention on analyzing the collected data in order

to test the derived hypothesis on the identified quality factors ‗Correctness‗ ,

‗Testability‘ , ‗Changeability‘ , ‗Install ability‘, ‗On time Delivery‘ and ‗Complete

within the budget‘

In the process of analyzing gap between Agile and Waterfall techniques for the above

mentioned factors, firstly, the questions related to each of the quality factors were

studied separately. Then One sample T test was used against the calculated gap to

check the validly of the hypothesis.

According to the analysis it has been identified that for the quality factors

‗Correctness‘, ‗Install ability‘, ‗Time‘ and ‗Budget‘ there is no significant difference

between the two development methods. But for the factors ‗Testability‘ and

142

‗Changeability‘ there is a significant difference between the two methods. And for

both the factors, the Agile method is better than Waterfall. The cumulative analysis

for the product quality factors resulted that there is a difference in the quality of the

software products developed using Agile and Waterfall techniques and further it states

that Agile is ahead of Waterfall.

143

CHAPTER FIVE

5. DISCUSSION

5.1 INTRODUCTION

This chapter begins by summarizing and discussing the major findings of the research

and it reiterates the findings of Chapter 4: Analysis. The chapter describes the

importance of the findings and links it with other similar researches. Also it discusses

any differences and similarities with the probable grounds for such differences.

Further the section moves towards the limitations of the study and lastly it discusses

the supplementary directions the research indicates.

5.2 REITERATION OF THE FINDINGS

The ―one size fits all‖ approach to applying SDLC methodologies is no longer

appropriate (Lindvall & Rus, 2000). Each SDLC methodology is only effective under

specific conditions. Traditional SDLC methodologies are often regarded as the proper

and disciplined approach to the analysis and design of software applications (Rothi &

Yen, 1989). Examples include the Code and Fix, Waterfall, Staged and Phased

development, Transformational, Spiral, and Iterative models. Agile techniques on the

other hand are a compromise between no process and too much process. These new

methods were developed to efficiently manage software projects subjected to short

timelines and excessive uncertainty and change. (Lindvall & Rus, 2000). As

described above many groups are trying to convince that Agile is the best

methodology and there is no IT meeting that does not talk and debate endlessly about

Waterfall vs. Agile development methodologies. Judgment run strong on the subject

with many considering Agile just so right, while Waterfall is thought to be outdated.

But, before deciding which method is more appropriate, it is essentially important to

144

make sure which method is quality wise sound. Hence overall idea of this thesis is to

hit upon answers to the questions stated below.

 Is there a quality difference between the software products developed using

Agile and Waterfall methods? And if there is a difference what is the healthier

method?

In the process of identifying answers to this question the researcher focused on the

quality factors mentioned below.

 Correctness

 Testability

 Changeability

 Install ability

 Complete within agreed time

 Complete within agreed budget

The findings for each of those quality factors are discussed further in this section.

Correctness

In the questionnaire questions 5 to 9 collects information that contributes to the

quality factor ‗Correctness‘ of a software product.

Q5 - The components we deliver almost meet user expectations

 ―Using agile modeling techniques and tools allows software developers to consider

complex problems before addressing them in programming. Agile planning and

development uses software modeling principles to let a developer design a software

system that truly meets the customer‘s requirements. This will lead to develop a final

product capable of catering the user‘s expectation‖ (Ambler, 2002, p.78). As

described above according to Scott Ambler who offered a suite of principles and

145

practices for software modeling, it is easy to meet user expectations or customer

requirements through Agility. According to Scott following factors make a

contribution to the high achievement of user expectations in Agile development.

 Stakeholders actively participate in the agile planning and development

 Teamwork is established

 Appropriate artifact (such as UML diagrams) is used to create suitable models

 Several models are created in parallel

 Correctness of the agile software models is verified

 The verified models are implemented and the resulting interface is presented

to the user

 Standards for agile requirement management are met

 But in his study he has not considered traditional methods nor had compare Agile

with Waterfall or any other traditional method. On the hand the analysis done, on the

answers received for the question number 9 it has been identified by the researcher

that most of the respondents agreed that same level of quality is achieved in meeting

the user expectations in both the development methods. As mentioned earlier, due to

the difficulty of getting information from the clients the research has collected data

only from the development companies. Hence the analysis reflects only the

organization‘s view point toward meeting their customer expectations but not direct

information from the customers themselves. Thus some limitations could exist on the

conclusions made on meeting user expectations.

Q6 - Our requirement specifications capture all the user requirements.

―Waterfall assumes that it is possible to have perfect understanding of the

requirements from the start. But in software development, stakeholders often dosn‘t

146

know what they want and unable to articulate their requirements at once.‖ (Szalvay,

2004)

 ―Agile methodologies embrace iterations. Small teams work together with

stakeholders to define quick prototypes, proof of concepts, or other visual means to

describe the problem to be solved. The team defines the requirements for the iteration,

develops the code, and defines and runs integrated test scripts, and the users verify the

results. Verification occurs much earlier in the development process than it would

with waterfall, allowing stakeholders to fine-tune requirements while they‘re still

relatively easy to change.‖ (Szalvay, 2004)

As can be seen in the comparison done in the web article ‗An Introduction to Agile

Software Development‘ it seems that the argument is more towards Agile. But

nowhere in the comparison has it been specifically stated that the requirement

specification is sounder in Agile than in Waterfall. Thus the argument that since you

can‘t come back to the previous phase in Waterfall, before moving in to next phase

you thoroughly study the user‘s requirements and articulate a sound artifact. On the

other hand in Agile since the process is iterative as mentioned above, it is not

necessary to collect all the requirements at once and prepare a precise requirement

specification (Anon, 2007). According to the results observed in this research

majority of the respondents assume that there is no significant difference in capturing

user requirements between the two methods. Of those who believe that there is a

difference majority assume that Waterfall is better than Agile in capturing the user

requirements in the requirement specification. This can be further justified by the

statement in the article ‗Testing Methodologies‘ published by Microsoft Corporation

in January 2005.

―Working software is the priority rather than detailed documentation. Agile

methodologies rely on face-to-face communication and collaboration, with people

147

working in pairs. Because of the extensive communication with customers and

among team members, the project does not need a comprehensive requirements

document‖ (Microsoft Corporation, 2005)

Q7 - Our system design cover the specifications 100%

According to the findings of this research most of the respondents assume that there is

no significant difference between the two methods in capturing the specification in the

design. But out of those who believe that there is a difference majority assume that

Agile is better in incorporating the specifications in design. There were no written

documents related to the quality attribute measured by this question.

Q8 - Our system implementation cover the system design 100%

As mentioned in Chapter 4 Analysis majority of the respondents falls on the fence

assuming that there is no significant difference between the two methods in adapting

the features in the design into the implementation.

Q9 - Our system implementation 100% free from faults

―By using Walkthroughs hidden implementation faults can be early detected, but a

great effort is involved. Any development method can minimize the defects at the

implementation if they incorporate walkthroughs within the development process‖.

(Börcsök J, 2000/2001) According to Borcsok irrespective of the development

method any product can achieve minimum fault % during the implementation if they

adopt walkthroughs within the process. But he has neither stated a development

method for which the walkthroughs are appropriate nor any comparison done against

the process models. As per the analysis for this question most of the respondents have

provided the same rating for both methods hence can conclude that most of the

148

respondents assume that there is no significant difference between the two methods

when considering the amount of faults in the system implementation.

 ―Aside from refactoring and effective prototyping, agile methods have other

advantages for a situation in which requirements are unstable. Reliance on test-first

programming, a principle of XP, means early detection of most minor errors, more

certain detection of defects at integration, and early thinking-through of tests for a

Graphical User Interface. These features of the Agile techniques increases the

correctness of the software products developed using the method.‖ (Tomayko, 2002)

The study done by Tomayko focuses only on the Agile Development and Specially

XP. In his study he has not done any comparison between Agility and Traditional

methods. Therefore based on his research it is difficult to decide on a better method to

achieve the identified quality factor Correctness. But this section of the research

aimed at identifying the most suitable method to achieve the quality factor

Correctness. And the findings reflected that there is no significant difference in the

two methods in achieving the above mentioned aspect.

Testability

After analysing the data received it has been identified by the researcher that there is a

difference between the two development methodologies for the quality factor

Testability and at the same time Agile is more testable than Waterfall.

 The findings of the research can be further justified by the following interviews and

research findings,

Since the Agile development consists of number of incremental iterations a product is

tested many times before its ultimate release. But when a traditional method is

considered like Waterfall, since development phases are chronological and cascaded

149

testing is done just once for the final product. (Phase-5). Therefore it is apparent that

the testability of the software product is higher in Agile Development. (Talbi D et al,

2006)

―Agile testing is in close collaboration between the test writer and the developers to

ensure test scripts can both be rapidly created and are robust and ensures flexibility

and adaptability. It is an iterative process. In the typical classical approach test team is

asked to test a project. Test engineers write the test cases. Testers need to wait for

software until it is almost too late executing the test plans.‖ According to Sugandhi

following features of the Agile development facilitate in increasing the testability of

its software products over the software products developed using traditional methods.

Pair programming – Each given task is handled by pair of programmers. One

programmer writes the code while other one reviews code and highlights / comments

the problems.

 Test Driven Development – A ‗bug‘ is anything that could bug a user. Testers don‘t

make the final call. Testing along does not assure quality. Find ways to set goals

rather than focus on mistakes. Developers write unit tests before coding. So it

motivates coding, improves design (reducing coupling and increase cohesion),

Support refactoring. Many open source test tools like xUnit have been developed to

support this.

Refactoring – It is a way to improve the design of the existing code.ie changing a

software system in such a way that it does not alter the external behaviour of the code,

yet improves its internal structure make the simplest design that will work. Add

complexity only when needed. Refactoring requires unit tests to ensure that design

changes don‘t break the existing code.

150

Acceptance testing – User stories are short description of features that need to be

coded. Acceptance tests verify the completion of user stories. Ideally they are written

before coding. (Sugandhi et al., 2010)

Changeability

―Unlike traditional methods Agile methods allow for specification changes as per

end-user‘s requirements, spelling customer satisfaction. As already mentioned, this

is not possible when the waterfall method is employed, since any changes to be made

means the project has to be started all over again.‖ (Scott, 2006)

“The 'One Phase' and 'Rigid' development cycle makes it difficult to make last

minute changes in requirements or design or the product. On the other hand agile

methods, due to their iterative and adaptable nature, can incorporate changes and

release a product in lesser time. Of course, agile models are not perfect either, but

they are certainly more widely applicable than the waterfall model‖ (Pilgrim, 2010)

Roy Winston in his book ―Managing the Development of Large Software Systems‖

has stated that in the Waterfall methods clients change their requirements after the

design is finalized can kill the project. (Winston, 1970). But he has not compared the

methods Waterfall and Agile the statement given by Winston only reflects that the

Changeability is low in Waterfall development.

As has been quoted above almost all the surveys and researches has proven the fact

that the Software products developed using Agile is changeable than the software

products developed using Waterfall method. The findings of this research too has

confirmed that there is a difference in changeability between the products developed

using Agile and Waterfall techniques and at the same time it has verified that the

changeability is high in Agile development compared to the Waterfall development.

http://en.wikipedia.org/wiki/Scott_Ambler
http://www.buzzle.com/authors.asp?author=29994

151

Install-ability

Though there was lot of literature defining what install-ability is, no literature is found

comparing this quality factor between Agile and Waterfall techniques. As described

in Chapter 4: Analysis the findings of this research reflected that there is no

significant difference for Install-ability between the software products developed

using Agile and Waterfall methods.

Software Product Quality

Cumulative analysis of the above four factors that affect the Software Product quality

suggested that there is a difference in Software Products developed using Agile and

Waterfall methods and the product quality is higher in Agile Development in contrast

to Waterfall development. Out of the four factors considered Changeability and

Testability are more toward Agile hence these two factors might have strongly

contributed to this judgment.

Above discussed findings of the research can be further justified by the ―Agile

Adaption Rate Survey result: February 2008‖ article presented by Jon Erickson the

editor of the Dr Dobbs journal. As presented in the literature survey section 2.6

according to the findings of the survey only 9 % of the respondents assume that the

product quality is lower in Agile development where as majority 48 % of the

respondents assume that the product quality is much higher in Agile development.

Another article presented based on the research done on Waterfall Model Vs Agile by

Gray Pilgrim stated that, ―Through my own research into the working of both these

models, I found the agile models to be more efficient and produce quality software

products than the waterfall model, due to its adaptability to the real world. The 'One

Phase' and 'Rigid' development cycle makes it difficult to make last minute changes in

152

requirements or design. While the agile methods, due to their iterative and adaptable

nature, can incorporate changes and release a product in lesser time. Of course, agile

models are not perfect either, but they are certainly more widely applicable than the

waterfall model.‖ (Pilgrim, 2010)

Complete within agreed time

As been discussed by Alberto in his article titled ―Waterfall Vs Agile: Can they be

Friends?‖ Time to market measures how fast a company can have a product out in the

market from the moment they start developing. A fast time to market allows the

company to have its product available long before its competitors. Agile is a sure bet

to achieve very fast times to market as at the end of each iteration the application

should be production ready. (Alberto 2010) But this assertion has not provided any

comparison between Agile and Waterfall methods.

Article published by Toronto and Boulder on their study stated that ―Larger software

development teams, especially when geographically dispersed, often struggle to

deliver their software on time. By adopting Agile practices, companies measured in

this study were able to produce large-scale enterprise software in four to eleven

months, compared to the six to thirteen months a typical organization required to

deliver comparable software. Overall, Agile companies experience an average

increase in speed of 37 percent. Customers who participated in the study saw an

average increase of 50 percent in their time-to-market when compared to the industry

average with the traditional methods. Here the authors have done a comparison

between Agile and Traditional methodologies and has concluded that Agile is faster in

delivering products compared to the traditional method. The reason for this has

mentioned in Alberto‘s article Agile develops working software at the end of each

iteration, whereas as mentioned in the literature survey section 2.6 (page 48, Agile

file:///C:/Users/Kapila/AppData/Roaming/Microsoft/Word/Pilgrim

153

Impact Report) Waterfall develops the working product at the end of the entire

development life cycle.

The finding of this research reflected that there is no significant difference between

the two methods Agile and Waterfall in completing the project within the agreed upon

time frame. As described above those two findings has considered only the ‗time to

market‘. But this research focuses not on time to market but the capability of

completing the project within the ‗agreed time frame‘. Perhaps this may be the reason

for the difference between the literature and the conclusions of the researcher.

Complete within agreed Budget.

The result of the analysis of this study revealed that there is no significant difference

between the two development models Agile and Waterfall for the identified project

quality factor ‗Complete within the agreed upon budget‘.

Brad Egeland in his Agile Software Development Project Vs Standard Software

Development Project white paper argued that the less re work and final product much

closer to the end user requirement effects to the low project cost in Agile

Development.

On the other hand Joe Ocampo states that ―Agile produces higher value for the money

but doesn't necessarily save you money in project cost.‖ (Ocampo, 2007)

By analyzing both the studies it is apparent that no one has checked whether the Agile

and Waterfall can complete the project within agreed upon budget frame but which

method is cost effective. In contrast the target of this research is to discover whether

there is a difference between Agile and Waterfall projects in completing projects

within the agreed budget and if there is a difference which one is better. As mentioned

http://pmtips.net/author/brad/

154

above the results reflected that there is no significant difference between Agile and

Waterfall projects in completing within the agreed budget frame.

5.3 LIMITATIONS AND FURTHER RESEARCH

Limitations

1. As per the preliminary investigation it was impossible to retrieve customer oriented

quality factors. Thus this research focused only on the developer oriented quality

factors. These factors include ‗Correctness‘, ‗Testability‘, ‗Changeability‘ &

‗install ability‘ and two project quality factors Time & Budget.

2. As per the preliminary survey since it has been identified that it is impossible to

collect data related to the process quality the research has not considered this factor

in its study.

3. When considering the project quality the research has collected data only to check

whether there is a difference in completing the project within the agreed upon time

and budget using the development models Agile and Waterfall. But not the most

effective method in relation to time to market and cost effectiveness.

4. The research has not differentiated its findings according to the size of the project

due to the difficulty of the data collection within the given time frame.

5. The research was conducted in the Sri Lankan context and collected its data only

from the Software Development Companies registered with the Sri Lanka Exports

Association. So these results likely represent the experiences of IT professionals in

Sri Lanka belongs to the above category, other Software Development companies

around, neither the country nor other parts of the world has been measured.

155

Further Research

1. Further research can be conducted to analyse the other product quality factors

discussed in the literature survey.

2. A research can be carried out to analyse the gap between Agile and Waterfall for

the process quality factors

3. A study could be undertaken to capture the factors ‗Time to Market‘ and ‗Cost

Effectiveness‘ between the two development methods.

4. Further research can also be conducted to identify the most suitable development

method for large, medium and small sized projects.

5. The same research could also be conducted in the Sri Lankan context excluding the

development companies registered with the SEA or in the context of another

country.

156

CHAPTER SIX

6. CONCLUSIONS

6.1 INTRODUCTION

This chapter highlights the major findings of the research. The overall goal of this

study is to identify the software development methodology that facilitates in

producing high quality Software products in the Sri Lankan Context. The study was

mainly around six developer oriented quality variables identified from the literature

survey. Conclusions and recommendations of the gap analysis done between

Waterfall and Agile techniques, against the identified quality factors, are described

further in this chapter.

6.2 CONCLUSION

The section summarizes the findings for each identified quality factor namely

Correctness, Testability, Changeability, Time and the Cost. Since the first two

objectives of the research (To identify of the Software Quality Factors and To identify

of the Traditional Software Development Models) is achieved through the literature

survey this section does not spotlight on summarizing those factors again.

Correctness

There is no significant difference in Correctness between the software products

developed using Agile and Waterfall methods.

Testability

There is a difference between the two methods for the quality factor Testability. The

software products developed using Agile are more testable than the products

developed using Waterfall.

157

Changeability

There is a significant difference between the two methods for the quality factor

Changeability. Agile techniques are more changeable than Waterfall.

Install-ability

There is no significant difference in Install ability between the software products

developed using Agile and Waterfall methods.

Complete within the agreed Time period

There is no significant difference in completing the project within the agreed upon

time frame between the Agile and Waterfall techniques.

Complete within the agreed Budget

There is no difference in completing the project within the agreed upon budget

between the development methods Agile and Waterfall.

Software Product Quality

There is a significant difference in the software product quality between the software

products developed using Agile and Waterfall methods. Agile techniques are ahead of

Waterfall method in providing quality software.

After analyzing the above findings we can conclude that there is a difference in

software Product Quality including the quality factors Changeability and Testability

between Agile and Waterfall methods. Whereas there is no significant difference

between the two methods for the factors Correctness, Install ability, Time and Budget.

158

6.2 RECOMMENDATIONS

1. As the research indicates there is no significant difference between the two

methods in completing the project within the agreed time frame. But as discussed

in chapter 2, the Agile development facilitates to deliver fractions of the product

within short development cycles. Therefore whenever it is required to have a

working product within a short period irrespective of the total completion of the

product it is recommended to use the Agile techniques rather than traditional

Waterfall method.

2. Both the literature and the findings of this research proved that the changeability is

high in Agile development. Therefore Agile techniques are recommended when

developing complex software products where the requirements are not easily

understandable and also in situations where the requirements are constantly

changing.

3. The research also reflected that the testability is high in Agile development. Hence

Agile method is recommended in the development of software products which

need a thorough level of testing

4. The research has indicated that there is no significant difference for the quality

factor ‗Correctness‘ between the two development methods. Hence any software

project needing only the above factor either method can be used

5. Further as there is no significant difference for the quality factor install-ability

either method can be used in the projects where the install-ability is highly

considered.

159

6. The research reflected that software products developed using Agile techniques

were of higher quality than those developed using Waterfall techniques. Thus the

Agile techniques are recommended in the process of developing Software

products of a very high quality.

160

REFERENCES

1. Abrahamsson, P (2001). Rethinking the Concept of Commitment in Software

Process Improvement. Scandinavian Journal of Information Systems, 13 (5).

pp.69-98.

2. Alberto, G (2010). Waterfall Vs Agile: Can they be Friends. Available:

http://agile.dzone.com/articles/combining-agile-waterfall Waterfall vs. Agile: Can

they be Friends? Last accessed 2nd Feb 2011.

3. Ambler, SW (2002). Agile Modeling (AM) – Using Models to Carry Out the

Development Process. Available: http://www.mymanagementguide.com/agile-

modeling-am-using-models-to-carry-out-the-development-process/. Last accessed

5th Feb 2011.

4. Ambler, SW (Nov 2007). Is Agile Really that Successful? Dr. Dobb's‘ The World

of Software Development.‘ 11 (2), 24-26

5. Anon, (2001) Agile Alliance Manifesto for Agile Software Development.

Available: http://www.agilemanifesto.org/principles.html Last accessed 25th June

2010

6. Anon. (2005). Software Lifecycles. Available:

http://www.wittmannclan.de/ptr/cs/rup_model.jpg. Last accessed 19th May 2010

7. Anon. (2007). An Introduction to Agile Software Development. Available:

http://www.serena.com/docs/repository/solutions/intro-to-agile-devel.pdf. Last

accessed 30th Sep 2011.

8. Anon. (2011). Glossary. Available:

http://www.sei.cmu.edu/architecture/start/glossary/. Last accessed 29th Sep 2011

9. Anon (n.d). Sri Lanka Exports Association. Available:

http://www.islandsoftware.org/ . Last accessed 10th June 2009.

http://www.agilemanifesto.org/principles.html

161

10. Aoyoma & Mikio (1998). Web based Agile Software. Available: http://rockfish-

cs.csunc.edu/COMP290-S02/Ayoma-98.pdf. Last accessed 3rd June 2010.

11. Balzer, R, Cheatham, T. E & Green, C (1983). Software Technology in the1990‗s:

Using a New Paradigm. Computer. 16 (11), 39-45.

12. Baum, A. V (1983). Total Quality Control. 3rd Ed. New York: McGraw-Hill.

13. Beck, K & Andres, C (2004). Extreme Programming Explained: Embrace Change.

2nd ed. Boston: Addison-Wesley.

14. Benington, H. D (1983). Production of Large Computer Programs. Production of

Large Computer Programs. 5 (4), 350-361.

15. Berander, P, Damm, L & Eriksson J (2005). Software Quality Attributes and

Trade – offs. Ph.D Thesis, Blekinge Institute of Technology. Available:

http://www.bth.se/tek/besq.nsf/(WebFiles)/5A52350A52726F51C12570A8004CB

613/$FILE/Software_quality_attributes.pdf. Last accessed 27th Sep 2010.

16. Boehm, B & Turner, R (2003). Using Risk to Balance Agile and Plan-Driven

Methods. Computer, 36 (6), 57-66.

17. Boehm, B (1988). Characteristics of Software quality. New York: North Holland

Pub. Co American Elsevier.

18. Boehm, B (2006). A view of 20th and 21st century software engineering. ACM

New York. Available: http://portal.acm.org/citation.cfm?id=1134288. Last

accessed 10th May 2010.

19. Callen, T (2007). Emerging Markets Main Engine of Growth. [e-Book] : .

Available: http://www.imf.org/external/pubs/ft/survey/so/2007/NUM1017A.htm.

Last accessed 15 Aug 2010.

20. Cockburn, A & Highsmith, J (2001) Agile Software Development: The people

factor, Available: http://www.Adaptivesd.com/Articles/IEEEArtical2Final.pdf.

Last accessed 6th June 2010.

http://www.bth.se/tek/besq.nsf/(WebFiles)/5A52350A52726F51C12570A8004CB613/$FILE/Software_quality_attributes.pdf
http://www.bth.se/tek/besq.nsf/(WebFiles)/5A52350A52726F51C12570A8004CB613/$FILE/Software_quality_attributes.pdf
http://www./

162

21. Crosby P.B (1979). Quality is free: The art of making quality certain, New York:

New American Library.

22. Daniel.G (2004). Software Quality Assurance: From theory to implementation.

3rd ed. India: PERSON Education. 259

23. Deming W.E (1988). Out of Crisis: Quality, Productivity and Competitive

position, United Kingdom: Cambridge University Press.

24. Dr. Daniel.G (2004). Software Quality Assurance: From theory to

implementation. 3rd ed. India: PERSON Education. 259

25. Edwards, CD. (1968). The meaning of quality. Quality Progress. 6 (16) 80 -84.

26. Emanuel, R. Baker PD & Frank, J K (2000). SEI Capability Maturity Model.

Available: http://www.qpmg.com/sei.htm. Last accessed 12th June 2009.

27. Erickson, J (2008). Agile Adaption Rate Survey result: February 2008. Available:

http://www.ambysoft.com/surveys/agileFebruary2008.html. Last accessed 06th

Jan 2011

28. Ferreira, C & Cohen, J (2008). Agile System Development and Stakeholder

Satisfaction: A South African Empirical Study. Riding the wave of technology.

Available: http://delivery.acm.org/10.1145/1460000/1456666/p48-

ferreira.pdf?key1=1456666&key2=3955816821&coll=GUIDE&dl=GUIDE&CFI

D=104313137&CFTOKEN=66476760. Last accessed 6th June 2010.

29. Fitzgerald, B & Wynn, E ed. (2004). IT Innovation for Adaptability and

Competiveness. Massachusetts: Kluwer Academic Publishers.

30. Gilb, T (1981). Evolutionary Development. ACM SIGSOFT Software

Engineering Notes, 6 (2).2.

31. Gilb, T (1988). Principles of Software Engineering Management. Wokingham:

Addison Wesley.

163

32. Gilb, T (2005). Competitive Engineering: A Hand book for System Engineering

and Requirement Engineering. Butterworth: Heinemann.

33. Gilmore, H L. (1974 June). Product Conformance Cost. Quality Progress. 13 (2),

16-19.

34. Gould, P (1997). What is Agility? Manufacturing Engineer, 2 (5). 28-31.

35. Grady, R B (1992). Practical Software metrics for project management and

process improvement. New Jersey: Prentice Hall.

36. Highsmith J (2001). History: The Agile Manifesto. Available:

http://agilemanifesto.org/history.html. Last accessed 3rd June 2010.

37. Highsmith, J (1997). Messy, Exciting and Anxiety – Ridden: Adaptive Software

Development. ACM Computing Surveys, 40(1). Available at:

http://www.jimhighsmith.com /articles/ messy.htm. Last accessed 11th May 2010.

38. Highsmith, J (2000). Adaptive Software Development. Available:

http://www.chc-3.com/cs511/fall2001/talks/team2_asd.ppt. Last accessed 11th

May 2010.

39. Hower, R (1996). What is 'Software Quality Assurance?. Available:

http://www.Software QA and Testing Resource Center - FAQ Part 1.htm. Last

accessed 18th May 2010.

40. Hoyer RWH & Hoyer BBY (n.d). What is quality- Quality progress? The Global

Voice of Quality. 34, 53-62.

41. IEEE Std. 610-12-1990. Available:

http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf.

Last Accessed 10th May 2010.

42. Ishikava K (1985). What is total quality control? The Japanese way, Englewood

Cliffs: N.J. Prentice-Hall.

http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf

164

43. ISO/IEC (2001). Software Engineering – Product Quality, Part I: Quality Model,

in ISO/IEC 9126-1:2001, International Organization of Standardization and

International Electro technical Commission. USA.

44. James, T (2005). Stepping Back from Lean. IEE Manufacturing Engineer, 2 (3),

16-21.

45. Juran JM (1988). Quality Control Handbook, Boston: McGraw-Hill.

46. Juran, J M & Frank G (1988). Juran's Quality Control Handbook. Boston:

McGraw-Hill.

47. Kokol, P. Zumer, V & Stiglic, B (1991). New Evaluation Framework for

Assessing the Reliability of Engineering Software System Design Paradigms. In:

Reliability and Robustness of Engineering Software II. 3rd ed. London:

Southampton 173-184.

48. Krejcie, RV & Morgan, DW (1970). Determining sample size for research

activities. Educational & Psychological Measurement, 30 (12). 607 - 610.

49. Kroll, P & Kruchten, P (2003). The Rational Unified Process Made Easy: A

Practitioner's Guide to the RUP. 3rd ed. Massachusetts: Addison-Wesley.

50. Larman, C (1998). Applying UML and Patterns: An Introduction to Object-

oriented Analysis and Design. Meisterplanlos. 11 (C). 12-15.

51. Larman,C & Basili, VR (2003). Iterative and Incremental Development: A

Brief History. Maryland: Thomas Publishing Co.

52. Leffler, K B. (1982). Ambiguous Changes in Product Quality. American

Economic Review. 7 (3), 129.

53. Lewis, GF (1998). Unified process project profile. 4th ed. Massachusetts:

Addison-Wesley.

54. Lindvall, M & Rus, I (2000). Process diversity in software development. IEEE

Software, 17 (4). 14 - 18.

http://maryland.uscity.net/bin/uscity.cgi?ID=960142864

165

55. Lycett, M. Marcos, E & Storey, V (2007) Model Driven System Development: An

Introduction European journal of Information Systems, 16. 346-348.

56. Madura, J (2007). Introduction to Business. USA: Thompson Higher Education.

57. Malouin, J L & Landry, M (1983). The Miracle of Universal Methods in Systems

Design. Journal of Applied Systems Analysis, 10. 47-62.

58. McCall, JA. Richard, PK & Walters GF (1977). Factors in Software Quality. Nat‘l

Tech. Information Service. 1 (3). 2-3.

59. McCracken, D D & Jackson, M (1982). Life cycle concept considered harmful.

ACM SIGSOFT Software Engineering Notes, 7 (2). 16-20. Available:

http://portal.acm.org/citation.cfm?id=1005943. Last accessed on 2nd Aug 2010.

60. Microsoft Corporation. (2005). Testing Methodologies. Available:

http://msdn.microsoft.com/en-us/library/ff649520.aspx. Last accessed 30 Sep

2011.

61. Morien, R (2005). Agile Management and the Toyota way for Software

Management. In: 3 rd International Conference on Industrial Informatics. Perth

WA Australia. 10 Aug 2005, IEEE: Perth.

62. Musa J I A & Okumoto, K (1990). Software Reliability. New York: Mc Graw-

Hill.

63. Ocampo J. (2007). Agile Vs Traditional Development Cost Models. Available:

http://lostechies.com/joeocampo/2007/09/20/agile-vs-traditional-development-

cost-models-maybe/. Last accessed 30th Sep 2011

64. Pilgrim, G (2010). Waterfall Model Vs Agile. Available at:

http://www.buzzle.com/articles/waterfall-model-vs-agile.html. Last accessed 04th

Feb 2011.

65. Poppendieck, M & Poppendieck, T (2003). Lean Software Development: An

Agile Toolkit. Boston: Addison-Wesley.

http://portal.acm.org/citation.cfm?id=1005943

166

66. Pressman, P S (2010). Software Engineering: A Practitioners Approach. 7th ed.

Boston: McGraw-Hill.

67. Ramand, G (2009). Software Quality Assurance. Quality Assurance and Software

Testing, 11 (2). 32-34.

68. Ross, A & Francis, D (2003). Lean is not enough. IEE Manufacturing Engineer, 2

(4). 14-17.

69. Rothi, J & Yen, D (1989). System Analysis and Design in End User Developed

Applications. Journal of Information Systems Education. Available at:

http://www.gise.org/JISE/Vol1-5/SYSTEMAN.htm. Last accessed 2 Feb 2011.

70. Royce, W W. (1970), 'Managing the development of large software systems:

concepts and techniques', Proc. IEEE WESTCON, Los Angeles, 1--9 .

71. Sanjay, AV (2005). Overview of Agile Management & Development. Available:

http://www.projectperfect.com.au/downloads/Info/info_agile _programming.pdf

Last accessed 4th June 2010.

72. Saparamadu D B (n.d.). Overview of Sri Lankan IT Industry. Available at:

http://www.hsenid.com/download/EH_Overview_Of_the_Sri_Lankan_ITDetail.p

df. Last accessed 12 May 2010.

73. Satalkar, B(2011). Waterfall Model Advantages. Available:

http://www.buzzle.com/articles/waterfall-model-advantages.html. Last accessed

28th Sep 2011.

74. Schauble, W (2007). Advancing e-government. In: German EU Council

Presidency. International e-Government Conference. Berlin Germany. 01 -02 Mar

2007, Federal Ministry of the Interior: Berlin.

75. Schwaber, K (2004). Agile Project Management with Scrum. Washington:

Microsoft Press.

http://www.gise.org/JISE/Vol1-5/SYSTEMAN.htm
http://www.projectperfect.com.au/downloads/Info/info_agile%20_programming.pdf

167

76. Schwallbe, K (2004). Information Technology Project management. 3rd ed. USA:

Thompson learning Inc.

77. Scott, A (2001). When and when aren‘t you agile modeling? Available at:

http://www.agilemodeling.com/essays/whenAreYouAgileModeling.html. Last

accessed 6th June 2010.

78. Smith, P (28 June 2011). Waterfall SDLC Methodology. Available:

http://skysigal.xact-

solutions.com/Resources/SoftwareDevLifeCycle/WaterfallMethodSDLC/tabid/60

0/Default.aspx. Last accessed 29th Sep 2011.

79. Stapleton J (2003). DSDM Consortium. 2nd ed. London: Addison- Wesley. 176.

80. Sugnadhi, AD. Anand, N. Manisha, V & Garje JV (2008). Improving Software

Quality with Agile testing. International Journal of Computer Applications. 1 (3),

22.

81. Szalvay, V (2004). An Introduction to Agile Software Development. Available at:

http://docs.google.com/viewer?a=v&q=cache:5HFgofvhZVIJ:www.danube.com/d

ocs/Intro_to_Agile.pdf+An+Introduction+to+Agile+Software+Development&hl=

en&pid=bl&srcid=ADGEESivrgmS.html. Last accessed on 10 June 2010.

82. Toronto & Boulder (2008). The Agile Impact Report: Proven Performance

Metrics from the Agile Enterprise. Available at: http://www.pr-inside.com/new-

study-shows-that-agile-teams-r737178.htm. Last accessed 07th Feb 2011.

83. Tyrell, S (2000). The Many Dimensions of the Software Process. Cross Roads:

The ACM Student Magazine 6(4), 22-26. Available at:

http://portal.acm.org/citation.cfm?id=333435. Last accessed 07th Feb 2011.

84. Williams, L & Cockburn, A (2003). Agile Software Development: It‘s about

feedback and change. Computer. 36 (6). 39-43.

http://www.agilemodeling.com/essays/whenAreYouAgileModeling.html
http://docs.google.com/viewer?a=v&q=cache:5HFgofvhZVIJ:www.danube.com/docs/Intro_to_Agile.pdf+An+Introduction+to+Agile+Software+Development&hl=en&pid=bl&srcid=ADGEESivrgmS.html
http://docs.google.com/viewer?a=v&q=cache:5HFgofvhZVIJ:www.danube.com/docs/Intro_to_Agile.pdf+An+Introduction+to+Agile+Software+Development&hl=en&pid=bl&srcid=ADGEESivrgmS.html
http://docs.google.com/viewer?a=v&q=cache:5HFgofvhZVIJ:www.danube.com/docs/Intro_to_Agile.pdf+An+Introduction+to+Agile+Software+Development&hl=en&pid=bl&srcid=ADGEESivrgmS.html

168

85. Witmann, P (2005). WittmannClan.com: Software Life cycles. Available at:

http://www.wittmannclan.de/ptr/cs/slcycles.html. Last accessed 25 Aug 2010.

86. World Economic Outlook Database. Available:

http://en.wikipedia.org/wiki/File:Gdp_accumulated_change.png. Last Accessed

12 May 2010.

87. Zhu, H (2007). Quality-Attribute Auditing: The What, Why, and How. Available

at: http://msdn.microsoft.com/en- us/library/Bb508961.0705 auditing _01l (en-us,

MSDN.10).gif. Last accessed 12th June 2009.

http://www.wittmannclan.de/ptr/cs/slcycles.html

169

APPENDIXES

Feasibility Study
SQA in Agile Development: A Gap Analysis Appendix A

170

Company Name: ..………………………………………………………………………….

Name of the Contact Person: ………………………………………………………………

Designation: ………………………………………………………………………………..

No of years in current position: ……………………………………………………………

5. If your answer is 5(Other) for question 1 please name the process model(s) use by

your company in its SW development process.

i. iii. ……………………….

ii. ………………….. iv. ……………………….

6. Is it possible to collect required information from your company for the research

‗Software Quality Assurance in Agile Development‘?

Comment …………………………………………………………………………………...

 …………………………………………………………………………………...

7. Is it possible to contact your clients to get information on product quality?

Comment …………………………………………………………………………………...

 …………………………………………………………………………………...

 1

Waterfall

2

Spiral

3

RUP

4

Agile

5

Other

1.What are the SW development

process models use by your

company

2. Do you have any completed

projects in each model

3. Number of projects completed

in each process model

4. Number of on going projects in

each process model

No Yes

No Yes

Agile Methodology
SQA in Agile Development: A Gap Analysis Appendix B

171

2. If your answer is 5(Other) for question 1 please name the methods.

i.

ii. ……………………………

iii. ……………………………

iv. …………………………….

 1

Scrum

2

ASD

3

XP

4

Crystal

5

Other

1. What agile methodologies use

in your organization in its

software development process.

Number of Employees
SQA in Agile Development: A Gap Analysis Appendix C

172

Please specify the number of employees for each category

Respondent Information

1. Company Name: ..……………………………………………………………………

2. Name of the Contact Person: …………………………………………………………

3. Designation: ……………………………………………………………………………

Number of Employees

Designation Count

PM

QA Lead

Developer

Tester

 Appendix D

174

Questionnaire

Software Quality Assurance in Agile Development

Please corporate with us to complete this Survey. We do not require your identity but

your suggestions and ideas are highly appreciated.

Please mark with on the relevant boxes/places.

Thank you very much for your kind corporation

1. Company:

2. Have you completed at least one project using Waterfall method

3. Have you completed at least one project using Agile

4. Designation:

Please use the below weightings to answer the questions 5 to 20

 Strongly Disagree 1

 Disagree 2

 Neutral 3

 Agree 4

 Strongly Agree 5

If any question given below is not applicable to you please specify it with a in the

―NA” column

 Agile Water fall N

A 1 2 3 4 5 1 2 3 4 5

5
The components we deliver almost meet user

expectations.

6
Our requirement specifications capture all the

user requirements.

7
Our system design cover the specifications

100%

8
Our system implementation cover the system

design 100%

9
Our system implementation 100% free from

faults

10
We accomplish complete execution of test

scripts

11
We always adhere to the Coding standards in

implementing our systems.

 Virtusa TeamWorks DMS E - College

Developer QA Team Lead Tester

 Yes No

 Yes No

 Appendix D

174

 Agile Waterfall N

A 1 2 3 4 5 1 2 3 4 5

12
We do not employee many complex

structures in our codes

13
Modifications can be done to our products

without much difficulty

14
Our systems do not need much effort to

accommodate minor specification changes

15
Our systems maintain law interaction

between modules

16
When the changes are done to one module our
systems have very low side effects to other

modules

17
Integration of a new component to the system

does not create much functional issues

18
Our systems do not challenge during the

installation in the agreed environment.

19
We have to incorporate minor modifications

when installing our systems in the agreed
environment

20
Hardware configuration is always compatible

with software we developed when deploying our
systems

