
Improving Your Web Services Thorough Semantic Web Techniques

J.P. Liyanage, G.N. Wikramanayake

University of Colombo School of Computing, Colombo-7

Telephone: +94 0114 920562

Email: janakasoft@yahoo.com, gnw@ucsc.cmb.ac.lk

Abstract

 Most of the data in the internet are markup for text

and graphics in HTML format and are driven by syntax.

These data are displayed to the user but the computers

are concern there is no meaning of these data. If we

semantically annotate data in the internet, then the

computers can process these data in meaningful ways

and increase the usability of the data. In this project a

possible architecture for a semantics based

middleware agent (broker) will be looked at, which has

the capabilities to serve web service requests by

searching through a larger space of web services. The

matching capabilities of a semantics based broker are

much higher than any of the syntax based middleware

frameworks in the market today like UDDI.

 In this project, we will be using two of the current

semantic web technologies OWL (Ontology Web

Language) and OWL-Services. Once the broker

receives a client request that contains the capabilities

and input/output specification of a web service client

wishes to invoke, it will read OWL-S descriptions of

the services registered to the broker and try to find a

direct match. If it is unable to find one the broker uses

its powerful inference capabilities (not available in

conventional syntax based middleware) to dynamically

compose a set of available services together into a new

service.

 Our IntelliBroker works as a true broker in the

sense that client may even not know what the invoked

services are. In executing the created composite

service, the broker has the ability to exploit any

parallelism between the child services and return

results to the client faster. The broker will convert

OWL types to SOAP messages and vice versa using

XSLT (eXtensible Style Language Transformations).

This paper focuses on the design and the architectural

of our system.

 We implemented the system with Java language and

used Axis framework for publishing and executing web

services. Jena API was used to manipulate OWL data

and the Pellet engine was used for the reasoning.

Keywords: Semantic Web, OWL-S, Semantic Web

Services, Service Brokerage

1. Introduction

 Web services have been in the forefront of the web

technologies in the recent past and allow much more

rich interaction between the client and server,

compared to the surfing of the HTML (Hyper Text

Markup Language) pages scattered around the web.

Since web services allows intelligent agents and/or

applications in the web to access much more specific

data compared to screen scraping methods used in

conventional applications, it allows much more usable

and targeted information to be forwarded to the end

user. However, finding a suitable web service to satisfy

a particular requirement had always been challenging.

Registries containing information about many different

types of web services are common in the World Wide

Web. UDDI (Universal Description, Discovery, and

Integration) is the most popular standard of describing

such type of Web service description registries [1].

 However all of these registries are syntax based,

which mean that they are usually inflexible and

inadequate. This also means that the data in these

registries cannot be used to infer any other useful

relationships between the web services than those

explicitly defined in the registry. For example if the

supplier A publishes a service to sell “Published

Documents” and a user B wants to buy “Books” and do

a search on “Books” he will not find the A’s web site.

This is simply because there was no way to define the

relationship between the “Published Documents” and

“Books” in the syntax based Registries or more

generally in the syntax based Web.

 Semantic Web [11] attempts to solve these issues

but is still in its infancy. The idea behind semantic web

14

has been to make machines understand the meanings

(semantics) of the contents in the web and thus

allowing them to infer any other implicit relationships

between the data. Semantic Web proposes a language

called OWL (Ontology Web Language) [18] to

annotate semantically all the data published to the web.

 Applying semantic web techniques to the

conventional web services has resulted in what are

known as semantic web services [10] and the aim of

this project is to design a middleware agent (a broker)

[20] for semantic web services. This brokerage system

(IntelliBroker) process user requests for web services,

and map them into one or more web services, which

are capable of serving the request.

 In addition to this, we have proposed a distributed

architecture for a Broker. In this distributed

architecture, rather than a single centralized broker

handling all the requests, a set of loosely coupled

brokers will share the knowledge between each other

in serving the requests of clients. The brokers interact

with each other using a semantics based protocol

(called DUBIP) in the semantic web. Thus, the

IntelliBroker is able to match more web services than a

conventional broker based on syntax would.

 The rest of the paper is organized as follows. A

background on web services and semantic web is

introduced along with related technologies. Then our

methodology is explained. Our proposed distributed

architecture is described next. The implementation of

our ideas and the results are then presented. Finally

conclusions and future work is highlighted.

2. Background

2.1. Web Services

 Web services are built mainly upon XML and

HTTP [20]. HTTP (Hyper Text Transfer Protocol) is a

ubiquitous protocol, running everywhere on the

Internet while XML (eXtensible Markup Language)

provides a meta-language using which you can write

specialized languages to express complex interactions

between clients and services or between components of

a composite service. Using XML, other technologies

like WSDL [2] and SOAP [20] are built, which further

defines the platform elements of web services.

 Simple Object Access Protocol (SOAP) is a

protocol specification that defines a uniform way of

passing XML-encoded data. It also defines a way to

perform Remote Procedure Calls (RPCs) using HTTP

as the underlying communication protocol [20].

WSDL

Web Service Description Language (WSDL) [2]

provides a common XML grammar for describing

services and a platform for automatically integrating

those services; thus it is a mandatory component for

any web service. Using WSDL, a client can locate a

web service and invoke any of its publicly available

functions [2]. Since machines can understand and

process WSDL specification, it is possible to automate

the process of integrating with a new service (e.g.

generation of a proxy class in Microsoft .NET [13]).

RDF

Resource Description Framework (RDF) [12] is used

as the foundation for representing metadata about Web

resources such as the title, author, and modification

date of a Web page, copyright and licensing

information about a Web document [12]. It provides

syntax for expressing simple statements about

resources, where each statement consists of a subject, a

predicate, and an object (triples). In RDF resources are

identified by URIs (Universal Resource Indicator) and

thus can be used to describe web based resources

effectively.

RDFS

One limitation of RDF is that it does not have any

facilities for defining structures or hierarchies [8].

RDFS (RDF Schema) was thus introduced as an

extension to RDF, to complement RDF with a type

system. It provides the facilities needed to specify

classes and properties (defined as a directed binary

relation) in RDF. In RDFS, a set of new terms has been

introduced to define classes, subclasses and properties

applicable to them.

2.2. Semantic Web

First introduced by Tim Berners-Lee [11], it is about

a new form of web content that would be meaningful to

computers and thus allow computers to infer

meaningful relationships between data. Semantic Web

technologies are supposed to be a solution to the

problem of allowing the data in the internet available to

a much broader range of consumers (either human or

machines) preferably through automated agents.

Semantic web is an extension to the current Web,

where information is given a well-defined meaning and

thus machines can process and “understand” the data

rather than merely displaying them like in the current

Web [11].

The Semantic Web principles are implemented in

layers of Web technologies and standards [Figure 1].

The Unicode and URI layers make sure the use of

international characters sets and provide the method of

15

identifying objects in Semantic Web. The XML layer

with namespace and schema definitions assures the

integration of Semantic Web definitions with the other

XML based standards. With RDF and RDFS, it is

possible to make statements about objects with URIs

and define vocabularies that can be referred to by URIs.

This is the layer where we can give types to resources

and links (properties). The Ontology layer supports the

evolution of vocabularies as it can define relations

between the different concepts. With the Digital

Signature layer, agents or end users can detect any

alterations to documents.

Figure 1: Layers in the semantic web

The top three layers (Logic, Proof and Trust), are

currently being researched under W3C and simple

application demonstrations are being constructed. The

Logic layer enables the writing of rules while the Proof

layer executes these rules. Trust layer provides a

mechanism to determine whether to trust a given proof

or not [10]. Proof and Trust are very important

concepts in Semantic Web since if one person says that

X is blue and another says that X is not blue, we need a

way to determine which is true [14].

2.3. OWL

The Semantic Web needs a support of ontologies,

which is defined as explicit specification of a

conceptualization [5]. Ontologies define the concepts

and relationships used to describe and represent an area

of knowledge. OWL has been designed and introduced

by W3C to be able to describe ontologies. OWL

(Ontology Web Language) is a layer on top of RDFS,

which defines an additional set of terms to describe the

relationships between the resources in a much richer

fashion.

Sub languages

To compromise between rich semantics for

meaningful applications (expressive power) and

feasibility/implementability the OWL support three

different sublanguages Lite, DL and Full [6, 18].

Classes and Properties

OWL extends the notion of classes defined in RDFS,

with its own construct. OWL also extends the notion

RDFS property by introducing Data-type and Object

properties. OWL also introduces a set of property

characteristics, which results in considerable inference

capabilities [7]. For example, Colombo region can be

located in the Asia region if given that Sri Lanka is

located in Asia region and Colombo located in the

region Sri Lanka.

2.4. RDQL

Resource Description Query Language (RDQL) is

the most commonly used query language to obtain

information from databases containing RDF data like

OWL or OWL Services. The work of RDQL is similar

to the work of SQL in relation to the relational

databases [17].

2.5. OWL-S

OWL-S (OWL Services) is a set of ontologies

designed in OWL to describe web services in semantic

web. By using this common set of ontologies, the web

services will be universally available to any client that

can understand OWL. Actually there is another

framework called WSMO (Web Service Modelling

Ontology), aiming to describe semantic web services

[15]. However since OWL-S is the most widely

accepted choice for semantic web services and is the

recommended one by W3C, we used OWL-S for

service description in this project.

Service Profiles, Models, and Groundings

The top level of the OWL-S ontology is the Service

class, which corresponds to a web service. One needs

to know at least three things about a Service: what it

does, how it works and how one might access it. The

relationships between these classes are depicted in

Figure 2.

Figure 2: Top-level class relationships in OWL-S

16

2.6. Web Service Brokerage

A web service broker finds suitable web services for

the client based on the capabilities requested by the

client. The tasks performed by a broker are twofold:

Search: Finding the best service(s) matching to the

requesters query. The broker may have to compose

existing services together in order to derive new

services, which will satisfy the query.

Mediation: Converting back and forth between the

data formats used by requester and provider.

Matching capability of two brokers can be

compared using the number of matches given for a

particular query. If the number of matches given is

higher for Broker A than for Broker B then broker A is

said to be better than B. This number depends both on

the search and mediation capabilities of the broker.

That is the amount of the services searched and the

ability to mitigate the differences between the

consumer and provider.

In addition to these main functionalities, a broker

should be secure (in the sense only authorized parties

can access it). A broker can also provide services like

web service promotion, negotiation and maintaining

QoS (Quality of Service) metrics of registered services.

2.7. Current Brokerage Systems

Complete brokerage systems that are capable of

doing all of the tasks of discovery (matchmaking),

service composition, mediation and execution

automatically without human intervention are not

available to date. There are partial solutions, which

implement parts of the above functionalities with the

human intervention developed using OWL-S. We will

explain three of the most popular systems, namely:

XPlan, CMU OWL-Broker and OWLS-MX.

XPlan

This tool is a composition-planning engine for

semantic web services, which are described in OWL-S.

It converts OWL-S 1.1 services to equivalent problem

and domain descriptions that are specified in the

planning domain description language (PDDL), and

invokes an AI planner (XPlan) to generate a service

composition plan sequence that satisfies a given goal

[9]. However, this tool is intended only for expert users

and provides a nice GUI to manipulate the composed

services manually. It only allows compositions with

sequences of child services. Additionally the tool has

the ability to consider QoS metrics in selecting suitable

candidate services for the composition [4].

CMU OWL-Broker

This is a prototype system developed by the W3C

designers of the OWL-S specification[16]. They have

based their implementation on a generic OWL-S

processor called OWL-S VM. The broker’s activities

are divided into two parts namely the advertisement

protocol and mediation protocol. In the advertisement

protocol the service providers’ service metadata are

collected in internal broker registries. In the mediation

protocol following activities is performed:

The requester query the broker using OWL Query

Language (OWL-QL)

The broker searches for a matching provider using

the advertisements in its registry

After selecting the best provider, the query is

mapped into the inputs expected by that provider.

Upon receiving the reply from provider, it is

mapped back into the outputs expected by

requester.

Finally, the output is sent back to the requester.

This broker does not have the ability to create (by

composing) new web services and matchmaking is

limited to the services registered to the broker. It also

does not take the QoS metrics into consideration when

finding the matches.

OWLS-MX

This is a hybrid semantic web service discovery tool in

the sense it uses both semantic reasoning and syntactic

based similarity metrics to obtain the best of both

worlds [19]. The service descriptions must be in the

OWL-S format and the system is implemented in Java.

It uses the OWL-DL reasoner called “Pellet” for

semantic reasoning. This is a very recent system

developed in 2006. However, this has only the

discovery capability and human intervention is

required throughout the process of selecting services to

testing whether the matched services are correct.

However, the program has a very easy to use GUI,

which allows us to visualize the whole process of

matchmaking [3].

3. Methodology

In order to derive a model to implement the required

functionalities, we design a system called DUBIP that

has three main components:

The client agent or service requester

The web service broker

The server or service provider

The high-level interactions among these three

components are given in the Figure 3 below.

17

Figure 3: High-level components and Interactions
Here, first the client send a query stating the

requirements for the service he wants to invoke and the

data required to invoke the service. The broker will

search through the registered services and invoke a

service that has capabilities to satisfy the client request.

Service providers register the services, by submitting

the descriptions of their available services. In addition,

DUBIP introduces other brokers into the system, so

that those will be referred if a matching service is not

found in the current broker.

We have used the OWL-S specification version 1.1

to describe the provider services to the broker. These

semantic descriptions made available to the broker,

will make it possible to find matching services to the

requester query and to compose new services to satisfy

the query. In order to find matches, the broker needs to

do reasoning, which requires that the broker can access

all the ontologies referred by the service descriptions.

An example plan generated by the broker to satisfy a

client query of booking a cheapest flight from

Colombo to New York is given in Figure 4. Here four

web services has been used sequentially and iteratively

to create a new service.

The agent at the client side needs to know the

semantic markup in order to formulate a query to be

sent to the broker and to process the results sent back

by the broker.

Figure 4: A composition plan for a query

4. Architecture

In the following sections, we have given a brief

description of the architecture of the three main

components of this brokerage system.

4.1. Client (requester)

The agent’s query should contain two different types of

information:

A description of the capabilities of the service

This is related to the metadata of the service we are

looking for. It will be a set of OWL classes, which will

describe the preconditions and effects of the service we

are searching.

Input data for the invocation of the service

This is a set of OWL class instances, which are

supplied as a possible set of inputs for the service, the

client is expecting to execute.

Here the broker will return an error code to the

client if a service with the requested capabilities are not

found. It is up to the client agent to handle these errors

in their own ways.

To handle complex message handling with the

broker, a client-side component is designed. This

component will simplify the usage of the broker by the

user applications, which does not need to know about

semantic markup or existence of multiple brokers.

With respect to the DUBIP this client-side component

is required to handle the following tasks:

Selecting the nearest or fastest broker

Selecting the next available broker if the current

one fails

The main processes of the client-side component are

depicted in the Figure 5. The client-side component

should be a platform dependent system, which needs to

interact with the user applications very closely.

Client Component

Handle

DUBIP

Available

brokers

Invoke Broker

Broker

Client

Application

Figure 5: Processes in the Client-side component

18

4.2. The Broker

This will be the core component of the semantic

brokerage system, which will handle the main tasks of

registration, discovery, composition and mediation.

While handling these tasks the broker must be aware of

the other brokers and co-exist with them. To

implement the complex set of requirements to be

fulfilled by the broker, it is divided into a set of tightly

integrated set of modules. These modules and the

interactions among them are depicted in Figure 6.

Broker

Discovery

Other

Brokers
Search other

brokers

Web service

Composition

OWL-S

registry
Web service

registration

Web Service

execution

OWL-S description

Search results

groundings

Service

provider

Web

Interface

Client agent or

application

Client-side

component

Other Brokers

Search results

Service tree

Actual Web

service

Output

Figure 6: Main modules inside the brokerage
engine

Service Registration

New web services will be registered by submitting

the OWL-S description of the service with a service

provider. A provider can register more than one service

and before the service is registered, the provider is

registered with the broker.

The OWL-S description of a service may refer to

custom ontologies designed by the provider. In this

case, the referred ontologies can either be made

available through an URL or submitted as a part of the

registration request. The OWL-S description and the

custom ontologies will be stored as files in the file

system of the broker.

Providers can register either Atomic services, which

can be executed directly or Composite services, which

can only be executed after matching atomic parts are

found. An Atomic service is registered by submitting

an OWL-S document containing a Service, which is

DescribedBy a single AtomicProcess. Similarly, a

Composite service is registered by submitting an

OWL-S document containing a Service that is

DescribedBy a single CompositeProcess.

Upon registration the broker will need to update

QoS information for each of the invocation on the

service. That is if the service execution was not

successful for some request then the Quality metric of

that particular service will be reduced. If the Quality

metric of the service is reduced below a specified

threshold, the service will be unregistered from the

broker and the relevant service provider will be

notified using the contact details in the database.

Service Composition

The query from the requester is received by this

component and will be handled mainly by this

component before passing onto other components.

Upon receiving the query from the requester, the

actions taken by this Composition component are

depicted in Figure 7.

The Service Composition component works as the

mediator between the activities of all other components

in the Broker, as can be seen from the Flow chart in

Figure 7. The processes 1, 2 and 5 of Figure 7 are

executed by the “Service Discovery” component. The

processes 4 and 6 are parts of the “Service Execution”

component while the process 3 is a part of the “Search

other Brokers” component.

An important thing to notice here is that we always

prefer Atomic services to Composite services in

searching for matches. The composite processes

mentioned here are of two types:

The skeleton services registered by the providers

Services dynamically generated by the

composition engine

19

Search for an

atomic process

Search for a

composite

process

Found a

match

No

Found a

match

No

Search in other

brokers

Found a

match

Return “No

Match” to the

requester

No

Execute the

Atomic

Process

Yes

Get the

contained

processes
Yes

Search for a

matching atomic

or composite

processes

recursively

Are all

processes

atomic

No

Execute the atomic

processes

according to the

data and control

flows defined by

composite process

Yes

1

2

3

4

5

6

7

8

Figure 7: Flow chart showing control flow among
the components of broker

For the Composition component to return a

successful response to the requester it should have

found at least one Atomic service and zero or more

Composite services, which specifies the data and

control flows among these Atomic services.

One important activity handled by this Composition

component which is not shown in Figure 7, is the

asking for more inputs from the requester in case the

inputs provided by requester are not sufficient to

invoke the selected service. The requester will be asked

for more inputs only if the requester has capabilities to

provide inputs on demand (i.e., if the mode-2 is used as

described previously).

Service Discovery

The service discovery would be done by checking

the ServiceProfile of the OWL-S documents stored

in the OWL-S registry. The preconditions and effects

(indicated by hasPrecondition and hasResult

respectively) of the ServiceProfile will be match

with those specified in the query to find a match or a

set of matches. In addition, if more than one composite

service is found, the services with least number of parts

are preferred and thus searched for matching Atomic

parts firstly.

The Atomic and Composite services discovered to

satisfy a query, can be thought of as making up a tree

hierarchy in which Atomic services make up leaves

with Composite services making up non-leaves.

Figure 8 shows a possible hierarchy of services

discovered to match the query described in Figure 4.

The boxes in thick borders denote Atomic services

while boxes with thin borders denote Composite

services. Here the service A is found by the process 2

in Figure 7 and then the other services B-G are found

by the process 6 in Figure 7 by recursively searching

for matching parts in all the composite services. After

all the Composite services are decomposed into

Atomic services the root service (e.g. service A in this

case) which satisfies the query, can be executed since

the WSDL groundings are available to all the lower

level Atomic services.

Figure 8: Tree of services discovered to satisfy a
Query

In matching inputs, outputs, preconditions and

effects by comparing the OWL classes of these

instances, there are three possible options namely exact,

relaxed, and subsume. In exact matching required and

available class are equal. In relaxed matching required

type is a sub class of the available type and vice versa

in subsume matching.

Service Execution

After the Tree of services satisfying the query has

been found by the “Service Discovery” component, it

is forwarded to this component. Here for each of the

Atomic services, the groundings will be obtained from

the OWL-S registry by reading the ServiceGrounding

from each of the specific OWL-S documents. The

ServiceGrounding specifies the URL of WSDL

document and the XSL transformations (which defines

the conversion between OWL data types and WSDL

data types). The WSDL document specifies the

location of the concrete web services and thus the web

service can be executed.

The executions of the services in Tree hierarchy will

proceed in Bottom-Up order, feeding the Output of the

lower level services to the upper level service, until the

Output of the root level service is available. This will

be returned to the requester as the response to the query.

The execution component exploits parallelism

among the services to reduce the service time. If two

services are not dependent on each other (through

output to input forwarding), the execution engine

20

identifies that sends SOAP requests to both the

services at the same time.

Search other Brokers

This module searches for matching services in other

brokers known to it. This is how the overall process

happens:

A limited number of brokers (n number of

brokers) known to the broker will be stored in the

“Other Brokers” registry shown in Figure 6.

The list of brokers is refreshed frequently to store

the n closest brokers to this broker.

Upon receiving the search request from

Composition component, the search request is sent

to the closest broker (broker B) to this broker

(broker A).

Broker B searches its registry for a matching

service. If one is found it would be sent to A.

Otherwise B will send the search request to its

closest broker exempting A (say C). The process

continues until a match is found or a threshold

number of brokers are searched.

Say at broker M a match is found (or threshold),

then M will directly send the reply to the original

broker A (or no match error if threshold).

5. Implementation

We have implemented the system using Java as our

main programming language. We have used the Jena

API to manipulate OWL descriptions associated with

services are well as to reason about the service

descriptions and other custom ontologies.

The Java web services were implemented using the

Axis framework and hosted in Apache Tomcat server.

We used the same Axis framework to execute provider

services. The broker does matching based on inputs,

outputs and effects of web services. Matching based on

preconditions or complex SWRL expressions are not

implemented. Dynamic composition of web services

by the broker was limited to sequences of services.

However, providers can design abstract composite

services using any of the control structures available in

the OWL-S specification and register them with the

broker. The broker will match the slots in the

composite service with concrete atomic services.

We also developed a prototype client component to

send requests to the broker and display the responses.

Figure 9 shows this client GUI application. It has five

main tabs, three tabs aiding the user to formulate the

request and two tabs to display the response sent back

by the broker. “Inputs” tab allows the user to define

input types and actual values associated with these

types, while “Outputs” and “Effects” tabs let the user

define output and effect types respectively. The user

can also specify the matching strength used in

comparing the input and output types for matches.

“Equivalent” denotes the strictest match condition

where the types should be the same for a match.

Figure 9: The client GUI for formulating requests
to be sent to the broker

After invoking the broker, the resulting composite

service created by the broker is shown in the fourth tab

and the actual response, which contain the output data

values are shown in the fifth tab.

6. Results

We tested the brokerage system by using number of

web services from a flight-booking scenario. We

invoked the broker using various inputs, outputs and

effects using the prototype client component we have

implemented. We have also used super classes and sub

classes of the input & output types with relaxed

matching strength to test the mediation capabilities of

the broker.

The system worked reliably and predicatively for all

the services in our sample scenario. Figure 10 shows a

composite service generated and subsequently

executed by the broker. However, the sample scenario

contained only half a dozen of services and about a

dozen of data types. The importance of using effects to

describe services will increase as the number of

registered services rises since more IO based matches

would result in a large search space.

21

Figure 10: A composite service generated
dynamically by the broker

7. Conclusion

This project was concerned with using semantic

web related technologies to dynamically select and

compose web services to satisfy client requests and

finally execute these web services to return the result to

the client. Even if semantic web is out of the research

labs, semantic web services are not. We used the W3C

recommended semantic web services language called

OWL-S to semantically annotate our web services.

OWL-S specification is still under the R&D stages and

going through rigorous changes as new features are

added and existing features are altered. Even if OWL-S

specification as it currently stands is very rich in

describing the web services, reliable third party library

support for manipulating these semantic descriptions

are not available as of yet. Another consideration is

that using these rich descriptions in general contexts

such as public web is still not very practical as many

web-based agents are still not capable to reading these

specifications. The broker we have implemented in this

project is concerned with some core features of the

OWL-S specification and is suitable for a specific

context or a domain, where the available core OWL-S

features can be used in an intuitive manner to obtain

predictable results (a mandatory requirement for any

enterprise scale application). In that sense, this project

works as an ambitious effort to bring the newest

developments in the academia through to the industry.

Another important fact is that when someone in the

industry wants to do something related to semantics

(for example in Enterprise Application Integration)

they always go for their own proprietary/custom

formats rather than going with available standard

formats, due to the complexity and generality of these

formats and the performance considerations of

implementing these full standards. We think this

project keeps an important step towards identifying a

useable set of core features to be used in industry

oriented, semantic web service related applications.

7.1. Future Work

The importance of OWL-S to semantic web services

is analogues to the importance of WSDL to the

syntactic (conventional) web services. The ability of

the current WS frameworks to automatically generate

WSDL for their web services is a key factor for the

popularity of the current web services. Humans

intervention will be needed only choose the OWL

types for WSDL complex types and to define

preconditions and effects. All of these can be done

through an easy to use GUI without requiring the user

to ever look at the WSDL or OWL-S files directly.

OWL-S precondition and effects (called post-

conditions as well) are currently based on SWRL

expressions and hard to be understood by conventional

procedural programmers (let along expecting them to

write such expressions). However even the W3C

activity group is still not sure of what language to be

used to define preconditions and effects and it is a still

wide open research area to select a suitable candidate.

However, as soon as the research community and the

W3C come to a conclusion of what rule language to be

used for OWL-S preconditions and effects, and as tool

support for manipulating rule expressions is available,

this functionality can be integrated to the IntelliBroker.

Due to the time constraints, we did not implement

the multiple broker interaction functionality. However,

in a distributed environment like internet (where

failures are common) it makes sense to have number of

small service brokers interacting with each other rather

than having one single broker creating a single point of

failure. Since the DUBIP itself is based on semantic

web languages, rather than syntactic fluff (like HTTP

or SOAP) it is inherently extendable and this

introduces us to the new concept of semantic protocols.

Acknowledgement

We want to thank all of the people who have

contributed with solutions to the OWL-S mailing list.

We want to thank Harshana Liyanage at Zone24x7 Inc

for providing us with insights into semantic web.

Finally yet importantly, we wish to thank all who have

contributed to the progress and improvement of

semantic web technologies, which has inspired us carry

on this project from start to end.

References

1. ARIBA. 2000. UDDI Overview. Fujitsu Limited.

2. CERAMI, E. 2002. WSDL Essentials. Web Services

Essentials 6. O'Reilly & Associates.

22

3. FRIES, B., AND KLUSCH, M. 2006. OWLS-MX, Hybrid

Semantic Web Service Matchmaker, Version 1.1b.

Users Manual.

4. GERBER, A., BUTT, S., AND KLUSCH, M. 2006. OWL-S

XPlan, OWL-S Semantic Web Service Composition

Planner. DFKI Saarbrücken, Germany.

5. GUNATILAKA, M., WIKRAMANAYAKE, G. N., AND

KARUNARATNA, D.D. 2004. Implementation of

Ontology Based Business Registries to Support e-

Commerce. University of Colombo School of

Computing. Proceedings of 6th International

Information Technology Conference, Colombo, Sri

Lanka, 29th Nov – 1st Dec 2004, pp. 222-231.

6. HERMAN, I. 2005. Tutorial on Semantic Web

Technologies. WWW Consortium.

7. JENA 2.2 DOCUMENTATION. 2005. RDQL Examples, HP

Research Labs.

8. JIAN, S., SUI, X., AND WANG, B. 2004. Semantic Web

Services.

9. KLUSCH, M., GERBER, A., AND SCHMIDT, M. 2005.

Semantic Web Service Composition Planning with

OWLS-XPlan. Proceedings of the 1st Intl. AAAI Fall

Symposium on Agents and the Semantic Web,

Arlington VA, USA, AAAI Press, 2005

10. KOIVUNEN, M., AND MILLER, E. 2001. W3C Semantic

Web Activity. In Proceedings of Semantic Web Kick-off

Seminar 2001. WWW Consortium.

11. LEE, T. B., HENDLER, J., AND LASSILA, O. 2001.

Semantic Web. Scientific American (May).

12. MANOLA, F., AND MILLER, E. 2004. RDF Primer. W3C

Recommendation 10 February 2004. World Wide Web

Consortium.

13. MSDN. 2003. .NET Web Services. MSDN

Documentation. Microsoft Cooperation.

14. PALMER, S. B. 2001. The Semantic Web: An

Introduction. Internet. Retrieved from

http://infomesh.net/2001/swintro on 2nd September

2005.

15. PAOLUCCI, M., AND SYCARA, K. 2002. DAML-S:

Semantic Markup for Web Services. The DAML

Services Coalition.

16. PAOLUCCI, M., SOUDRY, J., SRINIVASAN, N., AND SYCARA,

K. 2004. A Broker for OWL-S Web services. The

Robotics Institute, Carnegie Mellon University.

17. ROMAN, D., ZAREMBA, M. 2005. Semantic Web services

for Autonomic Computing. Second IEEE International

Conference on Autonomic Computing, Seattle, USA.

June 2005.

18. SMITH, M. K., WELTY, C., AND MCGUINNESS, D. 2004.

OWL Web Ontology Language Guide. W3C

Recommendation 10 February 2004.

19. SYCARA, K., FRIES, B., AND KLUSCH, M. 2006.

Automated Semantic Web Service Discovery with

OWLS-MX. Proceedings of 5th International

Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS), Hakodate, Japan, ACM Press

20. VASUDEVAN, V. 2001. A Web Services Primer. Internet.

Retrieved from

http://webservices.xml.com/pub/a/ws/2001/04/04/webser

vices on 01st September 2005.

23

