
Implementation of Ontology Based Business Registries to Support e-Commerce

Manjith Gunatilaka, Gihan Wikramanayake, Damitha Karunaratna

University of Colombo School of Computing

manjith@dmsswt.com, gnw@ucsc.cmb.ac.lk, ddk@ucsc.cmb.ac.lk

Abstract

The Business Registries are one of the key elements in

the Business to Business (B2B) transaction process in

e-Commerce. It acts as knowledge centers by offering

services to different business parties to collaborate their

business processes in an effective manner. Currently it

is challenging to extract accurate information needed by

a business party who is querying a registry on a

particular industrial domain due to its inability to store

business specific domain information effectively.

In this research paper we show how we improved the

storage of a business domain specific knowledge by

utilizing the implementation of Ontologies. For this we

have selected “IT Outsource” as our reference

implementation Ontology, which helps IT companies

engaged in outsourcing business to setup their business

repositories in an effective manner.

Once Ontology is represented in the Business Registry,

business parties could to automate their search process

by using Ontology based querying and automating

Agent based search.

1. Introduction

The Electronic Business XML (ebXML) [1] and

Universal Description, Discovery and Integration

(UDDI) [2] are the commonest business infrastructure

frameworks commercially available to perform B2B

transaction process. All these frameworks are built with

business registries and repositories as main components,

which is used to advertise services each business party

is involved.

1.1 Business Registries

The Registry stores services related meta information

where as repository is a container which captures data.

Currently these Registries implement knowledge of a

business domain using their own coding schemes which

is specific to its own implementation. These coding

schemes restrict deductive inference capabilities in a

registry and hence affect business parties collaborating

business transactions in an interoperable manner.

The use of ontology based classification structures for

the representation of classification relationships and its

properties inside the registry is not used by any of these

registries. We have used OASIS [3] open ebXML

registry implementation (freeebXML) [4] as an example

registry which is one of the popular open source ebXML

framework specific registry. In real-world there are a

number of business registries such as Adobe – eForm

registry [5], SDMX – statistical registry [6], Apelon –

Medical guideline registry [7], General Motors and

Vokswagon B2B artifacts registry and IBM UDDI

business test registry [8].

1.2 Ontology

Ontology is a description of a content and relationship

expressed as a formal vocabulary. This can be used to

classify domain specific information in different areas

such as in education, engineering, natural sciences etc.

Most of the business information stored in repositories

in Business to Business (B2B) infrastructure

frameworks is difficult to extract due to unstructured

domain classifications in business registries [9].

Therefore use of ontology as an information source to

formalize domain knowledge and finding a way of

mapping this information to registry content is a

practical solution to enhance B2B communication. We

have used OWL [10] ontology language to represent the

web semantic content in the repository.

Rest of the paper is organized as follows: Section 2

introduces registry implementation model which is

represented using UML diagrams. Thereafter in section

3 we briefly describe ontology, OWL ontology language

and Description Logic (DL) which are used in

ontologies in. Section 4 describes our reference

ontology domain - “IT Outsourcing” along with its

design and tools used to develop. Thereafter section 5

describes basics elements in OWL and how it is mapped

with ebXML RIM model. It presents different stages in

OWL to ebXML RIM mapping process. Section 6

describes “OWL-ebXML Onto” transformation engine

we developed to implement ontologies into business

registries and final section 7 concludes with a short

summary and future enhancements in business

registries.

222

2. Registry Implementation Model

The types of objects stored and how these objects are

organized is defined in the ebXML Registry Information

Model (RIM) [11]. The implementation of RIM is done

in the form of a relational or object database schema.

The registry objects can be categorized into two types

namely classification related objects (Figure 1) and

service related objects (Figure 2).

All information stored in the registry is represented

using an abstract class called RegistryObject which

provides minimal meta data. These registry objects are

classified or grouped into different classification

schemes such as North American Industry Classification

System (NAICS) [12], ISO3166 [13] or according to

user define classification structures.

The classification schemes are further subdivided into

classification nodes which define tree structures under

ClassificationScheme registry object. These

classification scheme instances and taxonomy values are

identified using Classification registry object. Once

these important registry objects instances are defined,

grouping of logically related registry objects are

specified using RegistryPackage instance.

The Associaition registry object instance is the most

important element in the RIM which defines many-to-

many associations between registry objects. These

associations are classified into fourteen predefine

association types such as “RelatedTo”, “Uses”,

“HasMember”, “EquivalentTo”, “Contains” etc.. These

types specify relationship between source and target

registry objects.

Figure 1: Classification related objects of RIM

The second type of RIM objects (Organization, Service,

ServiceBinding and SpecificationLink) are used to

specify registry services. The Organization registry

object specifies available organizations in the registry

and its published services are listed in the Service

registry object (e.g. Web Services). The ServiceBinding

registry object represents technical information on

specific ways to access a specific interface published by

a particular service. The SpecificationLink registry

object lists down how to use the service.

3. Ontology and Semantic Data

 Interpretation

Ontology is an explicit specification of a

conceptualization [14]. It represents concepts in a

domain of discourse (Classes), properties of each

concept describing various features and attributes of the

concept (Slots) and restrictions on Slots (Facets).

There are two classifications of ontologies namely

Thesaurus-like (formal) and Descriptive ontology.

Thesarus-like ontology is first generation of ontologies

which arrange terms into subsumption hierarchy and

link them with other relationship to express synonym,

composition, etc.. The Descriptive ontology define

properties of concepts and their interrelationships which

gives semantically rich representation of intended

domain. We used descriptive ontology to represent our

domain knowledge.

Figure 2: Service related registry objects of RIM

3.1 Description Logic

The Descriptive ontology is based on Description Logic

(DL) which is the key concept behind knowledge

representation. The DL is formalized on Concepts (i.e.

Classes), Roles (Binary relationship between Classes

and its cardinality) and Constructors (Table 1).

223

 Table 1: Constructors in DL

The Constructors define complex concepts. Axioms

(Table 2) are used to name complex concepts and to

state subsumption relationship between concepts. The

Constructors include Union, Intersection, Negation,

Existential restriction, Value Restrictions etc.. Axioms

are categorized into two types, namely, Definition

axiom and Inclusion axiom. Definition axioms introduce

names for concepts and Inclusion axiom asserts

subsumption relations.

Axioms DL Syntax

subClassOf 21 CC
equivalentClasses 21 CC
subProperty 21 PP
equivalentProperty 21 PP
sameAs }2{}1{ XX

disjointWith 21 CC
differentIndividualAs }2{}1{ XX

inverseAs 21 PP -1

transitiveProperty PP

Table 2: Axioms in DL

3.2 Ontology Language – OWL

The OWL is a web ontology language which is used to

describe a relationship between classes. It uses DL as a

main construct to specify information related to a

specific domain. It is stored in a form of an XML/RDF

(Resource Description Framework) format. The OWL is

an extension to DAML (DARPA Agent Markup

Language) + OIL (Our Ideas of a Language) [15]

combine with additional areas other than DL is Frame

based systems and web languages such as XML and

RDFS.

OWL is divided into three sub languages, OWL Lite,

OWL DL and OWL Full. The OWL Lite represents

simple class hierarchies, where as OWL DL supports for

maximum expressiveness which adds completeness and

decidability based on DL. The OWL Full supports

maximum expressiveness and freedom is given to users

to define their own RDF formats [16].

Constructor DL Syntax

interSectionOf 21 CC

unionOf 21 CC

complementOf 1C
oneOf

(enumeration)

{x1,x2,…xn}

allValueFrom CP.
someValueFrom CP.
hasValue }.{XP

minCardinality nP
maxCardinality nP
cardinality nP

4. The Reference Ontology

We have used IT Outsource domain as reference

ontology. The knowledge acquisition in IT outsource

domain was done by referring to leading outsourcing

company web sites.

4.1 IT Outsourcing Domain

Figure 3: Reference ontology for IT Outsource

domain

The “IT outsourcing" means hiring somebody outside

your company to provide IT services. Outsourcing is

most common for companies whose IT needs are well

known in advance. It allows companies to focus on

broader business issues while delegating operational

details for handling by an outside expert. Basically any

IT outsourcing company focus on different market

segments (industry categories); specific solutions cater

to those industries and type of services they offered.

Other than these important elements, features and

facilities provided by IT solutions are important

elements in IT outsourcing domain. Any company

224

selects an IT outsource option because it brings benefits

such as improve business focus, gain world class

solutions, accelerate reengineering benefits to organizes

their processes, share risk with another organization by

delegation IT tasks and possible allocation of existing

resources for more strategic activities.

4.2 Ontology Design

The knowledge gathered was represented to a reusable

ontology using the Protégé [17] tool (Figure 3.0). The

ontology is classified into five classification schemes,

namely, different types of organizations involved in IT

outsourcing, industry categories, services provided by

different organizations, solutions these organizations

provided and finally types of features/facilities available

in these solutions. Each classification is further

analyzed and sub categorized into different

classification hierarchies. The relationship between

these classification hierarchies and its nodes were

identified and it was represented using DL. Properties

were defined according to OWL classification (data and

object properties) and necessary restrictions were

enforced using asserts conditions given in the Protégé

tool.

After completing the design of IT Outsource ontology, it

was converted to OWL language (OWL XML format)

using a conversion tool provided with Protégé. This

automation process reduces additional effort necessary

to convert the domain specific ontology to OWL.

5. OWL and ebXML RIM Object Mappings

Due to inadequacies in object registering and storing

structures given in the existing registry implementation

models, it is not possible to store semantic information

using web semantic languages such as OWL. We have

identified a practical way of mapping the existing

structures to our IT outsourcing reference business

registry, ebXML, using OWL specifications and hence

overcome this problem.

5.1 Basic Elements in OWL

5.1.1 Classes

The basic OWL ontology elements consist of Classes,

Properties, instances of classes and their relationships.

These elements are mapped into ebXML registry objects

to represent the domain knowledge inside the registry.

The class and sub class relationship in OWL is

represented using owl tags <owl:Class> and

<rdfs:subClass>. The example code snippet given in 1.0

represents, “InsuranceSol” is a sub class of an

“ITServiceSol” class.

<owl:Class rdf:ID="InsuranceSol">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#ITServiceSol"/>

 </rdfs:subClassOf>

</owl:Class>

Code snippet 1.0

5.1.2 Property

The second type of element in OWL is called the

Property which defines the binary relationship between

classes or between classes and RDF literal data types.

There are two important property types, ObjectProperty

and DatatypeProperty.

The ObjectProperty defines relationship between two

classes (Binary relationship). The example code snippet

2.0 shows “erpSolutions” is an ObjectProperty which

relates “ERP” and “ERPSol” classes. Its rdfs:domain

and rdfs:range tags provides additional information to

the relationship by indicating source and target classes

which bound relationship end points.

<owl:ObjectProperty rdf:ID="erpSolutions">

 <rdfs:domain rdf:resource="#ERP"/>

 <rdfs:range rdf:resource="#ERPSol"/>

</owl:ObjectProperty>

Code snippet 2.0

The DatatypeProperty represents binary relationship

between classes to data types. The example given in

Code snippet 3.0 represents “costSolution” relationship

has a data type property between “Solutions” and

“String” data type.

<owl:DatatypeProperty rdf:ID="costSolution">

 <rdfs:domain rdf:resource="#Solutions"/>

 <rdfs:range rdf:resource=

 http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

Code snippet 3.0

The scope of a class can be restricted using anonymous

classes. This is achieved using Object or Datatype

property restrictions. The code snippet given in 4.0

represents restriction applied for a class using a

<owl:Restriction> tag. In this example

“DatawarhousingSol” has been restricted using

Datatype property which indicates it has a

“costSolution” property and has a value type Boolean.

The OWL defines set of predefine restriction properties,

such as “owl:allValuesFrom”, “owl:someValueFrom”,

“owl:cardinality”, “owl:minCardibality” and

“owl:maxCardinality”.

5.1.3 Individual

The third important element in OWL is called

“Individuals” which represents instances of a class. The

example code snippet given in 5.0 represents

225

“Organization” class has an instance called “DMS” and

it has two attributes, name of the organization and

service industry.

<owl:Class rdf:ID="DatawarehousingSol">

 …..

 <owl:Restriction>

 <owl:hasValue rdf:datatype=

 http://www.w3.org/2001/XMLSchema#boolean>

 true

 </owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#costSolution"/>

 </owl:onProperty>

</owl:Restriction>

 ……..

 </owl:Class>

Code snippet 4.0

<Organization rdf:ID="DMS">

 <serviceIndustry rdf:resource="#InBoundTours"/>

 <nameOrganization rdf:datatype=

 "http://www.w3.org/2001/XMLSchema#string">

 DMS Software Technologies</nameOrganization>

</Organization>

Code snippet 5.0

The Object and Datatype properties can be further

restricted using the complex property characteristics

such as “TravsitiveProperty”, “SymmetricProperty”,

“FunctionalProperty” and “InverseOf”.

There are instances which need to specify the collection

of class relationships in the ObjectProperty using

advance type of class descriptions such as “unionOf”,

“intersectionOf” and “complementOf” properties in

OWL. The example code snippet 6.0 represents how

“ITServiceIndustry” property is restricted using domain

class object as “ITService” and range is restricted to

“Collection” rdf:parseType which comprises collection

of classes such as “Finance” and “Government”.

<owl:ObjectProperty rdf:ID="ITServiceIndustry">

 <rdfs:domain rdf:resource="#ITServices"/>

 <rdfs:range>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Finance"/>

 <owl:Class rdf:about="#Government"/>

 …..

</owl:unionOf>

 </owl:Class>

 </rdfs:range>

 </owl:ObjectProperty>

Code snippet 6.0

5.2 Mapping Stages

The objective of the mapping stages is to implement a

mapping mechanism that transforms domain knowledge

represented in OWL to ebXML RIM. We have

identified five mapping stages which will transform

OWL to ebXML RIM specifications.

5.2.1 Mapping of Classification Hierarchies

The class and sub class relationship represented in the

OWL (code snippet 1.0) is mapped into classification

hierarchies using ClassificationScheme,

ClassificationNodes and Classificaion registry objects

(code snippet 7.0). The following code snippet shows

how classifications of industry categories are submitted

to the ebXML registry model.

<ClassificationScheme id="IndustryCategory-id"

 … >

<ClassificationNode id="Finance-id"

 parent=" IndustryCategory-id " code="Finance">

 <ClassificationNode id="Government-id"

 parent=" IndustryCategory-id " code="Government" />

 <ClassificationNode id="HealthSector-id"

 parent=" IndustryCategory-id " code=" HealthSector "

/>

Code snippet 7.0

5.2.2 Mapping of Properties

The Object and Datatype Property (Code snippet 2.0

and 3.0) binary relationship in OWL is converted to

Association registry objects. Its source and target

attributes represents two classes define in the OWL.

The Association type can be specified according to

predefine association types in ebXML RIM. The

complex property characteristics such as

TransitiveProperty, FunctionalProperty,

SymmetricProperty etc. are defined as a new association

type and special classification schema was created

which is called “ComplexProperty” and its node

representing all the complex properties in OWL.

The following code (code snippet 8.0) shows mapping

of OWL code snippet 2.0 into ebXML registry object.

Similar conversion is applied to OWL code snippet 3.0

by indicating target registry as a “String”

ClassificationNode.

<Association id = "erpSolutions"

 associationType = "Contains"

 sourceObject = "ERP"

 targetObject = "ERPSol-id”

/>

Code snippet 8.0

The following example (code snippet 9.0) represents

complex property mappings in the OWL. It defines

“solType” as a FunctionalProperty by defining new

Association type called “Functional” which defines

solution type property that can either be based on

“IndustryCategory” or “Service” classification scheme.

226

<Association id = "solType"

 associationType = " Functional "

 sourceObject = "IndustryCategory"

 targetObject = "Service”

/>

Code snippet 9.0

The important OWL element called Restrictions shown in the

code snippet 4.0 can be mapped as a new type of Association

called “Restriction”. The restriction related properties such as

“hasValue”, “sameAs”, “onProperty” etc. is mapped as Slot

objects. Following code (code snippet 10.0) shows how

Restriction can be mapped into ebXML registry objects.

<Association id = "DatawarehouseSolRestrict-id"

 associationType = " Restriction "

 sourceObject = "DatawarehousingSol "

 targetObject = " costSolution”>

 <Slot name = "hasValue">

 <ValueList>

 <Value>true</Value>

 </ValueList>

 </Slot>

</Association>

Code snippet 10.0

5.2.3 Mapping of Organizations

The classification of Organization class in the reference IT

Outsource ontology represents organization class hierarchy.

The code snippet 5.0 is converted to ebXML registry object

according to following code samples (code snippet 11.0).

<Organization id="dms-id"

primaryContact = "manjith-id">

 <NameOrganization>

 <LocalizedString lang="us-en" value="DMS/>

 </Name>

 <ServiceIndustry>

 <LocalizedString lang="us-en"

 value="Software Development " />

 </ServiceIndustry>

 <Slot name = "Employee Count">

 <ValueList>

 <Value>50</Value>

 </ValueList>

 </Slot>

 <Address streetNumber="165"

street="Dharamapala Mw."

city="Colombo"

stateOrProvince="Western"

postalCode="0007"

 country="SL" />

 <TelephoneNumber countryCode="1"

 areaCode="781"

 number="442-0703"

phoneType="office"/>

 ….

</Organization>

Code snippet 11.0

5.2.4 Mapping of Collection Hierarchies

The collection of class relationships represented using

rdf:parseType=“Collection” and use advanced type of

class descriptions “unionOf”, “intersectionOf” and

“complementOf” is converted into registry packages in

Figure 4: OWL-ebXML Onto Transformation Engine

227

ebXML registry. The example code snippet 6.0 is

converted into following code (code snippet 12.0) in

ebXML registry.

<RegistryPackage id = "ITServiceInd-id">

 <Name>

 <LocalizedString value = "IT Service Industry Pkg"/>

 </Name>

 <Description>

 <LocalizedString value =

 "It packages all IT service industry categories"/>

 </Description>

 <RegistryObjectList>

<ClassificationNode id = "Finance-id" >

 <Name>

 <LocalizedString value =

 "Financial Sector"/>

 </Name>

 <Description>

 <LocalizedString value =

 "All Financial sector industries"/>

 </Description>

 </ClassificationNode>

 <ClassificationNode id = "Government-id" >

 <Name>

 <LocalizedString

 value = "GovernmentSector" />

 </Name>

 <Description>

 <LocalizedString value = "All Public

sector industries"/>

 </Description>

</ClassificationNode>

…

 </RegistryObjectList>

</RegistryPackage>

<Association id="ITServiceIndustryAsso-id"

 associationType="Unionof"

 sourceObject="ITServices"

 targetObject=" ITServiceInd-id"

</Association>

Code snippet 12.0

5.2.5 Mapping of Services

The most important ontology classification scheme in

our reference ontology is the Service classification

scheme. It represents types of services provided by the

IT Outsource domain and these services are advertised

in the registry as a web service registry objects. The

example code (code snippet 13.0) represents XML

instance to register CRMeService as a web service. The

ServiceBinding registry instance provides information

about how to access the web service interface (i.e. URI

information). The SpecificationLink registry instance

provides technical specification details such as Web

Service Description Language (WSDL) document.

<! --Service objects - ->

<Service id="CRMeSerivce-id">

 <Name>

 <LocalizedString lang="us-en"

 value="CRM Registry Service" />

 </Name>

 <Description>

<LocalizedString lang="us-en"

 value="CRMeServices " />

 </Description>

 <ServiceBinding

 id="CRMeServiceSOAPBinding"

 accessURI=http://localhost:8080

 /ebxmlrr/registry/soap/CRMeService">

 …

 <SpecificationLink

 id=" CRMeServiceSOAPBinding SpecLink"

 specificationObject=

 "CRMeSErvicesWSDL">

 …

 </SpecificationLink>

 </ServiceBinding>

</Service>

Code snippet 13.0

Once the service is advertised, it is important to define

the service specification link information as an

ExtrinsicObject or ExternalLink. The following code

(code snippet 14.0) sample shows how to define an

Extrinsic registry object transform to the CRMeService

[18].

<!—WSDL document – ExtrinsicObject -->

<ExtrinsicObject id=" CRMeServicesWSDL "

 mimeType="text/xml">

 …

 </ExtrinsicObject>

Code snippet 14.0

6. OWL-ebXML Onto

The implementation of ebXML registry with domain

specific information which is represented in OWL, was

stored using a transformation processes. The mapping of

OWL syntax to ebXML RIM was identified during the

detail analysis of the OWL and RIM properties,

structures and elements. This information was converted

according to OWL vs. ebXML RIM mappings given in

the Table 3. The results gathered during the detail

analysis of OWL syntax to ebXML RIM specification is

listed in section 5.

The process of above transformation is automated using

“OWL-ebXML Onto” transformation engine (Figure 4).

The architecture of the “OWL-ebXML Onto” is shown

in Figure 5. It has two main components Ontology

Analyzer and Ontology Transformer. The process of

transformation of any ontology is started with

228

conversion of ontology to an OWL syntax using a

Protégé converter. The converted file is stored as an

.owl and it is loaded to the transformation tool. Once the

file is uploaded, it is parsed through an OWL ontology

parser (Jena [19]) and an ontology model is created.

The next step is to process the ontology model

using ontology analyzer. It has five sub analyzers:

Class and Sub Class Analyzer - analyze classes

and sub class relationships and store that

information in the database.

Service Analyzer – analyze service ontology and

converts into web service specific information and

store that information in the database.

Property Analyzer - analyze ObjectProperty,

DatatypeProperty, complex and advanced

properties. Once analysis is completed, store that

information in the database.

Enumerated Class Analyzer - analyze collection

related classes and store that information in the

database.

Figure 5: OWL-ebXML Onto Transformation Engine Architecture

Individual Analyzer – analyze instance related data of

a class and store that information in the database.

After completion of ontology analysis process, the next

step is to transform the analyzed ontology into RIM

specification. This is processed using the Ontology

Transformer. It has two components, namely “OWL

Basic Element Transformer” (OBET) and “Web Service

Transformer” (WST). The OBET uses Table 3 data and

already analyzed data in the database to perform

transformation. It will convert OWL model into ebXML

specific registry objects during the transformation

process. It creates all classes and sub class relationships,

properties as associations and individual elements as

data values in classification nodes. Once basic elements

are registered to the ebXML business registry,

registering of web services can be performed using

229

WST. It creates necessary RIM specific service instance

objects, its relationships between service organizations,

service binding and points to specification details such

as WSDL documents etc..

The transformed ebXML registry objects which was

generated from OWL ontology is registered to the

ebXML registry using Java API for XML Registry

(JAXR) [20]. All meta data in the ebXML registry and

analyzed data was stored in the Oracle database. The

tool was developed using Java and user friendly GUI

features were provided to view, load and analyze

transformed ontology to the ebXML registry.

7. Conclusion

Effective business collaboration between two parties in

B2B environment in e-commerce is an issue due to

inadequacy and inability to represent business domain

knowledge. Though there are few commercially

available business registries, storing business domain

knowledge and formalizing business jargon is a

problem. Therefore incorporation of business domain

knowledge using ontology to the existing business

registries is a practical approach we have adopted.

During our research effort we addressed this concern by

exploiting similarities in ontology web language OWL

and example registry ebXML to propose a

transformation method. Based on this method, we

discussed and proposed an implementation of a

transformation engine called OWL-ebXML Onto which

is an ontology based semantic web content plug-in.

This research effort can be further extended by

introducing ontology based query engine to business

registries, which will utilize stored ontology to deduct

and infer effective search results which is not provided

with the existing query managers in the business

registries.

The future work in ontology and business registry would

be direct incorporation of ontology based repositories

capable of Semantic Content Management (SCM),

OWL ebXML

owl:class ClassificationNode

rdfs:subClassOf ClassificationNode

rdfs:domain Source Registry Object

rdfs:range Target Registry Object

owl:ObjectProperty Association - predefine or new Association type called “objecttype”

owl:Restriction Created a new Association type called “restriction”

owl:onProperty Created a new Association type called “onproperty”

owl:minCardinality Add a Slot attribute called “mincardinality” to an Association

owl:cardinality Add a Slot attribute called “mincardinality” to an Association

owl:maxCardinality Add a Slot attribute called “maxcardinality” to an Association

owl:DatatypeProperty Association between Class and RDF/simple XML datatype.

We define new Association type called “datatype”

rdfs:subPropertyOf Add a Slot attribute called “subproperty” to an Association

owl:oneOf A Registry Package with collection of a new Association type called “oneof”

owl:TransitiveProperty Created a new Association type called “transitive”

owl:SymmetricProperty Created a new Association type called “symmetric”

owl:sameAs Created a new Association type called “sameas”

owl:differentFrom Created a new Association type called “differentfrom”

owl:distinctMembers and

owl:AllDifferent

Create a Registry Package Object with all distinct members and then assign a Slot

which has an attribute “alldifferent”

owl:unionOf Create a Registry Package Object with all union classes and then

assign a Slot which has an attribute “unionof”.

owl:hasValue Add as a Slot to a Registry Object

owl:FunctionalProperty Created a new Association type called “functional”. If the domain is defined as a

rdfs:subProperty then take it as a domain, otherwise take it as a Slot attribute.

owl:InverseFunctionalProperty Created a new Association type called “inversefunc”.

owl:allValuesFrom Add a Slot attribute called “allvaluesfrom” to an Association

owl:someValuesFrom Add a Slot attribute called “somevaluesfrom” to an Association

owl:intersectionOf Created a new Association type called “intersectionof” which has source registry

object as Class object and target registry object as Registry Package.

owl:unionOf Created a new Association type called “unionof” which has source registry object

as Class object and target registry object as Registry Package

owl:complementOf Created a new Association type called “complementof”

owl:equivalentClass Created a new Association type called “equivalentclass” having source and target

registry objects are either classes or registry packages.

owl:disjointWith Created a new Association type called “disjointwith”

Table 3: ebXML and OWL Transformation Table

230

which will remove third party plug-in and make

business repositories more organized and effective.

This will enhance Small, Medium and Enterprise (SME)

business partners to setup there registry centric business

operation more effective and efficient by improving

existing bottlenecks in the B2B transaction process in

e-commerce.

8. References

[1] ebXML,http://www.ebxml.org,[visited on 12/05/2004]

[2] UDDI, http://www.uddi.org, [visited on 12/05/2004]

[3] OASIS - http://www.oasis-open.org/home/index.php,

 [12/05/2004]

 [4] freebXML - http://ebxmlrr.sourceforge.net/,

 [12/05/2004]

[5] Adobe eForm,

 http://xml.gov/presentations/adobe/PDFA-XMP-

 Registry.pdf, [12/05/2004]

[6] SDMX , http://www.sdmx.org,[12/05/2004]

[7] Apelon – http://www.apelon.com, [2/05/2004]

[8] IBM UDDI registry, https://uddi.ibm.com/testregistry/find,

 [12/05/2004]

[9] Manjith Gunatilaka, Gihan Wikramanayake, Damitha

 Karunaratne, “Improving B2B Transactions by Exploiting

 Business Registries”, In Proceeding for the 23rd National

 IT Conference, Colombo, Sri Lanka, 2004, pp 1

[10] OWL language overview,

 http://www.w3.org/TR/2004/REC-owl-features-
 20040210/#s1.3, [12/05/2004]

[11] RIM - ebXML Registry Information Model Version 2.0,

 April 2002, http://www.ebxml.org/specs/ebRIM2.pdf,

[12/05/2004]

[12] North American Classification System,

 http://www.census.gov/epcd/www/naics.html,

 [12/05/2004]

[13] ISO 3166 - http://www.iso.ch/iso/en/prods-

 services/iso3166ma/, [12/05/2004]

[14] Thomas R. Gruber, “Towards Principles for the Design of

 Ontologies Used for Knowledge Sharing”, 1993, pp 1-2

[15] DAML/OIL, http://www.daml.org,

 [28/07/2004]

[16] OWL Ontology Language Guide,

http://www.w3.org/TR/2004/REC-owl-guide-20040210/,

2004 [28/07/2004]

[17]] Protégé, http://protege.stanford.edu/,

 [28/07/2004]

[18] Joseph M. Chiusano, Booz Allen Hamilton,

 Farrukh Najmi, “Registering Web Services in

 ebXML Registry”, Version 1.0, March 2003

[19] Jena , http://jena.sourceforge.net/documentation.html,

 [12/05/2004]

[20] JAXR, http://java.sun.com/xml/jaxr/index.jsp,

 [2/08/2004]

231

